--- _id: '64' abstract: - lang: eng text: Tropical geometry, an established field in pure mathematics, is a place where string theory, mirror symmetry, computational algebra, auction theory, and so forth meet and influence one another. In this paper, we report on our discovery of a tropical model with self-organized criticality (SOC) behavior. Our model is continuous, in contrast to all known models of SOC, and is a certain scaling limit of the sandpile model, the first and archetypical model of SOC. We describe how our model is related to pattern formation and proportional growth phenomena and discuss the dichotomy between continuous and discrete models in several contexts. Our aim in this context is to present an idealized tropical toy model (cf. Turing reaction-diffusion model), requiring further investigation. article_processing_charge: No article_type: original author: - first_name: Nikita full_name: Kalinin, Nikita last_name: Kalinin - first_name: Aldo full_name: Guzmán Sáenz, Aldo last_name: Guzmán Sáenz - first_name: Y full_name: Prieto, Y last_name: Prieto - first_name: Mikhail full_name: Shkolnikov, Mikhail id: 35084A62-F248-11E8-B48F-1D18A9856A87 last_name: Shkolnikov orcid: 0000-0002-4310-178X - first_name: V full_name: Kalinina, V last_name: Kalinina - first_name: Ernesto full_name: Lupercio, Ernesto last_name: Lupercio citation: ama: 'Kalinin N, Guzmán Sáenz A, Prieto Y, Shkolnikov M, Kalinina V, Lupercio E. Self-organized criticality and pattern emergence through the lens of tropical geometry. PNAS: Proceedings of the National Academy of Sciences of the United States of America. 2018;115(35):E8135-E8142. doi:10.1073/pnas.1805847115' apa: 'Kalinin, N., Guzmán Sáenz, A., Prieto, Y., Shkolnikov, M., Kalinina, V., & Lupercio, E. (2018). Self-organized criticality and pattern emergence through the lens of tropical geometry. PNAS: Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.1805847115' chicago: 'Kalinin, Nikita, Aldo Guzmán Sáenz, Y Prieto, Mikhail Shkolnikov, V Kalinina, and Ernesto Lupercio. “Self-Organized Criticality and Pattern Emergence through the Lens of Tropical Geometry.” PNAS: Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1805847115.' ieee: 'N. Kalinin, A. Guzmán Sáenz, Y. Prieto, M. Shkolnikov, V. Kalinina, and E. Lupercio, “Self-organized criticality and pattern emergence through the lens of tropical geometry,” PNAS: Proceedings of the National Academy of Sciences of the United States of America, vol. 115, no. 35. National Academy of Sciences, pp. E8135–E8142, 2018.' ista: 'Kalinin N, Guzmán Sáenz A, Prieto Y, Shkolnikov M, Kalinina V, Lupercio E. 2018. Self-organized criticality and pattern emergence through the lens of tropical geometry. PNAS: Proceedings of the National Academy of Sciences of the United States of America. 115(35), E8135–E8142.' mla: 'Kalinin, Nikita, et al. “Self-Organized Criticality and Pattern Emergence through the Lens of Tropical Geometry.” PNAS: Proceedings of the National Academy of Sciences of the United States of America, vol. 115, no. 35, National Academy of Sciences, 2018, pp. E8135–42, doi:10.1073/pnas.1805847115.' short: 'N. Kalinin, A. Guzmán Sáenz, Y. Prieto, M. Shkolnikov, V. Kalinina, E. Lupercio, PNAS: Proceedings of the National Academy of Sciences of the United States of America 115 (2018) E8135–E8142.' date_created: 2018-12-11T11:44:26Z date_published: 2018-08-28T00:00:00Z date_updated: 2023-09-18T08:41:16Z day: '28' department: - _id: TaHa doi: 10.1073/pnas.1805847115 ec_funded: 1 external_id: arxiv: - '1806.09153' isi: - '000442861600009' intvolume: ' 115' isi: 1 issue: '35' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.09153 month: '08' oa: 1 oa_version: Preprint page: E8135 - E8142 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: 'PNAS: Proceedings of the National Academy of Sciences of the United States of America' publication_identifier: issn: - '00278424' publication_status: published publisher: National Academy of Sciences publist_id: '7990' quality_controlled: '1' scopus_import: '1' status: public title: Self-organized criticality and pattern emergence through the lens of tropical geometry type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '9838' abstract: - lang: eng text: 'Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.' article_processing_charge: No author: - first_name: Marketa full_name: Kaucka, Marketa last_name: Kaucka - first_name: Julian full_name: Petersen, Julian last_name: Petersen - first_name: Marketa full_name: Tesarova, Marketa last_name: Tesarova - first_name: Bara full_name: Szarowska, Bara last_name: Szarowska - first_name: Maria Eleni full_name: Kastriti, Maria Eleni last_name: Kastriti - first_name: Meng full_name: Xie, Meng last_name: Xie - first_name: Anna full_name: Kicheva, Anna id: 3959A2A0-F248-11E8-B48F-1D18A9856A87 last_name: Kicheva orcid: 0000-0003-4509-4998 - first_name: Karl full_name: Annusver, Karl last_name: Annusver - first_name: Maria full_name: Kasper, Maria last_name: Kasper - first_name: Orsolya full_name: Symmons, Orsolya last_name: Symmons - first_name: Leslie full_name: Pan, Leslie last_name: Pan - first_name: Francois full_name: Spitz, Francois last_name: Spitz - first_name: Jozef full_name: Kaiser, Jozef last_name: Kaiser - first_name: Maria full_name: Hovorakova, Maria last_name: Hovorakova - first_name: Tomas full_name: Zikmund, Tomas last_name: Zikmund - first_name: Kazunori full_name: Sunadome, Kazunori last_name: Sunadome - first_name: Michael P full_name: Matise, Michael P last_name: Matise - first_name: Hui full_name: Wang, Hui last_name: Wang - first_name: Ulrika full_name: Marklund, Ulrika last_name: Marklund - first_name: Hind full_name: Abdo, Hind last_name: Abdo - first_name: Patrik full_name: Ernfors, Patrik last_name: Ernfors - first_name: Pascal full_name: Maire, Pascal last_name: Maire - first_name: Maud full_name: Wurmser, Maud last_name: Wurmser - first_name: Andrei S full_name: Chagin, Andrei S last_name: Chagin - first_name: Kaj full_name: Fried, Kaj last_name: Fried - first_name: Igor full_name: Adameyko, Igor last_name: Adameyko citation: ama: 'Kaucka M, Petersen J, Tesarova M, et al. Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. 2018. doi:10.5061/dryad.f1s76f2' apa: 'Kaucka, M., Petersen, J., Tesarova, M., Szarowska, B., Kastriti, M. E., Xie, M., … Adameyko, I. (2018). Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Dryad. https://doi.org/10.5061/dryad.f1s76f2' chicago: 'Kaucka, Marketa, Julian Petersen, Marketa Tesarova, Bara Szarowska, Maria Eleni Kastriti, Meng Xie, Anna Kicheva, et al. “Data from: Signals from the Brain and Olfactory Epithelium Control Shaping of the Mammalian Nasal Capsule Cartilage.” Dryad, 2018. https://doi.org/10.5061/dryad.f1s76f2.' ieee: 'M. Kaucka et al., “Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage.” Dryad, 2018.' ista: 'Kaucka M, Petersen J, Tesarova M, Szarowska B, Kastriti ME, Xie M, Kicheva A, Annusver K, Kasper M, Symmons O, Pan L, Spitz F, Kaiser J, Hovorakova M, Zikmund T, Sunadome K, Matise MP, Wang H, Marklund U, Abdo H, Ernfors P, Maire P, Wurmser M, Chagin AS, Fried K, Adameyko I. 2018. Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage, Dryad, 10.5061/dryad.f1s76f2.' mla: 'Kaucka, Marketa, et al. Data from: Signals from the Brain and Olfactory Epithelium Control Shaping of the Mammalian Nasal Capsule Cartilage. Dryad, 2018, doi:10.5061/dryad.f1s76f2.' short: M. Kaucka, J. Petersen, M. Tesarova, B. Szarowska, M.E. Kastriti, M. Xie, A. Kicheva, K. Annusver, M. Kasper, O. Symmons, L. Pan, F. Spitz, J. Kaiser, M. Hovorakova, T. Zikmund, K. Sunadome, M.P. Matise, H. Wang, U. Marklund, H. Abdo, P. Ernfors, P. Maire, M. Wurmser, A.S. Chagin, K. Fried, I. Adameyko, (2018). date_created: 2021-08-09T12:54:35Z date_published: 2018-06-14T00:00:00Z date_updated: 2023-09-18T09:29:07Z day: '14' department: - _id: AnKi doi: 10.5061/dryad.f1s76f2 main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.f1s76f2 month: '06' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '162' relation: used_in_publication status: public status: public title: 'Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2018' ... --- _id: '41' abstract: - lang: eng text: 'The small-conductance, Ca2+-activated K+ (SK) channel subtype SK2 regulates the spike rate and firing frequency, as well as Ca2+ transients in Purkinje cells (PCs). To understand the molecular basis by which SK2 channels mediate these functions, we analyzed the exact location and densities of SK2 channels along the neuronal surface of the mouse cerebellar PCs using SDS-digested freeze-fracture replica labeling (SDS-FRL) of high sensitivity combined with quantitative analyses. Immunogold particles for SK2 were observed on post- and pre-synaptic compartments showing both scattered and clustered distribution patterns. We found an axo-somato-dendritic gradient of the SK2 particle density increasing 12-fold from soma to dendritic spines. Using two different immunogold approaches, we also found that SK2 immunoparticles were frequently adjacent to, but never overlap with, the postsynaptic density of excitatory synapses in PC spines. Co-immunoprecipitation analysis demonstrated that SK2 channels form macromolecular complexes with two types of proteins that mobilize Ca2+: CaV2.1 channels and mGlu1α receptors in the cerebellum. Freeze-fracture replica double-labeling showed significant co-clustering of particles for SK2 with those for CaV2.1 channels and mGlu1α receptors. SK2 channels were also detected at presynaptic sites, mostly at the presynaptic active zone (AZ), where they are close to CaV2.1 channels, though they are not significantly co-clustered. These data demonstrate that SK2 channels located in different neuronal compartments can associate with distinct proteins mobilizing Ca2+, and suggest that the ultrastructural association of SK2 with CaV2.1 and mGlu1α provides the mechanism that ensures voltage (excitability) regulation by distinct intracellular Ca2+ transients in PCs.' article_number: '311' article_processing_charge: No article_type: original author: - first_name: Rafæl full_name: Luján, Rafæl last_name: Luján - first_name: Carolina full_name: Aguado, Carolina last_name: Aguado - first_name: Francisco full_name: Ciruela, Francisco last_name: Ciruela - first_name: Xavier full_name: Arus, Xavier last_name: Arus - first_name: Alejandro full_name: Martín Belmonte, Alejandro last_name: Martín Belmonte - first_name: Rocío full_name: Alfaro Ruiz, Rocío last_name: Alfaro Ruiz - first_name: Jesus full_name: Martinez Gomez, Jesus last_name: Martinez Gomez - first_name: Luis full_name: De La Ossa, Luis last_name: De La Ossa - first_name: Masahiko full_name: Watanabe, Masahiko last_name: Watanabe - first_name: John full_name: Adelman, John last_name: Adelman - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Yugo full_name: Fukazawa, Yugo last_name: Fukazawa citation: ama: Luján R, Aguado C, Ciruela F, et al. Sk2 channels associate with mGlu1α receptors and CaV2.1 channels in Purkinje cells. Frontiers in Cellular Neuroscience. 2018;12. doi:10.3389/fncel.2018.00311 apa: Luján, R., Aguado, C., Ciruela, F., Arus, X., Martín Belmonte, A., Alfaro Ruiz, R., … Fukazawa, Y. (2018). Sk2 channels associate with mGlu1α receptors and CaV2.1 channels in Purkinje cells. Frontiers in Cellular Neuroscience. Frontiers Media. https://doi.org/10.3389/fncel.2018.00311 chicago: Luján, Rafæl, Carolina Aguado, Francisco Ciruela, Xavier Arus, Alejandro Martín Belmonte, Rocío Alfaro Ruiz, Jesus Martinez Gomez, et al. “Sk2 Channels Associate with MGlu1α Receptors and CaV2.1 Channels in Purkinje Cells.” Frontiers in Cellular Neuroscience. Frontiers Media, 2018. https://doi.org/10.3389/fncel.2018.00311. ieee: R. Luján et al., “Sk2 channels associate with mGlu1α receptors and CaV2.1 channels in Purkinje cells,” Frontiers in Cellular Neuroscience, vol. 12. Frontiers Media, 2018. ista: Luján R, Aguado C, Ciruela F, Arus X, Martín Belmonte A, Alfaro Ruiz R, Martinez Gomez J, De La Ossa L, Watanabe M, Adelman J, Shigemoto R, Fukazawa Y. 2018. Sk2 channels associate with mGlu1α receptors and CaV2.1 channels in Purkinje cells. Frontiers in Cellular Neuroscience. 12, 311. mla: Luján, Rafæl, et al. “Sk2 Channels Associate with MGlu1α Receptors and CaV2.1 Channels in Purkinje Cells.” Frontiers in Cellular Neuroscience, vol. 12, 311, Frontiers Media, 2018, doi:10.3389/fncel.2018.00311. short: R. Luján, C. Aguado, F. Ciruela, X. Arus, A. Martín Belmonte, R. Alfaro Ruiz, J. Martinez Gomez, L. De La Ossa, M. Watanabe, J. Adelman, R. Shigemoto, Y. Fukazawa, Frontiers in Cellular Neuroscience 12 (2018). date_created: 2018-12-11T11:44:19Z date_published: 2018-09-19T00:00:00Z date_updated: 2023-09-18T09:31:18Z day: '19' ddc: - '570' department: - _id: RySh doi: 10.3389/fncel.2018.00311 ec_funded: 1 external_id: isi: - '000445090100002' file: - access_level: open_access checksum: 0bcaec8d596162af0b7fe3f31325d480 content_type: application/pdf creator: dernst date_created: 2018-12-17T08:49:03Z date_updated: 2020-07-14T12:46:23Z file_id: '5684' file_name: fncel-12-00311.pdf file_size: 6834251 relation: main_file file_date_updated: 2020-07-14T12:46:23Z has_accepted_license: '1' intvolume: ' 12' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 25CBA828-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '720270' name: Human Brain Project Specific Grant Agreement 1 (HBP SGA 1) publication: Frontiers in Cellular Neuroscience publication_identifier: issn: - '16625102' publication_status: published publisher: Frontiers Media publist_id: '8013' quality_controlled: '1' scopus_import: '1' status: public title: Sk2 channels associate with mGlu1α receptors and CaV2.1 channels in Purkinje cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 12 year: '2018' ... --- _id: '23' abstract: - lang: eng text: The strong atomistic spin–orbit coupling of holes makes single-shot spin readout measurements difficult because it reduces the spin lifetimes. By integrating the charge sensor into a high bandwidth radio frequency reflectometry setup, we were able to demonstrate single-shot readout of a germanium quantum dot hole spin and measure the spin lifetime. Hole spin relaxation times of about 90 μs at 500 mT are reported, with a total readout visibility of about 70%. By analyzing separately the spin-to-charge conversion and charge readout fidelities, we have obtained insight into the processes limiting the visibilities of hole spins. The analyses suggest that high hole visibilities are feasible at realistic experimental conditions, underlying the potential of hole spins for the realization of viable qubit devices. acknowledged_ssus: - _id: M-Shop - _id: NanoFab article_processing_charge: No author: - first_name: Lada full_name: Vukušić, Lada id: 31E9F056-F248-11E8-B48F-1D18A9856A87 last_name: Vukušić orcid: 0000-0003-2424-8636 - first_name: Josip full_name: Kukucka, Josip id: 3F5D8856-F248-11E8-B48F-1D18A9856A87 last_name: Kukucka - first_name: Hannes full_name: Watzinger, Hannes id: 35DF8E50-F248-11E8-B48F-1D18A9856A87 last_name: Watzinger - first_name: Joshua M full_name: Milem, Joshua M id: 4CDE0A96-F248-11E8-B48F-1D18A9856A87 last_name: Milem - first_name: Friedrich full_name: Schäffler, Friedrich last_name: Schäffler - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: Vukušić L, Kukucka J, Watzinger H, Milem JM, Schäffler F, Katsaros G. Single-shot readout of hole spins in Ge. Nano Letters. 2018;18(11):7141-7145. doi:10.1021/acs.nanolett.8b03217 apa: Vukušić, L., Kukucka, J., Watzinger, H., Milem, J. M., Schäffler, F., & Katsaros, G. (2018). Single-shot readout of hole spins in Ge. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.8b03217 chicago: Vukušić, Lada, Josip Kukucka, Hannes Watzinger, Joshua M Milem, Friedrich Schäffler, and Georgios Katsaros. “Single-Shot Readout of Hole Spins in Ge.” Nano Letters. American Chemical Society, 2018. https://doi.org/10.1021/acs.nanolett.8b03217. ieee: L. Vukušić, J. Kukucka, H. Watzinger, J. M. Milem, F. Schäffler, and G. Katsaros, “Single-shot readout of hole spins in Ge,” Nano Letters, vol. 18, no. 11. American Chemical Society, pp. 7141–7145, 2018. ista: Vukušić L, Kukucka J, Watzinger H, Milem JM, Schäffler F, Katsaros G. 2018. Single-shot readout of hole spins in Ge. Nano Letters. 18(11), 7141–7145. mla: Vukušić, Lada, et al. “Single-Shot Readout of Hole Spins in Ge.” Nano Letters, vol. 18, no. 11, American Chemical Society, 2018, pp. 7141–45, doi:10.1021/acs.nanolett.8b03217. short: L. Vukušić, J. Kukucka, H. Watzinger, J.M. Milem, F. Schäffler, G. Katsaros, Nano Letters 18 (2018) 7141–7145. date_created: 2018-12-11T11:44:13Z date_published: 2018-10-25T00:00:00Z date_updated: 2023-09-18T09:30:37Z day: '25' ddc: - '530' department: - _id: GeKa doi: 10.1021/acs.nanolett.8b03217 ec_funded: 1 external_id: isi: - '000451102100064' pmid: - '30359041' file: - access_level: open_access checksum: 3e6034a94c6b5335e939145d88bdb371 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:08Z date_updated: 2020-07-14T12:45:37Z file_id: '5194' file_name: IST-2018-1065-v1+1_ACS_nanoletters_8b03217.pdf file_size: 1361441 relation: main_file file_date_updated: 2020-07-14T12:45:37Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: '11' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 7141 - 7145 pmid: 1 project: - _id: 25517E86-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '335497' name: Towards Spin qubits and Majorana fermions in Germanium selfassembled hut-wires publication: Nano Letters publication_identifier: issn: - '15306984' publication_status: published publisher: American Chemical Society publist_id: '8032' pubrep_id: '1065' quality_controlled: '1' related_material: record: - id: '7977' relation: popular_science - id: '69' relation: dissertation_contains status: public - id: '7996' relation: dissertation_contains status: public scopus_import: '1' status: public title: Single-shot readout of hole spins in Ge tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 18 year: '2018' ... --- _id: '85' abstract: - lang: eng text: Concurrent accesses to shared data structures must be synchronized to avoid data races. Coarse-grained synchronization, which locks the entire data structure, is easy to implement but does not scale. Fine-grained synchronization can scale well, but can be hard to reason about. Hand-over-hand locking, in which operations are pipelined as they traverse the data structure, combines fine-grained synchronization with ease of use. However, the traditional implementation suffers from inherent overheads. This paper introduces snapshot-based synchronization (SBS), a novel hand-over-hand locking mechanism. SBS decouples the synchronization state from the data, significantly improving cache utilization. Further, it relies on guarantees provided by pipelining to minimize synchronization that requires cross-thread communication. Snapshot-based synchronization thus scales much better than traditional hand-over-hand locking, while maintaining the same ease of use. acknowledgement: Trevor Brown was supported in part by the ISF (grants 2005/17 & 1749/14) and by a NSERC post-doctoral fellowship. alternative_title: - LNCS article_processing_charge: No author: - first_name: Eran full_name: Gilad, Eran last_name: Gilad - first_name: Trevor A full_name: Brown, Trevor A id: 3569F0A0-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Mark full_name: Oskin, Mark last_name: Oskin - first_name: Yoav full_name: Etsion, Yoav last_name: Etsion citation: ama: 'Gilad E, Brown TA, Oskin M, Etsion Y. Snapshot based synchronization: A fast replacement for Hand-over-Hand locking. In: Vol 11014. Springer; 2018:465-479. doi:10.1007/978-3-319-96983-1_33' apa: 'Gilad, E., Brown, T. A., Oskin, M., & Etsion, Y. (2018). Snapshot based synchronization: A fast replacement for Hand-over-Hand locking (Vol. 11014, pp. 465–479). Presented at the Euro-Par: European Conference on Parallel Processing, Turin, Italy: Springer. https://doi.org/10.1007/978-3-319-96983-1_33' chicago: 'Gilad, Eran, Trevor A Brown, Mark Oskin, and Yoav Etsion. “Snapshot Based Synchronization: A Fast Replacement for Hand-over-Hand Locking,” 11014:465–79. Springer, 2018. https://doi.org/10.1007/978-3-319-96983-1_33.' ieee: 'E. Gilad, T. A. Brown, M. Oskin, and Y. Etsion, “Snapshot based synchronization: A fast replacement for Hand-over-Hand locking,” presented at the Euro-Par: European Conference on Parallel Processing, Turin, Italy, 2018, vol. 11014, pp. 465–479.' ista: 'Gilad E, Brown TA, Oskin M, Etsion Y. 2018. Snapshot based synchronization: A fast replacement for Hand-over-Hand locking. Euro-Par: European Conference on Parallel Processing, LNCS, vol. 11014, 465–479.' mla: 'Gilad, Eran, et al. Snapshot Based Synchronization: A Fast Replacement for Hand-over-Hand Locking. Vol. 11014, Springer, 2018, pp. 465–79, doi:10.1007/978-3-319-96983-1_33.' short: E. Gilad, T.A. Brown, M. Oskin, Y. Etsion, in:, Springer, 2018, pp. 465–479. conference: end_date: 2018-08-31 location: Turin, Italy name: 'Euro-Par: European Conference on Parallel Processing' start_date: 2018-08-27 date_created: 2018-12-11T11:44:33Z date_published: 2018-08-01T00:00:00Z date_updated: 2023-09-18T09:32:36Z day: '01' ddc: - '000' department: - _id: DaAl doi: 10.1007/978-3-319-96983-1_33 external_id: isi: - '000851042300031' file: - access_level: open_access checksum: 13a3f250be8878405e791b53c19722ad content_type: application/pdf creator: dernst date_created: 2019-02-12T07:40:40Z date_updated: 2020-07-14T12:48:14Z file_id: '5954' file_name: 2018_Brown.pdf file_size: 665372 relation: main_file file_date_updated: 2020-07-14T12:48:14Z has_accepted_license: '1' intvolume: ' 11014' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Preprint page: 465 - 479 project: - _id: 26450934-B435-11E9-9278-68D0E5697425 name: NSERC Postdoctoral fellowship publication_identifier: issn: - '03029743' publication_status: published publisher: Springer publist_id: '7969' quality_controlled: '1' scopus_import: '1' status: public title: 'Snapshot based synchronization: A fast replacement for Hand-over-Hand locking' type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 11014 year: '2018' ... --- _id: '327' abstract: - lang: eng text: Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations. acknowledgement: 'We thank F. Huveneers for useful discussions. Z.P. and A.M. acknowledge support by EPSRC Grant No. EP/P009409/1 and and the Royal Society Research Grant No. RG160635. Statement of compliance with EPSRC policy framework on research data: This publication is theoretical work that does not require supporting research data. D.A. acknowledges support by the Swiss National Science Foundation. M.Z., M.M. and T.P. acknowledge Grants J1-7279 (M.Z.) and N1-0025 (M.M. and T.P.) of Slovenian Research Agency, and Advanced Grant of European Research Council, Grant No. 694544 - OMNES (T.P.).' article_number: '104307' article_processing_charge: No author: - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis orcid: 0000-0002-8443-1064 - first_name: Marko full_name: Žnidarič, Marko last_name: Žnidarič - first_name: Mariya full_name: Medvedyeva, Mariya last_name: Medvedyeva - first_name: Dmitry full_name: Abanin, Dmitry last_name: Abanin - first_name: Tomaž full_name: Prosen, Tomaž last_name: Prosen - first_name: Zlatko full_name: Papić, Zlatko last_name: Papić citation: ama: Michailidis A, Žnidarič M, Medvedyeva M, Abanin D, Prosen T, Papić Z. Slow dynamics in translation-invariant quantum lattice models. Physical Review B. 2018;97(10). doi:10.1103/PhysRevB.97.104307 apa: Michailidis, A., Žnidarič, M., Medvedyeva, M., Abanin, D., Prosen, T., & Papić, Z. (2018). Slow dynamics in translation-invariant quantum lattice models. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.97.104307 chicago: Michailidis, Alexios, Marko Žnidarič, Mariya Medvedyeva, Dmitry Abanin, Tomaž Prosen, and Zlatko Papić. “Slow Dynamics in Translation-Invariant Quantum Lattice Models.” Physical Review B. American Physical Society, 2018. https://doi.org/10.1103/PhysRevB.97.104307. ieee: A. Michailidis, M. Žnidarič, M. Medvedyeva, D. Abanin, T. Prosen, and Z. Papić, “Slow dynamics in translation-invariant quantum lattice models,” Physical Review B, vol. 97, no. 10. American Physical Society, 2018. ista: Michailidis A, Žnidarič M, Medvedyeva M, Abanin D, Prosen T, Papić Z. 2018. Slow dynamics in translation-invariant quantum lattice models. Physical Review B. 97(10), 104307. mla: Michailidis, Alexios, et al. “Slow Dynamics in Translation-Invariant Quantum Lattice Models.” Physical Review B, vol. 97, no. 10, 104307, American Physical Society, 2018, doi:10.1103/PhysRevB.97.104307. short: A. Michailidis, M. Žnidarič, M. Medvedyeva, D. Abanin, T. Prosen, Z. Papić, Physical Review B 97 (2018). date_created: 2018-12-11T11:45:50Z date_published: 2018-03-19T00:00:00Z date_updated: 2023-09-18T09:31:46Z day: '19' department: - _id: MaSe doi: 10.1103/PhysRevB.97.104307 external_id: isi: - '000427798800005' intvolume: ' 97' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1706.05026 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_status: published publisher: American Physical Society publist_id: '7538' quality_controlled: '1' scopus_import: '1' status: public title: Slow dynamics in translation-invariant quantum lattice models type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 97 year: '2018' ... --- _id: '29' abstract: - lang: eng text: Social insects have evolved enormous capacities to collectively build nests and defend their colonies against both predators and pathogens. The latter is achieved by a combination of individual immune responses and sophisticated collective behavioral and organizational disease defenses, that is, social immunity. We investigated how the presence or absence of these social defense lines affects individual-level immunity in ant queens after bacterial infection. To this end, we injected queens of the ant Linepithema humile with a mix of gram+ and gram− bacteria or a control solution, reared them either with workers or alone and analyzed their gene expression patterns at 2, 4, 8, and 12 hr post-injection, using RNA-seq. This allowed us to test for the effect of bacterial infection, social context, as well as the interaction between the two over the course of infection and raising of an immune response. We found that social isolation per se affected queen gene expression for metabolism genes, but not for immune genes. When infected, queens reared with and without workers up-regulated similar numbers of innate immune genes revealing activation of Toll and Imd signaling pathways and melanization. Interestingly, however, they mostly regulated different genes along the pathways and showed a different pattern of overall gene up-regulation or down-regulation. Hence, we can conclude that the absence of workers does not compromise the onset of an individual immune response by the queens, but that the social environment impacts the route of the individual innate immune responses. article_processing_charge: No author: - first_name: Lumi full_name: Viljakainen, Lumi last_name: Viljakainen - first_name: Jaana full_name: Jurvansuu, Jaana last_name: Jurvansuu - first_name: Ida full_name: Holmberg, Ida last_name: Holmberg - first_name: Tobias full_name: Pamminger, Tobias last_name: Pamminger - first_name: Silvio full_name: Erler, Silvio last_name: Erler - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Viljakainen L, Jurvansuu J, Holmberg I, Pamminger T, Erler S, Cremer S. Social environment affects the transcriptomic response to bacteria in ant queens. Ecology and Evolution. 2018;8(22):11031-11070. doi:10.1002/ece3.4573 apa: Viljakainen, L., Jurvansuu, J., Holmberg, I., Pamminger, T., Erler, S., & Cremer, S. (2018). Social environment affects the transcriptomic response to bacteria in ant queens. Ecology and Evolution. Wiley. https://doi.org/10.1002/ece3.4573 chicago: Viljakainen, Lumi, Jaana Jurvansuu, Ida Holmberg, Tobias Pamminger, Silvio Erler, and Sylvia Cremer. “Social Environment Affects the Transcriptomic Response to Bacteria in Ant Queens.” Ecology and Evolution. Wiley, 2018. https://doi.org/10.1002/ece3.4573. ieee: L. Viljakainen, J. Jurvansuu, I. Holmberg, T. Pamminger, S. Erler, and S. Cremer, “Social environment affects the transcriptomic response to bacteria in ant queens,” Ecology and Evolution, vol. 8, no. 22. Wiley, pp. 11031–11070, 2018. ista: Viljakainen L, Jurvansuu J, Holmberg I, Pamminger T, Erler S, Cremer S. 2018. Social environment affects the transcriptomic response to bacteria in ant queens. Ecology and Evolution. 8(22), 11031–11070. mla: Viljakainen, Lumi, et al. “Social Environment Affects the Transcriptomic Response to Bacteria in Ant Queens.” Ecology and Evolution, vol. 8, no. 22, Wiley, 2018, pp. 11031–70, doi:10.1002/ece3.4573. short: L. Viljakainen, J. Jurvansuu, I. Holmberg, T. Pamminger, S. Erler, S. Cremer, Ecology and Evolution 8 (2018) 11031–11070. date_created: 2018-12-11T11:44:15Z date_published: 2018-11-01T00:00:00Z date_updated: 2023-09-19T09:29:12Z day: '01' ddc: - '576' - '591' department: - _id: SyCr doi: 10.1002/ece3.4573 external_id: isi: - '000451611000032' file: - access_level: open_access checksum: 0d1355c78627ca7210aadd9a17a01915 content_type: application/pdf creator: dernst date_created: 2018-12-17T08:27:04Z date_updated: 2020-07-14T12:45:52Z file_id: '5682' file_name: Viljakainen_et_al-2018-Ecology_and_Evolution.pdf file_size: 1272096 relation: main_file file_date_updated: 2020-07-14T12:45:52Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '22' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 11031-11070 publication: Ecology and Evolution publication_identifier: issn: - '20457758' publication_status: published publisher: Wiley publist_id: '8026' quality_controlled: '1' scopus_import: '1' status: public title: Social environment affects the transcriptomic response to bacteria in ant queens tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2018' ... --- _id: '140' abstract: - lang: eng text: Reachability analysis is difficult for hybrid automata with affine differential equations, because the reach set needs to be approximated. Promising abstraction techniques usually employ interval methods or template polyhedra. Interval methods account for dense time and guarantee soundness, and there are interval-based tools that overapproximate affine flowpipes. But interval methods impose bounded and rigid shapes, which make refinement expensive and fixpoint detection difficult. Template polyhedra, on the other hand, can be adapted flexibly and can be unbounded, but sound template refinement for unbounded reachability analysis has been implemented only for systems with piecewise constant dynamics. We capitalize on the advantages of both techniques, combining interval arithmetic and template polyhedra, using the former to abstract time and the latter to abstract space. During a CEGAR loop, whenever a spurious error trajectory is found, we compute additional space constraints and split time intervals, and use these space-time interpolants to eliminate the counterexample. Space-time interpolation offers a lazy, flexible framework for increasing precision while guaranteeing soundness, both for error avoidance and fixpoint detection. To the best of out knowledge, this is the first abstraction refinement scheme for the reachability analysis over unbounded and dense time of affine hybrid systems, which is both sound and automatic. We demonstrate the effectiveness of our algorithm with several benchmark examples, which cannot be handled by other tools. alternative_title: - LNCS article_processing_charge: No author: - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Frehse G, Giacobbe M, Henzinger TA. Space-time interpolants. In: Vol 10981. Springer; 2018:468-486. doi:10.1007/978-3-319-96145-3_25' apa: 'Frehse, G., Giacobbe, M., & Henzinger, T. A. (2018). Space-time interpolants (Vol. 10981, pp. 468–486). Presented at the CAV: Computer Aided Verification, Oxford, United Kingdom: Springer. https://doi.org/10.1007/978-3-319-96145-3_25' chicago: Frehse, Goran, Mirco Giacobbe, and Thomas A Henzinger. “Space-Time Interpolants,” 10981:468–86. Springer, 2018. https://doi.org/10.1007/978-3-319-96145-3_25. ieee: 'G. Frehse, M. Giacobbe, and T. A. Henzinger, “Space-time interpolants,” presented at the CAV: Computer Aided Verification, Oxford, United Kingdom, 2018, vol. 10981, pp. 468–486.' ista: 'Frehse G, Giacobbe M, Henzinger TA. 2018. Space-time interpolants. CAV: Computer Aided Verification, LNCS, vol. 10981, 468–486.' mla: Frehse, Goran, et al. Space-Time Interpolants. Vol. 10981, Springer, 2018, pp. 468–86, doi:10.1007/978-3-319-96145-3_25. short: G. Frehse, M. Giacobbe, T.A. Henzinger, in:, Springer, 2018, pp. 468–486. conference: end_date: 2018-07-17 location: Oxford, United Kingdom name: 'CAV: Computer Aided Verification' start_date: 2018-07-14 date_created: 2018-12-11T11:44:50Z date_published: 2018-07-18T00:00:00Z date_updated: 2023-09-19T09:30:43Z day: '18' ddc: - '005' department: - _id: ToHe doi: 10.1007/978-3-319-96145-3_25 external_id: isi: - '000491481600025' file: - access_level: open_access checksum: 6dca832f575d6b3f0ea9dff56f579142 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:53Z date_updated: 2020-07-14T12:44:50Z file_id: '5310' file_name: IST-2018-1010-v1+1_space-time_interpolants.pdf file_size: 563710 relation: main_file file_date_updated: 2020-07-14T12:44:50Z has_accepted_license: '1' intvolume: ' 10981' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 468 - 486 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms publication_identifier: issn: - '03029743' publication_status: published publisher: Springer publist_id: '7783' pubrep_id: '1010' quality_controlled: '1' related_material: record: - id: '6894' relation: dissertation_contains status: public scopus_import: '1' status: public title: Space-time interpolants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10981 year: '2018' ... --- _id: '154' abstract: - lang: eng text: We give a lower bound on the ground state energy of a system of two fermions of one species interacting with two fermions of another species via point interactions. We show that there is a critical mass ratio m2 ≈ 0.58 such that the system is stable, i.e., the energy is bounded from below, for m∈[m2,m2−1]. So far it was not known whether this 2 + 2 system exhibits a stable region at all or whether the formation of four-body bound states causes an unbounded spectrum for all mass ratios, similar to the Thomas effect. Our result gives further evidence for the stability of the more general N + M system. acknowledgement: Open access funding provided by Austrian Science Fund (FWF). article_number: '19' article_processing_charge: No article_type: original author: - first_name: Thomas full_name: Moser, Thomas id: 2B5FC9A4-F248-11E8-B48F-1D18A9856A87 last_name: Moser - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Moser T, Seiringer R. Stability of the 2+2 fermionic system with point interactions. Mathematical Physics Analysis and Geometry. 2018;21(3). doi:10.1007/s11040-018-9275-3 apa: Moser, T., & Seiringer, R. (2018). Stability of the 2+2 fermionic system with point interactions. Mathematical Physics Analysis and Geometry. Springer. https://doi.org/10.1007/s11040-018-9275-3 chicago: Moser, Thomas, and Robert Seiringer. “Stability of the 2+2 Fermionic System with Point Interactions.” Mathematical Physics Analysis and Geometry. Springer, 2018. https://doi.org/10.1007/s11040-018-9275-3. ieee: T. Moser and R. Seiringer, “Stability of the 2+2 fermionic system with point interactions,” Mathematical Physics Analysis and Geometry, vol. 21, no. 3. Springer, 2018. ista: Moser T, Seiringer R. 2018. Stability of the 2+2 fermionic system with point interactions. Mathematical Physics Analysis and Geometry. 21(3), 19. mla: Moser, Thomas, and Robert Seiringer. “Stability of the 2+2 Fermionic System with Point Interactions.” Mathematical Physics Analysis and Geometry, vol. 21, no. 3, 19, Springer, 2018, doi:10.1007/s11040-018-9275-3. short: T. Moser, R. Seiringer, Mathematical Physics Analysis and Geometry 21 (2018). date_created: 2018-12-11T11:44:55Z date_published: 2018-09-01T00:00:00Z date_updated: 2023-09-19T09:31:15Z day: '01' ddc: - '530' department: - _id: RoSe doi: 10.1007/s11040-018-9275-3 ec_funded: 1 external_id: isi: - '000439639700001' file: - access_level: open_access checksum: 411c4db5700d7297c9cd8ebc5dd29091 content_type: application/pdf creator: dernst date_created: 2018-12-17T16:49:02Z date_updated: 2020-07-14T12:45:01Z file_id: '5729' file_name: 2018_MathPhysics_Moser.pdf file_size: 496973 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 21' isi: 1 issue: '3' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: 25C878CE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27533_N27 name: Structure of the Excitation Spectrum for Many-Body Quantum Systems - _id: 3AC91DDA-15DF-11EA-824D-93A3E7B544D1 call_identifier: FWF name: FWF Open Access Fund publication: Mathematical Physics Analysis and Geometry publication_identifier: eissn: - '15729656' issn: - '13850172' publication_status: published publisher: Springer publist_id: '7767' quality_controlled: '1' related_material: record: - id: '52' relation: dissertation_contains status: public scopus_import: '1' status: public title: Stability of the 2+2 fermionic system with point interactions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 21 year: '2018' ... --- _id: '5787' abstract: - lang: eng text: "Branching morphogenesis remains a subject of abiding interest. Although \ much is \r\nknown about the gene regulatory programs and signaling pathways that operate at \r\nthe cellular scale, it has remained unclear how the macroscopic features of branched \r\norgans, including their size, network topology and \ spatial patterning, are encoded. \r\nLately, it has been proposed that, these features can be explained quantitatively in \r\nseveral organs within a single unifying framework. Based on large-\r\nscale organ recon\r\n-\r\nstructions \ and cell lineage tracing, it has been argued that morphogenesis follows \ \r\nfrom the collective dynamics of sublineage- \r\nrestricted self- \r\nrenewing progenitor cells, \r\nlocalized at ductal tips, that act cooperatively to drive a serial process of ductal elon\r\n-\r\ngation and stochastic tip bifurcation. By correlating differentiation or cell cycle exit \r\nwith proximity to maturing ducts, this dynamic results in the specification of a com-\r\nplex network of \ defined density and statistical organization. These results suggest \r\nthat, for several mammalian tissues, branched epithelial structures develop as a self- \r\norganized process, reliant upon a strikingly simple, but generic, \ set of local rules, \r\nwithout recourse to a rigid and deterministic \ sequence of genetically programmed \r\nevents. Here, we review the basis of these findings and discuss their implications." article_processing_charge: No author: - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Benjamin D. full_name: Simons, Benjamin D. last_name: Simons citation: ama: Hannezo EB, Simons BD. Statistical theory of branching morphogenesis. Development Growth and Differentiation. 2018;60(9):512-521. doi:10.1111/dgd.12570 apa: Hannezo, E. B., & Simons, B. D. (2018). Statistical theory of branching morphogenesis. Development Growth and Differentiation. Wiley. https://doi.org/10.1111/dgd.12570 chicago: Hannezo, Edouard B, and Benjamin D. Simons. “Statistical Theory of Branching Morphogenesis.” Development Growth and Differentiation. Wiley, 2018. https://doi.org/10.1111/dgd.12570. ieee: E. B. Hannezo and B. D. Simons, “Statistical theory of branching morphogenesis,” Development Growth and Differentiation, vol. 60, no. 9. Wiley, pp. 512–521, 2018. ista: Hannezo EB, Simons BD. 2018. Statistical theory of branching morphogenesis. Development Growth and Differentiation. 60(9), 512–521. mla: Hannezo, Edouard B., and Benjamin D. Simons. “Statistical Theory of Branching Morphogenesis.” Development Growth and Differentiation, vol. 60, no. 9, Wiley, 2018, pp. 512–21, doi:10.1111/dgd.12570. short: E.B. Hannezo, B.D. Simons, Development Growth and Differentiation 60 (2018) 512–521. date_created: 2018-12-30T22:59:14Z date_published: 2018-12-09T00:00:00Z date_updated: 2023-09-19T09:32:49Z day: '09' ddc: - '570' department: - _id: EdHa doi: 10.1111/dgd.12570 external_id: isi: - '000453555100002' file: - access_level: open_access checksum: a6d30b0785db902c734a84fecb2eadd9 content_type: application/pdf creator: dernst date_created: 2019-02-06T10:40:46Z date_updated: 2020-07-14T12:47:11Z file_id: '5933' file_name: 2018_DevGrowh_Hannezo.pdf file_size: 1313606 relation: main_file file_date_updated: 2020-07-14T12:47:11Z has_accepted_license: '1' intvolume: ' 60' isi: 1 issue: '9' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 512-521 publication: Development Growth and Differentiation publication_identifier: issn: - '00121592' publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Statistical theory of branching morphogenesis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 60 year: '2018' ...