TY - JOUR AB - The Birkhoff conjecture says that the boundary of a strictly convex integrable billiard table is necessarily an ellipse. In this article, we consider a stronger notion of integrability, namely integrability close to the boundary, and prove a local version of this conjecture: a small perturbation of an ellipse of small eccentricity which preserves integrability near the boundary, is itself an ellipse. This extends the result in Avila et al. (Ann Math 184:527–558, ADK16), where integrability was assumed on a larger set. In particular, it shows that (local) integrability near the boundary implies global integrability. One of the crucial ideas in the proof consists in analyzing Taylor expansion of the corresponding action-angle coordinates with respect to the eccentricity parameter, deriving and studying higher order conditions for the preservation of integrable rational caustics. AU - Huang, Guan AU - Kaloshin, Vadim AU - Sorrentino, Alfonso ID - 8422 IS - 2 JF - Geometric and Functional Analysis KW - Geometry and Topology KW - Analysis SN - 1016-443X TI - Nearly circular domains which are integrable close to the boundary are ellipses VL - 28 ER - TY - JOUR AB - The classical Birkhoff conjecture claims that the boundary of a strictly convex integrable billiard table is necessarily an ellipse (or a circle as a special case). In this article we prove a complete local version of this conjecture: a small integrable perturbation of an ellipse must be an ellipse. This extends and completes the result in Avila-De Simoi-Kaloshin, where nearly circular domains were considered. One of the crucial ideas in the proof is to extend action-angle coordinates for elliptic billiards into complex domains (with respect to the angle), and to thoroughly analyze the nature of their complex singularities. As an application, we are able to prove some spectral rigidity results for elliptic domains. AU - Kaloshin, Vadim AU - Sorrentino, Alfonso ID - 8421 IS - 1 JF - Annals of Mathematics KW - Statistics KW - Probability and Uncertainty KW - Statistics and Probability SN - 0003-486X TI - On the local Birkhoff conjecture for convex billiards VL - 188 ER - TY - JOUR AB - We show that in the space of all convex billiard boundaries, the set of boundaries with rational caustics is dense. More precisely, the set of billiard boundaries with caustics of rotation number 1/q is polynomially sense in the smooth case, and exponentially dense in the analytic case. AU - Kaloshin, Vadim AU - Zhang, Ke ID - 8420 IS - 11 JF - Nonlinearity KW - Mathematical Physics KW - General Physics and Astronomy KW - Applied Mathematics KW - Statistical and Nonlinear Physics SN - 0951-7715 TI - Density of convex billiards with rational caustics VL - 31 ER - TY - JOUR AB - For any strictly convex planar domain Ω ⊂ R2 with a C∞ boundary one can associate an infinite sequence of spectral invariants introduced by Marvizi–Merlose [5]. These invariants can generically be determined using the spectrum of the Dirichlet problem of the Laplace operator. A natural question asks if this collection is sufficient to determine Ω up to isometry. In this paper we give a counterexample, namely, we present two nonisometric domains Ω and Ω¯ with the same collection of Marvizi–Melrose invariants. Moreover, each domain has countably many periodic orbits {Sn}n≥1 (resp. {S¯n}n⩾1) of period going to infinity such that Sn and S¯n have the same period and perimeter for each n. AU - Buhovsky, Lev AU - Kaloshin, Vadim ID - 8426 JF - Regular and Chaotic Dynamics SN - 1560-3547 TI - Nonisometric domains with the same Marvizi-Melrose invariants VL - 23 ER - TY - JOUR AB - The development of strategies to assemble microscopic machines from dissipative building blocks are essential on the route to novel active materials. We recently demonstrated the hierarchical self-assembly of phoretic microswimmers into self-spinning microgears and their synchronization by diffusiophoretic interactions [Aubret et al., Nat. Phys., 2018]. In this paper, we adopt a pedagogical approach and expose our strategy to control self-assembly and build machines using phoretic phenomena. We notably introduce Highly Inclined Laminated Optical sheets microscopy (HILO) to image and characterize anisotropic and dynamic diffusiophoretic interactions, which cannot be performed by conventional fluorescence microscopy. The dynamics of a (haematite) photocatalytic material immersed in (hydrogen peroxide) fuel under various illumination patterns is first described and quantitatively rationalized by a model of diffusiophoresis, the migration of a colloidal particle in a concentration gradient. It is further exploited to design phototactic microswimmers that direct towards the high intensity of light, as a result of the reorientation of the haematite in a light gradient. We finally show the assembly of self-spinning microgears from colloidal microswimmers and carefully characterize the interactions using HILO techniques. The results are compared with analytical and numerical predictions and agree quantitatively, stressing the important role played by concentration gradients induced by chemical activity to control and design interactions. Because the approach described hereby is generic, this works paves the way for the rational design of machines by controlling phoretic phenomena. AU - Aubret, Antoine AU - Palacci, Jérémie A ID - 9053 IS - 47 JF - Soft Matter KW - General Chemistry KW - Condensed Matter Physics SN - 1744-683X TI - Diffusiophoretic design of self-spinning microgears from colloidal microswimmers VL - 14 ER - TY - JOUR AB - In this study we investigate the scaling of precipitation extremes with temperature in the Mediterranean region by assessing against observations the present day and future regional climate simulations performed in the frame of the HyMeX and MED-CORDEX programs. Over the 1979–2008 period, despite differences in quantitative precipitation simulation across the various models, the change in precipitation extremes with respect to temperature is robust and consistent. The spatial variability of the temperature–precipitation extremes relationship displays a hook shape across the Mediterranean, with negative slope at high temperatures and a slope following Clausius–Clapeyron (CC)-scaling at low temperatures. The temperature at which the slope of the temperature–precipitation extreme relation sharply changes (or temperature break), ranges from about 20 °C in the western Mediterranean to <10 °C in Greece. In addition, this slope is always negative in the arid regions of the Mediterranean. The scaling of the simulated precipitation extremes is insensitive to ocean–atmosphere coupling, while it depends very weakly on the resolution at high temperatures for short precipitation accumulation times. In future climate scenario simulations covering the 2070–2100 period, the temperature break shifts to higher temperatures by a value which is on average the mean regional temperature change due to global warming. The slope of the simulated future temperature–precipitation extremes relationship is close to CC-scaling at temperatures below the temperature break, while at high temperatures, the negative slope is close, but somewhat flatter or steeper, than in the current climate depending on the model. Overall, models predict more intense precipitation extremes in the future. Adjusting the temperature–precipitation extremes relationship in the present climate using the CC law and the temperature shift in the future allows the recovery of the temperature–precipitation extremes relationship in the future climate. This implies negligible regional changes of relative humidity in the future despite the large warming and drying over the Mediterranean. This suggests that the Mediterranean Sea is the primary source of moisture which counteracts the drying and warming impacts on relative humidity in parts of the Mediterranean region. AU - Drobinski, Philippe AU - Silva, Nicolas Da AU - Panthou, Gérémy AU - Bastin, Sophie AU - Muller, Caroline J AU - Ahrens, Bodo AU - Borga, Marco AU - Conte, Dario AU - Fosser, Giorgia AU - Giorgi, Filippo AU - Güttler, Ivan AU - Kotroni, Vassiliki AU - Li, Laurent AU - Morin, Efrat AU - Önol, Bariş AU - Quintana-Segui, Pere AU - Romera, Raquel AU - Torma, Csaba Zsolt ID - 9136 IS - 3 JF - Climate Dynamics KW - Atmospheric Science SN - 0930-7575 TI - Scaling precipitation extremes with temperature in the Mediterranean: Past climate assessment and projection in anthropogenic scenarios VL - 51 ER - TY - JOUR AB - Several studies have shown the existence of a critical latitude where the dissipation of internal tides is strongly enhanced. Internal tides are internal waves generated by barotropic tidal currents impinging rough topography at the seafloor. Their dissipation and concomitant diapycnal mixing are believed to be important for water masses and the large‐scale ocean circulation. The purpose of this study is to clarify the physical processes at the origin of this strong latitudinal dependence of tidal energy dissipation. We find that different mechanisms are involved equatorward and poleward of the critical latitude. Triadic resonant instabilities are responsible for the dissipation of internal tides equatorward of the critical latitude. In particular, a dominant triad involving the primary internal tide and near‐inertial waves is key. At the critical latitude, the peak of energy dissipation is explained by both increased instability growth rates, and smaller scales of secondary waves thus more prone to break and dissipate their energy. Surprisingly, poleward of the critical latitude, the generation of evanescent waves appears to be crucial. Triadic instabilities have been widely studied, but the transfer of energy to evanescent waves has received comparatively little attention. Our work suggests that the nonlinear transfer of energy from the internal tide to evanescent waves (corresponding to the 2f‐pump mechanism described by Young et al., 2008, https://doi.org/10.1017/S0022112008001742) is an efficient mechanism to dissipate internal tide energy near and poleward of the critical latitude. The theoretical results are confirmed in idealized high‐resolution numerical simulations of a barotropic M2 tide impinging sinusoidal topography in a linearly stratified fluid. AU - Richet, O. AU - Chomaz, J.-M. AU - Muller, Caroline J ID - 9134 IS - 9 JF - Journal of Geophysical Research: Oceans SN - 2169-9275 TI - Internal tide dissipation at topography: Triadic resonant instability equatorward and evanescent waves poleward of the critical latitude VL - 123 ER - TY - JOUR AB - Idealized simulations of tropical moist convection have revealed that clouds can spontaneously clump together in a process called self-aggregation. This results in a state where a moist cloudy region with intense deep convection is surrounded by extremely dry subsiding air devoid of deep convection. Because of the idealized settings of the simulations where it was discovered, the relevance of self-aggregation to the real world is still debated. Here, we show that self-aggregation feedbacks play a leading-order role in the spontaneous genesis of tropical cyclones in cloud-resolving simulations. Those feedbacks accelerate the cyclogenesis process by a factor of 2, and the feedbacks contributing to the cyclone formation show qualitative and quantitative agreement with the self-aggregation process. Once the cyclone is formed, wind-induced surface heat exchange (WISHE) effects dominate, although we find that self-aggregation feedbacks have a small but nonnegligible contribution to the maintenance of the mature cyclone. Our results suggest that self-aggregation, and the framework developed for its study, can help shed more light into the physical processes leading to cyclogenesis and cyclone intensification. In particular, our results point out the importance of the longwave radiative cooling outside the cyclone. AU - Muller, Caroline J AU - Romps, David M. ID - 9135 IS - 12 JF - Proceedings of the National Academy of Sciences KW - Multidisciplinary SN - 0027-8424 TI - Acceleration of tropical cyclogenesis by self-aggregation feedbacks VL - 115 ER - TY - JOUR AB - The DEMETER (DME) DNA glycosylase catalyzes genome-wide DNA demethylation and is required for endosperm genomic imprinting and embryo viability. Targets of DME-mediated DNA demethylation reside in small, euchromatic, AT-rich transposons and at the boundaries of large transposons, but how DME interacts with these diverse chromatin states is unknown. The STRUCTURE SPECIFIC RECOGNITION PROTEIN 1 (SSRP1) subunit of the chromatin remodeler FACT (facilitates chromatin transactions), was previously shown to be involved in the DME-dependent regulation of genomic imprinting in Arabidopsis endosperm. Therefore, to investigate the interaction between DME and chromatin, we focused on the activity of the two FACT subunits, SSRP1 and SUPPRESSOR of TY16 (SPT16), during reproduction in Arabidopsis. We found that FACT colocalizes with nuclear DME in vivo, and that DME has two classes of target sites, the first being euchromatic and accessible to DME, but the second, representing over half of DME targets, requiring the action of FACT for DME-mediated DNA demethylation genome-wide. Our results show that the FACT-dependent DME targets are GC-rich heterochromatin domains with high nucleosome occupancy enriched with H3K9me2 and H3K27me1. Further, we demonstrate that heterochromatin-associated linker histone H1 specifically mediates the requirement for FACT at a subset of DME-target loci. Overall, our results demonstrate that FACT is required for DME targeting by facilitating its access to heterochromatin. AU - Frost, Jennifer M. AU - Kim, M. Yvonne AU - Park, Guen Tae AU - Hsieh, Ping-Hung AU - Nakamura, Miyuki AU - Lin, Samuel J. H. AU - Yoo, Hyunjin AU - Choi, Jaemyung AU - Ikeda, Yoko AU - Kinoshita, Tetsu AU - Choi, Yeonhee AU - Zilberman, Daniel AU - Fischer, Robert L. ID - 9471 IS - 20 JF - Proceedings of the National Academy of Sciences KW - Multidisciplinary SN - 0027-8424 TI - FACT complex is required for DNA demethylation at heterochromatin during reproduction in Arabidopsis VL - 115 ER - TY - JOUR AB - Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to OH− ions as the charge carriers. AU - Lee, Victor AU - James, Nicole AU - Waitukaitis, Scott R AU - Jaeger, Heinrich ID - 95 IS - 3 JF - Physical Review Materials TI - Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer VL - 2 ER - TY - JOUR AB - Let P be a graph property which is preserved by removal of edges, and consider the random graph process that starts with the empty n-vertex graph and then adds edges one-by-one, each chosen uniformly at random subject to the constraint that P is not violated. These types of random processes have been the subject of extensive research over the last 20 years, having striking applications in extremal combinatorics, and leading to the discovery of important probabilistic tools. In this paper we consider the k-matching-free process, where P is the property of not containing a matching of size k. We are able to analyse the behaviour of this process for a wide range of values of k; in particular we prove that if k=o(n) or if n−2k=o(n−−√/logn) then this process is likely to terminate in a k-matching-free graph with the maximum possible number of edges, as characterised by Erdős and Gallai. We also show that these bounds on k are essentially best possible, and we make a first step towards understanding the behaviour of the process in the intermediate regime. AU - Krivelevich, Michael AU - Kwan, Matthew Alan AU - Loh, Po‐Shen AU - Sudakov, Benny ID - 9567 IS - 4 JF - Random Structures and Algorithms SN - 1042-9832 TI - The random k‐matching‐free process VL - 53 ER - TY - JOUR AB - Let D(n,p) be the random directed graph on n vertices where each of the n(n-1) possible arcs is present independently with probability p. A celebrated result of Frieze shows that if p≥(logn+ω(1))/n then D(n,p) typically has a directed Hamilton cycle, and this is best possible. In this paper, we obtain a strengthening of this result, showing that under the same condition, the number of directed Hamilton cycles in D(n,p) is typically n!(p(1+o(1)))n. We also prove a hitting-time version of this statement, showing that in the random directed graph process, as soon as every vertex has in-/out-degrees at least 1, there are typically n!(logn/n(1+o(1)))n directed Hamilton cycles. AU - Ferber, Asaf AU - Kwan, Matthew Alan AU - Sudakov, Benny ID - 9565 IS - 4 JF - Random Structures and Algorithms SN - 1042-9832 TI - Counting Hamilton cycles in sparse random directed graphs VL - 53 ER - TY - JOUR AB - An intercalate in a Latin square is a 2×2 Latin subsquare. Let N be the number of intercalates in a uniformly random n×n Latin square. We prove that asymptotically almost surely N≥(1−o(1))n2/4, and that EN≤(1+o(1))n2/2 (therefore asymptotically almost surely N≤fn2 for any f→∞). This significantly improves the previous best lower and upper bounds. We also give an upper tail bound for the number of intercalates in two fixed rows of a random Latin square. In addition, we discuss a problem of Linial and Luria on low-discrepancy Latin squares. AU - Kwan, Matthew Alan AU - Sudakov, Benny ID - 9568 IS - 2 JF - Random Structures and Algorithms SN - 1042-9832 TI - Intercalates and discrepancy in random Latin squares VL - 52 ER - TY - JOUR AB - We say a family of sets is intersecting if any two of its sets intersect, and we say it is trivially intersecting if there is an element which appears in every set of the family. In this paper we study the maximum size of a non-trivially intersecting family in a natural “multi-part” setting. Here the ground set is divided into parts, and one considers families of sets whose intersection with each part is of a prescribed size. Our work is motivated by classical results in the single-part setting due to Erdős, Ko and Rado, and Hilton and Milner, and by a theorem of Frankl concerning intersecting families in this multi-part setting. In the case where the part sizes are sufficiently large we determine the maximum size of a non-trivially intersecting multi-part family, disproving a conjecture of Alon and Katona. AU - Kwan, Matthew Alan AU - Sudakov, Benny AU - Vieira, Pedro ID - 9587 JF - Journal of Combinatorial Theory Series A SN - 0097-3165 TI - Non-trivially intersecting multi-part families VL - 156 ER - TY - JOUR AB - We investigate the thermodynamics and kinetics of a hydrogen interstitial in magnetic α-iron, taking account of the quantum fluctuations of the proton as well as the anharmonicities of lattice vibrations and hydrogen hopping. We show that the diffusivity of hydrogen in the lattice of bcc iron deviates strongly from an Arrhenius behavior at and below room temperature. We compare a quantum transition state theory to explicit ring polymer molecular dynamics in the calculation of diffusivity. We then address the trapping of hydrogen by a vacancy as a prototype lattice defect. By a sequence of steps in a thought experiment, each involving a thermodynamic integration, we are able to separate out the binding free energy of a proton to a defect into harmonic and anharmonic, and classical and quantum contributions. We find that about 30% of a typical binding free energy of hydrogen to a lattice defect in iron is accounted for by finite temperature effects, and about half of these arise from quantum proton fluctuations. This has huge implications for the comparison between thermal desorption and permeation experiments and standard electronic structure theory. The implications are even greater for the interpretation of muon spin resonance experiments. AU - Cheng, Bingqing AU - Paxton, Anthony T. AU - Ceriotti, Michele ID - 9665 IS - 22 JF - Physical Review Letters SN - 0031-9007 TI - Hydrogen diffusion and trapping in α-iron: The role of quantum and anharmonic fluctuations VL - 120 ER - TY - JOUR AB - The curvature dependence of interfacial free energy, which is crucial in quantitatively predicting nucleation kinetics and the stability of bubbles and droplets, is quantified by the Tolman length δ. For solid-liquid interfaces, however, δ has never been computed directly due to various theoretical and practical challenges. Here we perform a direct evaluation of the Tolman length from atomistic simulations of a solid-liquid planar interface in out-of-equilibrium conditions, by first computing the surface tension from the amplitude of thermal capillary fluctuations of a localized version of the Gibbs dividing surface and by then calculating how much the surface energy changes when it is defined relative to the equimolar dividing surface. We computed δ for a model potential, and found a good agreement with the values indirectly inferred from nucleation simulations. The agreement not only validates our approach but also suggests that the nucleation free energy of the system can be perfectly described using classical nucleation theory if the Tolman length is taken into account. AU - Cheng, Bingqing AU - Ceriotti, Michele ID - 9659 IS - 23 JF - The Journal of Chemical Physics SN - 0021-9606 TI - Communication: Computing the Tolman length for solid-liquid interfaces VL - 148 ER - TY - JOUR AB - We present a field-data rich modelling analysis to reconstruct the climatic forcing, glacier response, and runoff generation from a high-elevation catchment in central Chile over the period 2000–2015 to provide insights into the differing contributions of debris-covered and debris-free glaciers under current and future changing climatic conditions. Model simulations with the physically based glacio-hydrological model TOPKAPI-ETH reveal a period of neutral or slightly positive mass balance between 2000 and 2010, followed by a transition to increasingly large annual mass losses, associated with a recent mega drought. Mass losses commence earlier, and are more severe, for a heavily debris-covered glacier, most likely due to its strong dependence on snow avalanche accumulation, which has declined in recent years. Catchment runoff shows a marked decreasing trend over the study period, but with high interannual variability directly linked to winter snow accumulation, and high contribution from ice melt in dry periods and drought conditions. The study demonstrates the importance of incorporating local-scale processes such as snow avalanche accumulation and spatially variable debris thickness, in understanding the responses of different glacier types to climate change. We highlight the increased dependency of runoff from high Andean catchments on the diminishing resource of glacier ice during dry years. AU - Burger, Flavia AU - Ayala, Alvaro AU - Farias, David AU - Shaw, Thomas E. AU - MacDonell, Shelley AU - Brock, Ben AU - McPhee, James AU - Pellicciotti, Francesca ID - 12603 IS - 2 JF - Hydrological Processes KW - Water Science and Technology SN - 0885-6087 TI - Interannual variability in glacier contribution to runoff from a high‐elevation Andean catchment: Understanding the role of debris cover in glacier hydrology VL - 33 ER - TY - JOUR AB - Snow depth patterns over glaciers are controlled by precipitation, snow redistribution due to wind and avalanches, and the exchange of energy with the atmosphere that determines snow ablation. While many studies have advanced the understanding of ablation processes, less is known about winter snow patterns and their variability over glaciers. We analyze snow depth on Haut Glacier d'Arolla, Switzerland, in the two winter seasons 2006–2007 and 2010–2011 to (1) understand whether snow depth over an alpine glacier at the end of the accumulation season exhibits a behavior similar to the one observed on single slopes and vegetated areas; and (2) investigate the snow pattern consistency over the two accumulation seasons. We perform this analysis on a data set of high-resolution lidar-derived snow depth using variograms and fractal parameters. Our first main result is that snow depth patterns on the glacier exhibit a multiscale behavior, with a scale break around 20 m after which the fractal dimension increases, indicating more autocorrelated structure before the scale break than after. Second, this behavior is consistent over the two years, with fractal parameters and their spatial variability almost constant in the two seasons. We also show that snow depth patterns exhibit a distinct behavior in the glacier tongue and the upper catchment, with longer correlation distances on the tongue in the direction of the main winds, suggesting spatial distinctions that are likely induced by different processes and that should be taken into account when extrapolating snow depth from limited samples. AU - Clemenzi, I. AU - Pellicciotti, Francesca AU - Burlando, P. ID - 12605 IS - 10 JF - Water Resources Research KW - Water Science and Technology SN - 0043-1397 TI - Snow depth structure, fractal behavior, and interannual consistency over Haut Glacier d'Arolla, Switzerland VL - 54 ER - TY - JOUR AB - Glaciers in the high mountains of Asia provide an important water resource for millions of people. Many of these glaciers are partially covered by rocky debris, which protects the ice from solar radiation and warm air. However, studies have found that the surface of these debris-covered glaciers is actually lowering as fast as glaciers without debris. Water ponded on the surface of the glaciers may be partially responsible, as water can absorb atmospheric energy very efficiently. However, the overall effect of these ponds has not been thoroughly assessed yet. We study a valley in Nepal for which we have extensive weather measurements, and we use a numerical model to calculate the energy absorbed by ponds on the surface of the glaciers over 6 months. As we have not observed each individual pond thoroughly, we run the model 5,000 times with different setups. We find that ponds are extremely important for glacier melt and absorb energy 14 times as quickly as the debris-covered ice. Although the ponds account for 1% of the glacier area covered by rocks, and only 0.3% of the total glacier area, they absorb enough energy to account for one eighth of the whole valley's ice loss. AU - Miles, Evan S. AU - Willis, Ian AU - Buri, Pascal AU - Steiner, Jakob F. AU - Arnold, Neil S. AU - Pellicciotti, Francesca ID - 12604 IS - 19 JF - Geophysical Research Letters KW - General Earth and Planetary Sciences KW - Geophysics SN - 0094-8276 TI - Surface pond energy absorption across four Himalayan Glaciers accounts for 1/8 of total catchment ice loss VL - 45 ER - TY - JOUR AB - Supraglacial ice cliffs exist on debris-covered glaciers worldwide, but despite their importance as melt hot spots, their life cycle is little understood. Early field observations had advanced a hypothesis of survival of north-facing and disappearance of south-facing cliffs, which is central for predicting the contribution of cliffs to total glacier mass losses. Their role as windows of energy transfer suggests they may explain the anomalously high mass losses of debris-covered glaciers in High Mountain Asia (HMA) despite the insulating debris, currently at the center of a debated controversy. We use a 3D model of cliff evolution coupled to very high-resolution topographic data to demonstrate that ice cliffs facing south (in the Northern Hemisphere) disappear within a few months due to enhanced solar radiation receipts and that aspect is the key control on cliffs evolution. We reproduce continuous flattening of south-facing cliffs, a result of their vertical gradient of incoming solar radiation and sky view factor. Our results establish that only north-facing cliffs are recurrent features and thus stable contributors to the melting of debris-covered glaciers. Satellite observations and mass balance modeling confirms that few south-facing cliffs of small size exist on the glaciers of Langtang, and their contribution to the glacier volume losses is very small (∼1%). This has major implications for the mass balance of HMA debris-covered glaciers as it provides the basis for new parameterizations of cliff evolution and distribution to constrain volume losses in a region where glaciers are highly relevant as water sources for millions of people. AU - Buri, Pascal AU - Pellicciotti, Francesca ID - 12607 IS - 17 JF - PNAS SN - 0027-8424 TI - Aspect controls the survival of ice cliffs on debris-covered glaciers VL - 115 ER - TY - JOUR AB - Ice cliffs within a supraglacial debris cover have been identified as a source for high ablation relative to the surrounding debris-covered area. Due to their small relative size and steep orientation, ice cliffs are difficult to detect using nadir-looking space borne sensors. The method presented here uses surface slopes calculated from digital elevation model (DEM) data to map ice cliff geometry and produce an ice cliff probability map. Surface slope thresholds, which can be sensitive to geographic location and/or data quality, are selected automatically. The method also attempts to include area at the (often narrowing) ends of ice cliffs which could otherwise be neglected due to signal saturation in surface slope data. The method was calibrated in the eastern Alaska Range, Alaska, USA, against a control ice cliff dataset derived from high-resolution visible and thermal data. Using the same input parameter set that performed best in Alaska, the method was tested against ice cliffs manually mapped in the Khumbu Himal, Nepal. Our results suggest the method can accommodate different glaciological settings and different DEM data sources without a data intensive (high-resolution, multi-data source) recalibration. AU - Herreid, Sam AU - Pellicciotti, Francesca ID - 12606 IS - 5 JF - The Cryosphere KW - Earth-Surface Processes KW - Water Science and Technology SN - 1994-0424 TI - Automated detection of ice cliffs within supraglacial debris cover VL - 12 ER - TY - JOUR AB - Efficient molecular switching in confined spaces is critical for the successful development of artificial molecular machines. However, molecular switching events often entail large structural changes and therefore require conformational freedom, which is typically limited under confinement conditions. Here, we investigated the behavior of azobenzene—the key building block of light-controlled molecular machines—in a confined environment that is flexible and can adapt its shape to that of the bound guest. To this end, we encapsulated several structurally diverse azobenzenes within the cavity of a flexible, water-soluble coordination cage, and investigated their light-responsive behavior. Using UV/Vis absorption spectroscopy and a combination of NMR methods, we showed that each of the encapsulated azobenzenes exhibited distinct switching properties. An azobenzene forming a 1:1 host–guest inclusion complex could be efficiently photoisomerized in a reversible fashion. In contrast, successful switching in inclusion complexes incorporating two azobenzene guests was dependent on the availability of free cages in the system, and it involved reversible trafficking of azobenzene between the cages. In the absence of extra cages, photoswitching was either suppressed or it involved expulsion of azobenzene from the cage and consequently its precipitation from the solution. This finding was utilized to develop an information storage medium in which messages could be written and erased in a reversible fashion using light. AU - Samanta, Dipak AU - Gemen, Julius AU - Chu, Zonglin AU - Diskin-Posner, Yael AU - Shimon, Linda J. W. AU - Klajn, Rafal ID - 13376 IS - 38 JF - Proceedings of the National Academy of Sciences KW - Multidisciplinary SN - 0027-8424 TI - Reversible photoswitching of encapsulated azobenzenes in water VL - 115 ER - TY - JOUR AB - Confining molecules to volumes only slightly larger than the molecules themselves can profoundly alter their properties. Molecular switches—entities that can be toggled between two or more forms upon exposure to an external stimulus—often require conformational freedom to isomerize. Therefore, placing these switches in confined spaces can render them non-operational. To preserve the switchability of these species under confinement, we work with a water-soluble coordination cage that is flexible enough to adapt its shape to the conformation of the encapsulated guest. We show that owing to its flexibility, the cage is not only capable of accommodating—and solubilizing in water—several light-responsive spiropyran-based molecular switches, but, more importantly, it also provides an environment suitable for the efficient, reversible photoisomerization of the bound guests. Our findings pave the way towards studying various molecular switching processes in confined environments. AU - Samanta, Dipak AU - Galaktionova, Daria AU - Gemen, Julius AU - Shimon, Linda J. W. AU - Diskin-Posner, Yael AU - Avram, Liat AU - Král, Petr AU - Klajn, Rafal ID - 13374 JF - Nature Communications KW - General Physics and Astronomy KW - General Biochemistry KW - Genetics and Molecular Biology KW - General Chemistry KW - Multidisciplinary TI - Reversible chromism of spiropyran in the cavity of a flexible coordination cage VL - 9 ER - TY - JOUR AB - Confining organic molecules to the surfaces of inorganic nanoparticles can induce intermolecular interactions between them, which can affect the composition of the mixed self-assembled monolayers obtained by co-adsorption from solution of two different molecules. Two thiolated ligands (a dialkylviologen and a zwitterionic sulfobetaine) that can interact with each other electrostatically were coadsorbed onto gold nanoparticles. The nanoparticles favor a narrow range of ratios of these two molecules that is largely independent of the molar ratio in solution. Changing the solution molar ratio of the two ligands by a factor of 5 000 affects the on-nanoparticle ratio of these ligands by only threefold. This behavior is reminiscent of the formation of insoluble inorganic salts (such as AgCl), which similarly compensate positive and negative charges upon crystallizing. Our results pave the way towards developing well-defined hybrid organic–inorganic nanostructures. AU - Chu, Zonglin AU - Han, Yanxiao AU - Král, Petr AU - Klajn, Rafal ID - 13377 IS - 24 JF - Angewandte Chemie International Edition KW - General Chemistry KW - Catalysis SN - 1433-7851 TI - “Precipitation on nanoparticles”: Attractive intermolecular interactions stabilize specific ligand ratios on the surfaces of nanoparticles VL - 57 ER - TY - JOUR AU - Bléger, David AU - Klajn, Rafal ID - 13379 IS - 1 JF - Macromolecular Rapid Communications KW - Materials Chemistry KW - Polymers and Plastics KW - Organic Chemistry SN - 1022-1336 TI - Integrating macromolecules with molecular switches VL - 39 ER - TY - JOUR AB - Stars stripped of their hydrogen-rich envelope through interaction with a binary companion are generally not considered when accounting for ionizing radiation from stellar populations, despite the expectation that stripped stars emit hard ionizing radiation, form frequently, and live 10–100 times longer than single massive stars. We compute the first grid of evolutionary and spectral models specially made for stars stripped in binaries for a range of progenitor masses (2–20 M⊙) and metallicities ranging from solar to values representative for pop II stars. For stripped stars with masses in the range 0.3–7 M⊙, we find consistently high effective temperatures (20 000–100 000 K, increasing with mass), small radii (0.2–1 R⊙), and high bolometric luminosities, comparable to that of their progenitor before stripping. The spectra show a continuous sequence that naturally bridges subdwarf-type stars at the low-mass end and Wolf-Rayet-like spectra at the high-mass end. For intermediate masses we find hybrid spectral classes showing a mixture of absorption and emission lines. These appear for stars with mass-loss rates of 10−8−10−6 M⊙ yr−1, which have semi-transparent atmospheres. At low metallicity, substantial hydrogen-rich layers are left at the surface and we predict spectra that resemble O-type stars instead. We obtain spectra undistinguishable from subdwarfs for stripped stars with masses up to 1.7 M⊙, which questions whether the widely adopted canonical value of 0.47 M⊙ is uniformly valid. Only a handful of stripped stars of intermediate mass have currently been identified observationally. Increasing this sample will provide necessary tests for the physics of interaction, internal mixing, and stellar winds. We use our model spectra to investigate the feasibility to detect stripped stars next to an optically bright companion and recommend systematic searches for their UV excess and possible emission lines, most notably HeII λ4686 in the optical and HeII λ1640 in the UV. Our models are publicly available for further investigations or inclusion in spectral synthesis simulations. AU - Götberg, Ylva Louise Linsdotter AU - de Mink, S. E. AU - Groh, J. H. AU - Kupfer, T. AU - Crowther, P. A. AU - Zapartas, E. AU - Renzo, M. ID - 13475 JF - Astronomy & Astrophysics KW - Space and Planetary Science KW - Astronomy and Astrophysics SN - 0004-6361 TI - Spectral models for binary products: Unifying subdwarfs and Wolf-Rayet stars as a sequence of stripped-envelope stars VL - 615 ER - TY - JOUR AB - Stripped-envelope stars form in binary systems after losing mass through Roche-lobe overflow. They bear astrophysical significance as sources of UV and ionizing radiation in older stellar populations and, if sufficiently massive, as stripped supernova progenitors. Binary evolutionary models predict that they are common, but only a handful of subdwarfs with B-type companions are known. The question is whether a large population of such systems has evaded detection as a result of biases, or whether the model predictions are wrong. We reanalyze the well-studied post-interaction binary φ Persei. Recently, new data have improved the orbital solution of the system, which contains an ~1.2M⊙ stripped-envelope star and a rapidly rotating ~9.6M⊙ Be star. We compare with an extensive grid of evolutionary models using a Bayesian approach and constrain the initial masses of the progenitor to 7.2 ± 0.4M⊙ for the stripped star and 3.8 ± 0.4M⊙ for the Be star. The system must have evolved through near-conservative mass transfer. These findings are consistent with earlier studies. The age we obtain, 57 ± 9 Myr, is in excellent agreement with the age of the α Persei cluster. We note that neither star was initially massive enough to produce a core-collapse supernova, but mass exchange pushed the Be star above the mass threshold. We find that the subdwarf is overluminous for its mass by almost an order of magnitude, compared to the expectations for a helium core burning star. We can only reconcile this if the subdwarf resides in a late phase of helium shell burning, which lasts only 2–3% of the total lifetime as a subdwarf. Assuming continuous star formation implies that up to ~50 less evolved, dimmer subdwarfs exist for each system similar to φ Persei, but have evaded detection so far. Our findings can be interpreted as a strong indication that a substantial population of stripped-envelope stars indeed exists, but has so far evaded detection because of observational biases and lack of large-scale systematic searches. AU - Schootemeijer, A. AU - Götberg, Ylva Louise Linsdotter AU - de Mink, S. E. AU - Gies, D. AU - Zapartas, E. ID - 13473 JF - Astronomy & Astrophysics KW - Space and Planetary Science KW - Astronomy and Astrophysics SN - 0004-6361 TI - Clues about the scarcity of stripped-envelope stars from the evolutionary state of the sdO+Be binary system φ Persei VL - 615 ER - TY - JOUR AB - Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf–Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption – but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10–15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10–18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung–Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae. AU - Smith, Nathan AU - Götberg, Ylva Louise Linsdotter AU - de Mink, Selma E ID - 13474 IS - 1 JF - Monthly Notices of the Royal Astronomical Society KW - Space and Planetary Science KW - Astronomy and Astrophysics SN - 0035-8711 TI - Extreme isolation of WN3/O3 stars and implications for their evolutionary origin as the elusive stripped binaries VL - 475 ER - TY - CONF AB - A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The ℤ2-genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t × t grid or one of the following so-called t-Kuratowski graphs: K3, t, or t copies of K5 or K3,3 sharing at most 2 common vertices. We show that the ℤ2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its ℤ2-genus, solving a problem posed by Schaefer and Štefankovič, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces. AU - Fulek, Radoslav AU - Kynčl, Jan ID - 186 TI - The ℤ2-Genus of Kuratowski minors VL - 99 ER - TY - JOUR AB - Molecular chirality plays an essential role in most biochemical processes. The observation and quantification of chirality-sensitive signals, however, remains extremely challenging, especially on ultrafast timescales and in dilute media. Here, we describe the experimental realization of an all-optical and ultrafast scheme for detecting chiral dynamics in molecules. This technique is based on high-harmonic generation by a combination of two-color counterrotating femtosecond laser pulses with polarization states tunable from linear to circular. We demonstrate two different implementations of chiral-sensitive high-harmonic spectroscopy on an ensemble of randomly oriented methyloxirane molecules in the gas phase. Using two elliptically polarized fields, we observe that the ellipticities maximizing the harmonic signal reach up to 4.4 ± 0.2 % (at 17.6 eV). Using two circularly polarized fields, we observe circular dichroisms ranging up to 13 ± 6 % (28.3–33.1 eV). Our theoretical analysis confirms that the observed chiral response originates from subfemtosecond electron dynamics driven by the magnetic component of the driving laser field. This assignment is supported by the experimental observation of a strong intensity dependence of the chiral effects and its agreement with theory. We moreover report and explain a pronounced variation of the signal strength and dichroism with the driving-field ellipticities and harmonic orders. Finally, we demonstrate the sensitivity of the experimental observables to the shape of the electron hole. This technique for chiral discrimination will yield femtosecond temporal resolution when integrated in a pump-probe scheme and subfemtosecond resolution on chiral charge migration in a self-probing scheme. AU - Baykusheva, Denitsa Rangelova AU - Wörner, Hans Jakob ID - 14003 IS - 3 JF - Physical Review X KW - General Physics and Astronomy TI - Chiral discrimination through bielliptical high-harmonic spectroscopy VL - 8 ER - TY - CONF AB - A thrackle is a graph drawn in the plane so that every pair of its edges meet exactly once: either at a common end vertex or in a proper crossing. We prove that any thrackle of n vertices has at most 1.3984n edges. Quasi-thrackles are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an odd number of times. It is also shown that the maximum number of edges of a quasi-thrackle on n vertices is 3/2(n-1), and that this bound is best possible for infinitely many values of n. AU - Fulek, Radoslav AU - Pach, János ID - 433 TI - Thrackles: An improved upper bound VL - 10692 ER - TY - GEN AB - Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients. AU - Faria, Rui AU - Chaube, Pragya AU - Morales, Hernán E. AU - Larsson, Tomas AU - Lemmon, Alan R. AU - Lemmon, Emily M. AU - Rafajlović, Marina AU - Panova, Marina AU - Ravinet, Mark AU - Johannesson, Kerstin AU - Westram, Anja M AU - Butlin, Roger K. ID - 9837 TI - Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes ER - TY - GEN AB - We consider the problem of expected cost analysis over nondeterministic probabilistic programs, which aims at automated methods for analyzing the resource-usage of such programs. Previous approaches for this problem could only handle nonnegative bounded costs. However, in many scenarios, such as queuing networks or analysis of cryptocurrency protocols, both positive and negative costs are necessary and the costs are unbounded as well. In this work, we present a sound and efficient approach to obtain polynomial bounds on the expected accumulated cost of nondeterministic probabilistic programs. Our approach can handle (a) general positive and negative costs with bounded updates in variables; and (b) nonnegative costs with general updates to variables. We show that several natural examples which could not be handled by previous approaches are captured in our framework. Moreover, our approach leads to an efficient polynomial-time algorithm, while no previous approach for cost analysis of probabilistic programs could guarantee polynomial runtime. Finally, we show the effectiveness of our approach by presenting experimental results on a variety of programs, motivated by real-world applications, for which we efficiently synthesize tight resource-usage bounds. AU - Anonymous, 1 AU - Anonymous, 2 AU - Anonymous, 3 AU - Anonymous, 4 AU - Anonymous, 5 AU - Anonymous, 6 ID - 5457 SN - 2664-1690 TI - Cost analysis of nondeterministic probabilistic programs ER - TY - CHAP AB - We prove that every congruence distributive variety has directed Jónsson terms, and every congruence modular variety has directed Gumm terms. The directed terms we construct witness every case of absorption witnessed by the original Jónsson or Gumm terms. This result is equivalent to a pair of claims about absorption for admissible preorders in congruence distributive and congruence modular varieties, respectively. For finite algebras, these absorption theorems have already seen significant applications, but until now, it was not clear if the theorems hold for general algebras as well. Our method also yields a novel proof of a result by P. Lipparini about the existence of a chain of terms (which we call Pixley terms) in varieties that are at the same time congruence distributive and k-permutable for some k. AU - Kazda, Alexandr AU - Kozik, Marcin AU - McKenzie, Ralph AU - Moore, Matthew ED - Czelakowski, J ID - 10864 SN - 2211-2758 T2 - Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science TI - Absorption and directed Jónsson terms VL - 16 ER - TY - CONF AB - We prove that for every d ≥ 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d ≥ 2 and k ≥ 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d ≥ 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes. AU - Goaoc, Xavier AU - Paták, Pavel AU - Patakova, Zuzana AU - Tancer, Martin AU - Wagner, Uli ID - 184 TI - Shellability is NP-complete VL - 99 ER - TY - CONF AB - In graph theory, as well as in 3-manifold topology, there exist several width-type parameters to describe how "simple" or "thin" a given graph or 3-manifold is. These parameters, such as pathwidth or treewidth for graphs, or the concept of thin position for 3-manifolds, play an important role when studying algorithmic problems; in particular, there is a variety of problems in computational 3-manifold topology - some of them known to be computationally hard in general - that become solvable in polynomial time as soon as the dual graph of the input triangulation has bounded treewidth. In view of these algorithmic results, it is natural to ask whether every 3-manifold admits a triangulation of bounded treewidth. We show that this is not the case, i.e., that there exists an infinite family of closed 3-manifolds not admitting triangulations of bounded pathwidth or treewidth (the latter implies the former, but we present two separate proofs). We derive these results from work of Agol and of Scharlemann and Thompson, by exhibiting explicit connections between the topology of a 3-manifold M on the one hand and width-type parameters of the dual graphs of triangulations of M on the other hand, answering a question that had been raised repeatedly by researchers in computational 3-manifold topology. In particular, we show that if a closed, orientable, irreducible, non-Haken 3-manifold M has a triangulation of treewidth (resp. pathwidth) k then the Heegaard genus of M is at most 48(k+1) (resp. 4(3k+1)). AU - Huszár, Kristóf AU - Spreer, Jonathan AU - Wagner, Uli ID - 285 SN - 18688969 TI - On the treewidth of triangulated 3-manifolds VL - 99 ER - TY - GEN AB - This dataset contains a GitHub repository containing all the data, analysis, Nextflow workflows and Jupyter notebooks to replicate the manuscript titled "Fast and accurate large multiple sequence alignments with a root-to-leaf regressive method". It also contains the Multiple Sequence Alignments (MSAs) generated and well as the main figures and tables from the manuscript. The repository is also available at GitHub (https://github.com/cbcrg/dpa-analysis) release `v1.2`. For details on how to use the regressive alignment algorithm, see the T-Coffee software suite (https://github.com/cbcrg/tcoffee). AU - Garriga, Edgar AU - di Tommaso, Paolo AU - Magis, Cedrik AU - Erb, Ionas AU - Mansouri, Leila AU - Baltzis, Athanasios AU - Laayouni, Hafid AU - Kondrashov, Fyodor AU - Floden, Evan AU - Notredame, Cedric ID - 13059 TI - Fast and accurate large multiple sequence alignments with a root-to-leaf regressive method ER - TY - THES AB - Nowadays, quantum computation is receiving more and more attention as an alternative to the classical way of computing. For realizing a quantum computer, different devices are investigated as potential quantum bits. In this thesis, the focus is on Ge hut wires, which turned out to be promising candidates for implementing hole spin quantum bits. The advantages of Ge as a material system are the low hyperfine interaction for holes and the strong spin orbit coupling, as well as the compatibility with the highly developed CMOS processes in industry. In addition, Ge can also be isotopically purified which is expected to boost the spin coherence times. The strong spin orbit interaction for holes in Ge on the one hand enables the full electrical control of the quantum bit and on the other hand should allow short spin manipulation times. Starting with a bare Si wafer, this work covers the entire process reaching from growth over the fabrication and characterization of hut wire devices up to the demonstration of hole spin resonance. From experiments with single quantum dots, a large g-factor anisotropy between the in-plane and the out-of-plane direction was found. A comparison to a theoretical model unveiled the heavy-hole character of the lowest energy states. The second part of the thesis addresses double quantum dot devices, which were realized by adding two gate electrodes to a hut wire. In such devices, Pauli spin blockade was observed, which can serve as a read-out mechanism for spin quantum bits. Applying oscillating electric fields in spin blockade allowed the demonstration of continuous spin rotations and the extraction of a lower bound for the spin dephasing time. Despite the strong spin orbit coupling in Ge, the obtained value for the dephasing time is comparable to what has been recently reported for holes in Si. All in all, the presented results point out the high potential of Ge hut wires as a platform for long-lived, fast and fully electrically tunable hole spin quantum bits. AU - Watzinger, Hannes ID - 49 SN - 2663-337X TI - Ge hut wires - from growth to hole spin resonance ER - TY - THES AB - We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications. AU - Iglesias Ham, Mabel ID - 201 SN - 2663-337X TI - Multiple covers with balls ER - TY - THES AB - The most common assumption made in statistical learning theory is the assumption of the independent and identically distributed (i.i.d.) data. While being very convenient mathematically, it is often very clearly violated in practice. This disparity between the machine learning theory and applications underlies a growing demand in the development of algorithms that learn from dependent data and theory that can provide generalization guarantees similar to the independent situations. This thesis is dedicated to two variants of dependencies that can arise in practice. One is a dependence on the level of samples in a single learning task. Another dependency type arises in the multi-task setting when the tasks are dependent on each other even though the data for them can be i.i.d. In both cases we model the data (samples or tasks) as stochastic processes and introduce new algorithms for both settings that take into account and exploit the resulting dependencies. We prove the theoretical guarantees on the performance of the introduced algorithms under different evaluation criteria and, in addition, we compliment the theoretical study by the empirical one, where we evaluate some of the algorithms on two real world datasets to highlight their practical applicability. AU - Zimin, Alexander ID - 68 SN - 2663-337X TI - Learning from dependent data ER - TY - THES AB - A proof system is a protocol between a prover and a verifier over a common input in which an honest prover convinces the verifier of the validity of true statements. Motivated by the success of decentralized cryptocurrencies, exemplified by Bitcoin, the focus of this thesis will be on proof systems which found applications in some sustainable alternatives to Bitcoin, such as the Spacemint and Chia cryptocurrencies. In particular, we focus on proofs of space and proofs of sequential work. Proofs of space (PoSpace) were suggested as more ecological, economical, and egalitarian alternative to the energy-wasteful proof-of-work mining of Bitcoin. However, the state-of-the-art constructions of PoSpace are based on sophisticated graph pebbling lower bounds, and are therefore complex. Moreover, when these PoSpace are used in cryptocurrencies like Spacemint, miners can only start mining after ensuring that a commitment to their space is already added in a special transaction to the blockchain. Proofs of sequential work (PoSW) are proof systems in which a prover, upon receiving a statement x and a time parameter T, computes a proof which convinces the verifier that T time units had passed since x was received. Whereas Spacemint assumes synchrony to retain some interesting Bitcoin dynamics, Chia requires PoSW with unique proofs, i.e., PoSW in which it is hard to come up with more than one accepting proof for any true statement. In this thesis we construct simple and practically-efficient PoSpace and PoSW. When using our PoSpace in cryptocurrencies, miners can start mining on the fly, like in Bitcoin, and unlike current constructions of PoSW, which either achieve efficient verification of sequential work, or faster-than-recomputing verification of correctness of proofs, but not both at the same time, ours achieve the best of these two worlds. AU - Abusalah, Hamza M ID - 83 SN - 2663-337X TI - Proof systems for sustainable decentralized cryptocurrencies ER - TY - THES AB - Modern computer vision systems heavily rely on statistical machine learning models, which typically require large amounts of labeled data to be learned reliably. Moreover, very recently computer vision research widely adopted techniques for representation learning, which further increase the demand for labeled data. However, for many important practical problems there is relatively small amount of labeled data available, so it is problematic to leverage full potential of the representation learning methods. One way to overcome this obstacle is to invest substantial resources into producing large labelled datasets. Unfortunately, this can be prohibitively expensive in practice. In this thesis we focus on the alternative way of tackling the aforementioned issue. We concentrate on methods, which make use of weakly-labeled or even unlabeled data. Specifically, the first half of the thesis is dedicated to the semantic image segmentation task. We develop a technique, which achieves competitive segmentation performance and only requires annotations in a form of global image-level labels instead of dense segmentation masks. Subsequently, we present a new methodology, which further improves segmentation performance by leveraging tiny additional feedback from a human annotator. By using our methods practitioners can greatly reduce the amount of data annotation effort, which is required to learn modern image segmentation models. In the second half of the thesis we focus on methods for learning from unlabeled visual data. We study a family of autoregressive models for modeling structure of natural images and discuss potential applications of these models. Moreover, we conduct in-depth study of one of these applications, where we develop the state-of-the-art model for the probabilistic image colorization task. AU - Kolesnikov, Alexander ID - 197 SN - 2663-337X TI - Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images ER - TY - JOUR AB - A central problem of algebraic topology is to understand the homotopy groups 𝜋𝑑(𝑋) of a topological space X. For the computational version of the problem, it is well known that there is no algorithm to decide whether the fundamental group 𝜋1(𝑋) of a given finite simplicial complex X is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex X that is simply connected (i.e., with 𝜋1(𝑋) trivial), compute the higher homotopy group 𝜋𝑑(𝑋) for any given 𝑑≥2 . However, these algorithms come with a caveat: They compute the isomorphism type of 𝜋𝑑(𝑋) , 𝑑≥2 as an abstract finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of 𝜋𝑑(𝑋) . Converting elements of this abstract group into explicit geometric maps from the d-dimensional sphere 𝑆𝑑 to X has been one of the main unsolved problems in the emerging field of computational homotopy theory. Here we present an algorithm that, given a simply connected space X, computes 𝜋𝑑(𝑋) and represents its elements as simplicial maps from a suitable triangulation of the d-sphere 𝑆𝑑 to X. For fixed d, the algorithm runs in time exponential in size(𝑋) , the number of simplices of X. Moreover, we prove that this is optimal: For every fixed 𝑑≥2 , we construct a family of simply connected spaces X such that for any simplicial map representing a generator of 𝜋𝑑(𝑋) , the size of the triangulation of 𝑆𝑑 on which the map is defined, is exponential in size(𝑋) . AU - Filakovský, Marek AU - Franek, Peter AU - Wagner, Uli AU - Zhechev, Stephan Y ID - 6774 IS - 3-4 JF - Journal of Applied and Computational Topology SN - 2367-1726 TI - Computing simplicial representatives of homotopy group elements VL - 2 ER - TY - CONF AB - Synchronous programs are easy to specify because the side effects of an operation are finished by the time the invocation of the operation returns to the caller. Asynchronous programs, on the other hand, are difficult to specify because there are side effects due to pending computation scheduled as a result of the invocation of an operation. They are also difficult to verify because of the large number of possible interleavings of concurrent computation threads. We present synchronization, a new proof rule that simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Modular verification is enabled via pending asynchronous calls in atomic summaries, and a complementary proof rule that eliminates pending asynchronous calls when components and their specifications are composed. We evaluate synchronization in the context of a multi-layer refinement verification methodology on a collection of benchmark programs. AU - Kragl, Bernhard AU - Qadeer, Shaz AU - Henzinger, Thomas A ID - 133 SN - 18688969 TI - Synchronizing the asynchronous VL - 118 ER - TY - CONF AB - Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers. AU - Edelsbrunner, Herbert AU - Osang, Georg F ID - 187 TI - The multi-cover persistence of Euclidean balls VL - 99 ER - TY - JOUR AB - We consider families of confocal conics and two pencils of Apollonian circles having the same foci. We will show that these families of curves generate trivial 3-webs and find the exact formulas describing them. AU - Akopyan, Arseniy ID - 692 IS - 1 JF - Geometriae Dedicata TI - 3-Webs generated by confocal conics and circles VL - 194 ER - TY - JOUR AB - Holes confined in quantum dots have gained considerable interest in the past few years due to their potential as spin qubits. Here we demonstrate two-axis control of a spin 3/2 qubit in natural Ge. The qubit is formed in a hut wire double quantum dot device. The Pauli spin blockade principle allowed us to demonstrate electric dipole spin resonance by applying a radio frequency electric field to one of the electrodes defining the double quantum dot. Coherent hole spin oscillations with Rabi frequencies reaching 140 MHz are demonstrated and dephasing times of 130 ns are measured. The reported results emphasize the potential of Ge as a platform for fast and electrically tunable hole spin qubit devices. AU - Watzinger, Hannes AU - Kukucka, Josip AU - Vukusic, Lada AU - Gao, Fei AU - Wang, Ting AU - Schäffler, Friedrich AU - Zhang, Jian AU - Katsaros, Georgios ID - 77 IS - 3902 JF - Nature Communications TI - A germanium hole spin qubit VL - 9 ER - TY - JOUR AB - The actomyosin cytoskeleton, a key stress-producing unit in epithelial cells, oscillates spontaneously in a wide variety of systems. Although much of the signal cascade regulating myosin activity has been characterized, the origin of such oscillatory behavior is still unclear. Here, we show that basal myosin II oscillation in Drosophila ovarian epithelium is not controlled by actomyosin cortical tension, but instead relies on a biochemical oscillator involving ROCK and myosin phosphatase. Key to this oscillation is a diffusive ROCK flow, linking junctional Rho1 to medial actomyosin cortex, and dynamically maintained by a self-activation loop reliant on ROCK kinase activity. In response to the resulting myosin II recruitment, myosin phosphatase is locally enriched and shuts off ROCK and myosin II signals. Coupling Drosophila genetics, live imaging, modeling, and optogenetics, we uncover an intrinsic biochemical oscillator at the core of myosin II regulatory network, shedding light on the spatio-temporal dynamics of force generation. AU - Qin, Xiang AU - Hannezo, Edouard B AU - Mangeat, Thomas AU - Liu, Chang AU - Majumder, Pralay AU - Liu, Jjiaying AU - Choesmel Cadamuro, Valerie AU - Mcdonald, Jocelyn AU - Liu, Yinyao AU - Yi, Bin AU - Wang, Xiaobo ID - 401 IS - 1 JF - Nature Communications TI - A biochemical network controlling basal myosin oscillation VL - 9 ER - TY - JOUR AB - The insect’s fat body combines metabolic and immunological functions. In this issue of Developmental Cell, Franz et al. (2018) show that in Drosophila, cells of the fat body are not static, but can actively “swim” toward sites of epithelial injury, where they physically clog the wound and locally secrete antimicrobial peptides. AU - Casano, Alessandra M AU - Sixt, Michael K ID - 318 IS - 4 JF - Developmental Cell TI - A fat lot of good for wound healing VL - 44 ER - TY - JOUR AB - Lesion verification and quantification is traditionally done via histological examination of sectioned brains, a time-consuming process that relies heavily on manual estimation. Such methods are particularly problematic in posterior cortical regions (e.g. visual cortex), where sectioning leads to significant damage and distortion of tissue. Even more challenging is the post hoc localization of micro-electrodes, which relies on the same techniques, suffers from similar drawbacks and requires even higher precision. Here, we propose a new, simple method for quantitative lesion characterization and electrode localization that is less labor-intensive and yields more detailed results than conventional methods. We leverage staining techniques standard in electron microscopy with the use of commodity micro-CT imaging. We stain whole rat and zebra finch brains in osmium tetroxide, embed these in resin and scan entire brains in a micro-CT machine. The scans result in 3D reconstructions of the brains with section thickness dependent on sample size (12–15 and 5–6 microns for rat and zebra finch respectively) that can be segmented manually or automatically. Because the method captures the entire intact brain volume, comparisons within and across studies are more tractable, and the extent of lesions and electrodes may be studied with higher accuracy than with current methods. AU - Masís, Javier AU - Mankus, David AU - Wolff, Steffen AU - Guitchounts, Grigori AU - Jösch, Maximilian A AU - Cox, David ID - 410 IS - 1 JF - Scientific Reports TI - A micro-CT-based method for quantitative brain lesion characterization and electrode localization VL - 8 ER -