TY - JOUR AB - Genes differ in the frequency at which they are expressed and in the form of regulation used to control their activity. In particular, positive or negative regulation can lead to activation of a gene in response to an external signal. Previous works proposed that the form of regulation of a gene correlates with its frequency of usage: positive regulation when the gene is frequently expressed and negative regulation when infrequently expressed. Such network design means that, in the absence of their regulators, the genes are found in their least required activity state, hence regulatory intervention is often necessary. Due to the multitude of genes and regulators, spurious binding and unbinding events, called “crosstalk”, could occur. To determine how the form of regulation affects the global crosstalk in the network, we used a mathematical model that includes multiple regulators and multiple target genes. We found that crosstalk depends non-monotonically on the availability of regulators. Our analysis showed that excess use of regulation entailed by the formerly suggested network design caused high crosstalk levels in a large part of the parameter space. We therefore considered the opposite ‘idle’ design, where the default unregulated state of genes is their frequently required activity state. We found, that ‘idle’ design minimized the use of regulation and thus minimized crosstalk. In addition, we estimated global crosstalk of S. cerevisiae using transcription factors binding data. We demonstrated that even partial network data could suffice to estimate its global crosstalk, suggesting its applicability to additional organisms. We found that S. cerevisiae estimated crosstalk is lower than that of a random network, suggesting that natural selection reduces crosstalk. In summary, our study highlights a new type of protein production cost which is typically overlooked: that of regulatory interference caused by the presence of excess regulators in the cell. It demonstrates the importance of whole-network descriptions, which could show effects missed by single-gene models. AU - Grah, Rok AU - Friedlander, Tamar ID - 7569 IS - 2 JF - PLOS Computational Biology SN - 1553-7358 TI - The relation between crosstalk and gene regulation form revisited VL - 16 ER - TY - GEN AB - In mammals, chromatin marks at imprinted genes are asymmetrically inherited to control parentally-biased gene expression. This control is thought predominantly to involve parent-specific differentially methylated regions (DMR) in genomic DNA. However, neither parent-of-origin-specific transcription nor DMRs have been comprehensively mapped. We here address this by integrating transcriptomic and epigenomic approaches in mouse preimplantation embryos (blastocysts). Transcriptome-analysis identified 71 genes expressed with previously unknown parent-of-origin-specific expression in blastocysts (nBiX: novel blastocyst-imprinted expression). Uniparental expression of nBiX genes disappeared soon after implantation. Micro-whole-genome bisulfite sequencing (μWGBS) of individual uniparental blastocysts detected 859 DMRs. Only 18% of nBiXs were associated with a DMR, whereas 60% were associated with parentally-biased H3K27me3. This suggests a major role for Polycomb-mediated imprinting in blastocysts. Five nBiX-clusters contained at least one known imprinted gene, and five novel clusters contained exclusively nBiX-genes. These data suggest a complex program of stage-specific imprinting involving different tiers of regulation. AU - Santini, Laura AU - Halbritter, Florian AU - Titz-Teixeira, Fabian AU - Suzuki, Toru AU - Asami, Maki AU - Ramesmayer, Julia AU - Ma, Xiaoyan AU - Lackner, Andreas AU - Warr, Nick AU - Pauler, Florian AU - Hippenmeyer, Simon AU - Laue, Ernest AU - Farlik, Matthias AU - Bock, Christoph AU - Beyer, Andreas AU - Perry, Anthony C. F. AU - Leeb, Martin ID - 8813 T2 - bioRxiv TI - Novel imprints in mouse blastocysts are predominantly DNA methylation independent ER - TY - GEN AU - Grah, Rok AU - Friedlander, Tamar ID - 9777 TI - Maximizing crosstalk ER - TY - THES AB - Designing and verifying concurrent programs is a notoriously challenging, time consuming, and error prone task, even for experts. This is due to the sheer number of possible interleavings of a concurrent program, all of which have to be tracked and accounted for in a formal proof. Inventing an inductive invariant that captures all interleavings of a low-level implementation is theoretically possible, but practically intractable. We develop a refinement-based verification framework that provides mechanisms to simplify proof construction by decomposing the verification task into smaller subtasks. In a first line of work, we present a foundation for refinement reasoning over structured concurrent programs. We introduce layered concurrent programs as a compact notation to represent multi-layer refinement proofs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. Each program in this sequence is expressed as structured concurrent program, i.e., a program over (potentially recursive) procedures, imperative control flow, gated atomic actions, structured parallelism, and asynchronous concurrency. This is in contrast to existing refinement-based verifiers, which represent concurrent systems as flat transition relations. We present a powerful refinement proof rule that decomposes refinement checking over structured programs into modular verification conditions. Refinement checking is supported by a new form of modular, parameterized invariants, called yield invariants, and a linear permission system to enhance local reasoning. In a second line of work, we present two new reduction-based program transformations that target asynchronous programs. These transformations reduce the number of interleavings that need to be considered, thus reducing the complexity of invariants. Synchronization simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Inductive sequentialization establishes sequential reductions that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. Our approach is implemented the CIVL verifier, which has been successfully used for the verification of several complex concurrent programs. In our methodology, the overall correctness of a program is established piecemeal by focusing on the invariant required for each refinement step separately. While the programmer does the creative work of specifying the chain of programs and the inductive invariant justifying each link in the chain, the tool automatically constructs the verification conditions underlying each refinement step. AU - Kragl, Bernhard ID - 8332 SN - 2663-337X TI - Verifying concurrent programs: Refinement, synchronization, sequentialization ER - TY - CONF AB - Learning object-centric representations of complex scenes is a promising step towards enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep learning approaches learn distributed representations that do not capture the compositional properties of natural scenes. In this paper, we present the Slot Attention module, an architectural component that interfaces with perceptual representations such as the output of a convolutional neural network and produces a set of task-dependent abstract representations which we call slots. These slots are exchangeable and can bind to any object in the input by specializing through a competitive procedure over multiple rounds of attention. We empirically demonstrate that Slot Attention can extract object-centric representations that enable generalization to unseen compositions when trained on unsupervised object discovery and supervised property prediction tasks. AU - Locatello, Francesco AU - Weissenborn, Dirk AU - Unterthiner, Thomas AU - Mahendran, Aravindh AU - Heigold, Georg AU - Uszkoreit, Jakob AU - Dosovitskiy, Alexey AU - Kipf, Thomas ID - 14326 SN - 9781713829546 T2 - Advances in Neural Information Processing Systems TI - Object-centric learning with slot attention VL - 33 ER - TY - JOUR AB - We consider dynamical transport metrics for probability measures on discretisations of a bounded convex domain in ℝd. These metrics are natural discrete counterparts to the Kantorovich metric 𝕎2, defined using a Benamou-Brenier type formula. Under mild assumptions we prove an asymptotic upper bound for the discrete transport metric Wt in terms of 𝕎2, as the size of the mesh T tends to 0. However, we show that the corresponding lower bound may fail in general, even on certain one-dimensional and symmetric two-dimensional meshes. In addition, we show that the asymptotic lower bound holds under an isotropy assumption on the mesh, which turns out to be essentially necessary. This assumption is satisfied, e.g., for tilings by convex regular polygons, and it implies Gromov-Hausdorff convergence of the transport metric. AU - Gladbach, Peter AU - Kopfer, Eva AU - Maas, Jan ID - 71 IS - 3 JF - SIAM Journal on Mathematical Analysis SN - 00361410 TI - Scaling limits of discrete optimal transport VL - 52 ER - TY - JOUR AB - We introduce dynamically warping grids for adaptive liquid simulation. Our primary contributions are a strategy for dynamically deforming regular grids over the course of a simulation and a method for efficiently utilizing these deforming grids for liquid simulation. Prior work has shown that unstructured grids are very effective for adaptive fluid simulations. However, unstructured grids often lead to complicated implementations and a poor cache hit rate due to inconsistent memory access. Regular grids, on the other hand, provide a fast, fixed memory access pattern and straightforward implementation. Our method combines the advantages of both: we leverage the simplicity of regular grids while still achieving practical and controllable spatial adaptivity. We demonstrate that our method enables adaptive simulations that are fast, flexible, and robust to null-space issues. At the same time, our method is simple to implement and takes advantage of existing highly-tuned algorithms. AU - Hikaru, Ibayashi AU - Wojtan, Christopher J AU - Thuerey, Nils AU - Igarashi, Takeo AU - Ando, Ryoichi ID - 5681 IS - 6 JF - IEEE Transactions on Visualization and Computer Graphics SN - 10772626 TI - Simulating liquids on dynamically warping grids VL - 26 ER - TY - THES AB - The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment. In this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath. With this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. For the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules. AU - Li, Xiang ID - 8958 SN - 2663-337X TI - Rotation of coupled cold molecules in the presence of a many-body environment ER - TY - THES AB - Form versus function is a long-standing debate in various design-related fields, such as architecture as well as graphic and industrial design. A good design that balances form and function often requires considerable human effort and collaboration among experts from different professional fields. Computational design tools provide a new paradigm for designing functional objects. In computational design, form and function are represented as mathematical quantities, with the help of numerical and combinatorial algorithms, they can assist even novice users in designing versatile models that exhibit their desired functionality. This thesis presents three disparate research studies on the computational design of functional objects: The appearance of 3d print—we optimize the volumetric material distribution for faithfully replicating colored surface texture in 3d printing; the dynamic motion of mechanical structures— our design system helps the novice user to retarget various mechanical templates with different functionality to complex 3d shapes; and a more abstract functionality, multistability—our algorithm automatically generates models that exhibit multiple stable target poses. For each of these cases, our computational design tools not only ensure the functionality of the results but also permit the user aesthetic freedom over the form. Moreover, fabrication constraints were taken into account, which allow for the immediate creation of physical realization via 3D printing or laser cutting. AU - Zhang, Ran ID - 8386 SN - 2663-337X TI - Structure-aware computational design and its application to 3D printable volume scattering, mechanism, and multistability ER - TY - THES AB - Quantum computation enables the execution of algorithms that have exponential complexity. This might open the path towards the synthesis of new materials or medical drugs, optimization of transport or financial strategies etc., intractable on even the fastest classical computers. A quantum computer consists of interconnected two level quantum systems, called qubits, that satisfy DiVincezo’s criteria. Worldwide, there are ongoing efforts to find the qubit architecture which will unite quantum error correction compatible single and two qubit fidelities, long distance qubit to qubit coupling and calability. Superconducting qubits have gone the furthest in this race, demonstrating an algorithm running on 53 coupled qubits, but still the fidelities are not even close to those required for realizing a single logical qubit. emiconductor qubits offer extremely good characteristics, but they are currently investigated across different platforms. Uniting those good characteristics into a single platform might be a big step towards the quantum computer realization. Here we describe the implementation of a hole spin qubit hosted in a Ge hut wire double quantum dot. The high and tunable spin-orbit coupling together with a heavy hole state character is expected to allow fast spin manipulation and long coherence times. Furthermore large lever arms, for hut wire devices, should allow good coupling to superconducting resonators enabling efficient long distance spin to spin coupling and a sensitive gate reflectometry spin readout. The developed cryogenic setup (printed circuit board sample holders, filtering, high-frequency wiring) enabled us to perform low temperature spin dynamics experiments. Indeed, we measured the fastest single spin qubit Rabi frequencies reported so far, reaching 140 MHz, while the dephasing times of 130 ns oppose the long decoherence predictions. In order to further investigate this, a double quantum dot gate was connected directly to a lumped element resonator which enabled gate reflectometry readout. The vanishing inter-dot transition signal, for increasing external magnetic field, revealed the spin nature of the measured quantity. AU - Kukucka, Josip ID - 7996 SN - 2663-337X TI - Implementation of a hole spin qubit in Ge hut wires and dispersive spin sensing ER - TY - CONF AB - We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both randomness as well as angelic and demonic non-determinism. Lexicographic order allows to consider multiple objectives with a strict preference order over the satisfaction of the objectives. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. We establish determinacy of such games and present strategy and computational complexity results. For strategy complexity, we show that lexicographically optimal strategies exist that are deterministic and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in NP∩coNP , matching the current known bound for single objectives; and in general the decision problem is PSPACE -hard and can be solved in NEXPTIME∩coNEXPTIME . We present an algorithm that computes the lexicographically optimal strategies via a reduction to computation of optimal strategies in a sequence of single-objectives games. We have implemented our algorithm and report experimental results on various case studies. AU - Chatterjee, Krishnendu AU - Katoen, Joost P AU - Weininger, Maximilian AU - Winkler, Tobias ID - 8272 SN - 03029743 T2 - International Conference on Computer Aided Verification TI - Stochastic games with lexicographic reachability-safety objectives VL - 12225 ER - TY - CHAP AB - The polymerization–depolymerization dynamics of cytoskeletal proteins play essential roles in the self-organization of cytoskeletal structures, in eukaryotic as well as prokaryotic cells. While advances in fluorescence microscopy and in vitro reconstitution experiments have helped to study the dynamic properties of these complex systems, methods that allow to collect and analyze large quantitative datasets of the underlying polymer dynamics are still missing. Here, we present a novel image analysis workflow to study polymerization dynamics of active filaments in a nonbiased, highly automated manner. Using treadmilling filaments of the bacterial tubulin FtsZ as an example, we demonstrate that our method is able to specifically detect, track and analyze growth and shrinkage of polymers, even in dense networks of filaments. We believe that this automated method can facilitate the analysis of a large variety of dynamic cytoskeletal systems, using standard time-lapse movies obtained from experiments in vitro as well as in the living cell. Moreover, we provide scripts implementing this method as supplementary material. AU - Dos Santos Caldas, Paulo R AU - Radler, Philipp AU - Sommer, Christoph M AU - Loose, Martin ED - Tran, Phong ID - 7572 SN - 0091679X T2 - Methods in Cell Biology TI - Computational analysis of filament polymerization dynamics in cytoskeletal networks VL - 158 ER - TY - JOUR AB - Most bacteria accomplish cell division with the help of a dynamic protein complex called the divisome, which spans the cell envelope in the plane of division. Assembly and activation of this machinery are coordinated by the tubulin-related GTPase FtsZ, which was found to form treadmilling filaments on supported bilayers in vitro1, as well as in live cells, in which filaments circle around the cell division site2,3. Treadmilling of FtsZ is thought to actively move proteins around the division septum, thereby distributing peptidoglycan synthesis and coordinating the inward growth of the septum to form the new poles of the daughter cells4. However, the molecular mechanisms underlying this function are largely unknown. Here, to study how FtsZ polymerization dynamics are coupled to downstream proteins, we reconstituted part of the bacterial cell division machinery using its purified components FtsZ, FtsA and truncated transmembrane proteins essential for cell division. We found that the membrane-bound cytosolic peptides of FtsN and FtsQ co-migrated with treadmilling FtsZ–FtsA filaments, but despite their directed collective behaviour, individual peptides showed random motion and transient confinement. Our work suggests that divisome proteins follow treadmilling FtsZ filaments by a diffusion-and-capture mechanism, which can give rise to a moving zone of signalling activity at the division site. AU - Baranova, Natalia S. AU - Radler, Philipp AU - Hernández-Rocamora, Víctor M. AU - Alfonso, Carlos AU - Lopez Pelegrin, Maria D AU - Rivas, Germán AU - Vollmer, Waldemar AU - Loose, Martin ID - 7387 JF - Nature Microbiology SN - 2058-5276 TI - Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins VL - 5 ER - TY - JOUR AB - Fejes Tóth [3] studied approximations of smooth surfaces in three-space by piecewise flat triangular meshes with a given number of vertices on the surface that are optimal with respect to Hausdorff distance. He proves that this Hausdorff distance decreases inversely proportional with the number of vertices of the approximating mesh if the surface is convex. He also claims that this Hausdorff distance is inversely proportional to the square of the number of vertices for a specific non-convex surface, namely a one-sheeted hyperboloid of revolution bounded by two congruent circles. We refute this claim, and show that the asymptotic behavior of the Hausdorff distance is linear, that is the same as for convex surfaces. AU - Vegter, Gert AU - Wintraecken, Mathijs ID - 8163 IS - 2 JF - Studia Scientiarum Mathematicarum Hungarica SN - 0081-6906 TI - Refutation of a claim made by Fejes Tóth on the accuracy of surface meshes VL - 57 ER - TY - JOUR AB - We study relations between evidence theory and S-approximation spaces. Both theories have their roots in the analysis of Dempsterchr('39')s multivalued mappings and lower and upper probabilities, and have close relations to rough sets. We show that an S-approximation space, satisfying a monotonicity condition, can induce a natural belief structure which is a fundamental block in evidence theory. We also demonstrate that one can induce a natural belief structure on one set, given a belief structure on another set, if the two sets are related by a partial monotone S-approximation space. AU - Shakiba, A. AU - Goharshady, Amir Kafshdar AU - Hooshmandasl, M.R. AU - Alambardar Meybodi, M. ID - 8671 IS - 2 JF - Iranian Journal of Mathematical Sciences and Informatics SN - 1735-4463 TI - A note on belief structures and s-approximation spaces VL - 15 ER - TY - JOUR AB - The strong rate of convergence of the Euler-Maruyama scheme for nondegenerate SDEs with irregular drift coefficients is considered. In the case of α-Hölder drift in the recent literature the rate α/2 was proved in many related situations. By exploiting the regularising effect of the noise more efficiently, we show that the rate is in fact arbitrarily close to 1/2 for all α>0. The result extends to Dini continuous coefficients, while in d=1 also to all bounded measurable coefficients. AU - Dareiotis, Konstantinos AU - Gerencser, Mate ID - 6359 JF - Electronic Journal of Probability TI - On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift VL - 25 ER - TY - THES AB - Deep neural networks have established a new standard for data-dependent feature extraction pipelines in the Computer Vision literature. Despite their remarkable performance in the standard supervised learning scenario, i.e. when models are trained with labeled data and tested on samples that follow a similar distribution, neural networks have been shown to struggle with more advanced generalization abilities, such as transferring knowledge across visually different domains, or generalizing to new unseen combinations of known concepts. In this thesis we argue that, in contrast to the usual black-box behavior of neural networks, leveraging more structured internal representations is a promising direction for tackling such problems. In particular, we focus on two forms of structure. First, we tackle modularity: We show that (i) compositional architectures are a natural tool for modeling reasoning tasks, in that they efficiently capture their combinatorial nature, which is key for generalizing beyond the compositions seen during training. We investigate how to to learn such models, both formally and experimentally, for the task of abstract visual reasoning. Then, we show that (ii) in some settings, modularity allows us to efficiently break down complex tasks into smaller, easier, modules, thereby improving computational efficiency; We study this behavior in the context of generative models for colorization, as well as for small objects detection. Secondly, we investigate the inherently layered structure of representations learned by neural networks, and analyze its role in the context of transfer learning and domain adaptation across visually dissimilar domains. AU - Royer, Amélie ID - 8390 SN - 2663-337X TI - Leveraging structure in Computer Vision tasks for flexible Deep Learning models ER - TY - CONF AB - Numerous methods have been proposed for probabilistic generative modelling of 3D objects. However, none of these is able to produce textured objects, which renders them of limited use for practical tasks. In this work, we present the first generative model of textured 3D meshes. Training such a model would traditionally require a large dataset of textured meshes, but unfortunately, existing datasets of meshes lack detailed textures. We instead propose a new training methodology that allows learning from collections of 2D images without any 3D information. To do so, we train our model to explain a distribution of images by modelling each image as a 3D foreground object placed in front of a 2D background. Thus, it learns to generate meshes that when rendered, produce images similar to those in its training set. A well-known problem when generating meshes with deep networks is the emergence of self-intersections, which are problematic for many use-cases. As a second contribution we therefore introduce a new generation process for 3D meshes that guarantees no self-intersections arise, based on the physical intuition that faces should push one another out of the way as they move. We conduct extensive experiments on our approach, reporting quantitative and qualitative results on both synthetic data and natural images. These show our method successfully learns to generate plausible and diverse textured 3D samples for five challenging object classes. AU - Henderson, Paul M AU - Tsiminaki, Vagia AU - Lampert, Christoph ID - 8186 T2 - Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition TI - Leveraging 2D data to learn textured 3D mesh generation ER - TY - JOUR AB - Earlier, we demonstrated that transcript levels of METAL TOLERANCE PROTEIN2 (MTP2) and of HEAVY METAL ATPase2 (HMA2) increase strongly in roots of Arabidopsis upon prolonged zinc (Zn) deficiency and respond to shoot physiological Zn status, and not to the local Zn status in roots. This provided evidence for shoot-to-root communication in the acclimation of plants to Zn deficiency. Zn-deficient soils limit both the yield and quality of agricultural crops and can result in clinically relevant nutritional Zn deficiency in human populations. Implementing Zn deficiency during cultivation of the model plant Arabidopsis thaliana on agar-solidified media is difficult because trace element contaminations are present in almost all commercially available agars. Here, we demonstrate root morphological acclimations to Zn deficiency on agar-solidified medium following the effective removal of contaminants. These advancements allow reproducible phenotyping toward understanding fundamental plant responses to deficiencies of Zn and other essential trace elements. AU - Sinclair, Scott A AU - Krämer, U. ID - 7416 IS - 1 JF - Plant Signaling & Behavior SN - 1559-2324 TI - Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation VL - 15 ER - TY - JOUR AB - Retrovirus assembly is driven by the multidomain structural protein Gag. Interactions between the capsid domains (CA) of Gag result in Gag multimerization, leading to an immature virus particle that is formed by a protein lattice based on dimeric, trimeric, and hexameric protein contacts. Among retroviruses the inter- and intra-hexamer contacts differ, especially in the N-terminal sub-domain of CA (CANTD). For HIV-1 the cellular molecule inositol hexakisphosphate (IP6) interacts with and stabilizes the immature hexamer, and is required for production of infectious virus particles. We have used in vitro assembly, cryo-electron tomography and subtomogram averaging, atomistic molecular dynamics simulations and mutational analyses to study the HIV-related lentivirus equine infectious anemia virus (EIAV). In particular, we sought to understand the structural conservation of the immature lentivirus lattice and the role of IP6 in EIAV assembly. Similar to HIV-1, IP6 strongly promoted in vitro assembly of EIAV Gag proteins into virus-like particles (VLPs), which took three morphologically highly distinct forms: narrow tubes, wide tubes, and spheres. Structural characterization of these VLPs to sub-4Å resolution unexpectedly showed that all three morphologies are based on an immature lattice with preserved key structural components, highlighting the structural versatility of CA to form immature assemblies. A direct comparison between EIAV and HIV revealed that both lentiviruses maintain similar immature interfaces, which are established by both conserved and non-conserved residues. In both EIAV and HIV-1, IP6 regulates immature assembly via conserved lysine residues within the CACTD and SP. Lastly, we demonstrate that IP6 stimulates in vitro assembly of immature particles of several other retroviruses in the lentivirus genus, suggesting a conserved role for IP6 in lentiviral assembly. AU - Dick, Robert A. AU - Xu, Chaoyi AU - Morado, Dustin R. AU - Kravchuk, Vladyslav AU - Ricana, Clifton L. AU - Lyddon, Terri D. AU - Broad, Arianna M. AU - Feathers, J. Ryan AU - Johnson, Marc C. AU - Vogt, Volker M. AU - Perilla, Juan R. AU - Briggs, John A. G. AU - Schur, Florian KM ID - 7464 IS - 1 JF - PLOS Pathogens SN - 1553-7374 TI - Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly VL - 16 ER - TY - JOUR AB - The fixation probability of a single mutant invading a population of residents is among the most widely-studied quantities in evolutionary dynamics. Amplifiers of natural selection are population structures that increase the fixation probability of advantageous mutants, compared to well-mixed populations. Extensive studies have shown that many amplifiers exist for the Birth-death Moran process, some of them substantially increasing the fixation probability or even guaranteeing fixation in the limit of large population size. On the other hand, no amplifiers are known for the death-Birth Moran process, and computer-assisted exhaustive searches have failed to discover amplification. In this work we resolve this disparity, by showing that any amplification under death-Birth updating is necessarily bounded and transient. Our boundedness result states that even if a population structure does amplify selection, the resulting fixation probability is close to that of the well-mixed population. Our transience result states that for any population structure there exists a threshold r⋆ such that the population structure ceases to amplify selection if the mutant fitness advantage r is larger than r⋆. Finally, we also extend the above results to δ-death-Birth updating, which is a combination of Birth-death and death-Birth updating. On the positive side, we identify population structures that maintain amplification for a wide range of values r and δ. These results demonstrate that amplification of natural selection depends on the specific mechanisms of the evolutionary process. AU - Tkadlec, Josef AU - Pavlogiannis, Andreas AU - Chatterjee, Krishnendu AU - Nowak, Martin A. ID - 7212 JF - PLoS computational biology TI - Limits on amplifiers of natural selection under death-Birth updating VL - 16 ER - TY - THES AB - In this thesis we study certain mathematical aspects of evolution. The two primary forces that drive an evolutionary process are mutation and selection. Mutation generates new variants in a population. Selection chooses among the variants depending on the reproductive rates of individuals. Evolutionary processes are intrinsically random – a new mutation that is initially present in the population at low frequency can go extinct, even if it confers a reproductive advantage. The overall rate of evolution is largely determined by two quantities: the probability that an invading advantageous mutation spreads through the population (called fixation probability) and the time until it does so (called fixation time). Both those quantities crucially depend not only on the strength of the invading mutation but also on the population structure. In this thesis, we aim to understand how the underlying population structure affects the overall rate of evolution. Specifically, we study population structures that increase the fixation probability of advantageous mutants (called amplifiers of selection). Broadly speaking, our results are of three different types: We present various strong amplifiers, we identify regimes under which only limited amplification is feasible, and we propose population structures that provide different tradeoffs between high fixation probability and short fixation time. AU - Tkadlec, Josef ID - 7196 TI - A role of graphs in evolutionary processes ER - TY - CONF AB - The optimization of multilayer neural networks typically leads to a solution with zero training error, yet the landscape can exhibit spurious local minima and the minima can be disconnected. In this paper, we shed light on this phenomenon: we show that the combination of stochastic gradient descent (SGD) and over-parameterization makes the landscape of multilayer neural networks approximately connected and thus more favorable to optimization. More specifically, we prove that SGD solutions are connected via a piecewise linear path, and the increase in loss along this path vanishes as the number of neurons grows large. This result is a consequence of the fact that the parameters found by SGD are increasingly dropout stable as the network becomes wider. We show that, if we remove part of the neurons (and suitably rescale the remaining ones), the change in loss is independent of the total number of neurons, and it depends only on how many neurons are left. Our results exhibit a mild dependence on the input dimension: they are dimension-free for two-layer networks and depend linearly on the dimension for multilayer networks. We validate our theoretical findings with numerical experiments for different architectures and classification tasks. AU - Shevchenko, Alexander AU - Mondelli, Marco ID - 9198 T2 - Proceedings of the 37th International Conference on Machine Learning TI - Landscape connectivity and dropout stability of SGD solutions for over-parameterized neural networks VL - 119 ER - TY - JOUR AB - Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy. AU - Akopyan, Arseniy AU - Edelsbrunner, Herbert ID - 9157 IS - 1 JF - Computational and Mathematical Biophysics SN - 2544-7297 TI - The weighted mean curvature derivative of a space-filling diagram VL - 8 ER - TY - JOUR AB - The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy. AU - Akopyan, Arseniy AU - Edelsbrunner, Herbert ID - 9156 IS - 1 JF - Computational and Mathematical Biophysics SN - 2544-7297 TI - The weighted Gaussian curvature derivative of a space-filling diagram VL - 8 ER - TY - JOUR AB - We consider the symmetric simple exclusion process in Zd with quenched bounded dynamic random conductances and prove its hydrodynamic limit in path space. The main tool is the connection, due to the self-duality of the process, between the invariance principle for single particles starting from all points and the macroscopic behavior of the density field. While the hydrodynamic limit at fixed macroscopic times is obtained via a generalization to the time-inhomogeneous context of the strategy introduced in [41], in order to prove tightness for the sequence of empirical density fields we develop a new criterion based on the notion of uniform conditional stochastic continuity, following [50]. In conclusion, we show that uniform elliptic dynamic conductances provide an example of environments in which the so-called arbitrary starting point invariance principle may be derived from the invariance principle of a single particle starting from the origin. Therefore, our hydrodynamics result applies to the examples of quenched environments considered in, e.g., [1], [3], [6] in combination with the hypothesis of uniform ellipticity. AU - Redig, Frank AU - Saada, Ellen AU - Sau, Federico ID - 8973 JF - Electronic Journal of Probability TI - Symmetric simple exclusion process in dynamic environment: Hydrodynamics VL - 25 ER - TY - JOUR AB - An asymptotic formula is established for the number of rational points of bounded anticanonical height which lie on a certain Zariski dense subset of the biprojective hypersurface x1y21+⋯+x4y24=0 in ℙ3×ℙ3. This confirms the modified Manin conjecture for this variety, in which the removal of a thin set of rational points is allowed. AU - Browning, Timothy D AU - Heath Brown, Roger ID - 179 IS - 16 JF - Duke Mathematical Journal SN - 0012-7094 TI - Density of rational points on a quadric bundle in ℙ3×ℙ3 VL - 169 ER - TY - GEN AB - Data and mathematica notebooks for plotting figures from Language learning with communication between learners AU - Ibsen-Jensen, Rasmus AU - Tkadlec, Josef AU - Chatterjee, Krishnendu AU - Nowak, Martin ID - 9814 TI - Data and mathematica notebooks for plotting figures from language learning with communication between learners from language acquisition with communication between learners ER - TY - JOUR AB - We demonstrate the utility of optical cavity generated spin-squeezed states in free space atomic fountain clocks in ensembles of 390 000 87Rb atoms. Fluorescence imaging, correlated to an initial quantum nondemolition measurement, is used for population spectroscopy after the atoms are released from a confining lattice. For a free fall time of 4 milliseconds, we resolve a single-shot phase sensitivity of 814(61) microradians, which is 5.8(0.6) decibels (dB) below the quantum projection limit. We observe that this squeezing is preserved as the cloud expands to a roughly 200  μm radius and falls roughly 300  μm in free space. Ramsey spectroscopy with 240 000 atoms at a 3.6 ms Ramsey time results in a single-shot fractional frequency stability of 8.4(0.2)×10−12, 3.8(0.2) dB below the quantum projection limit. The sensitivity and stability are limited by the technical noise in the fluorescence detection protocol and the microwave system, respectively. AU - Malia, Benjamin K. AU - Martínez-Rincón, Julián AU - Wu, Yunfan AU - Hosten, Onur AU - Kasevich, Mark A. ID - 8285 IS - 4 JF - Physical Review Letters SN - 0031-9007 TI - Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit VL - 125 ER - TY - CONF AB - The search for biologically faithful synaptic plasticity rules has resulted in a large body of models. They are usually inspired by – and fitted to – experimental data, but they rarely produce neural dynamics that serve complex functions. These failures suggest that current plasticity models are still under-constrained by existing data. Here, we present an alternative approach that uses meta-learning to discover plausible synaptic plasticity rules. Instead of experimental data, the rules are constrained by the functions they implement and the structure they are meant to produce. Briefly, we parameterize synaptic plasticity rules by a Volterra expansion and then use supervised learning methods (gradient descent or evolutionary strategies) to minimize a problem-dependent loss function that quantifies how effectively a candidate plasticity rule transforms an initially random network into one with the desired function. We first validate our approach by re-discovering previously described plasticity rules, starting at the single-neuron level and “Oja’s rule”, a simple Hebbian plasticity rule that captures the direction of most variability of inputs to a neuron (i.e., the first principal component). We expand the problem to the network level and ask the framework to find Oja’s rule together with an anti-Hebbian rule such that an initially random two-layer firing-rate network will recover several principal components of the input space after learning. Next, we move to networks of integrate-and-fire neurons with plastic inhibitory afferents. We train for rules that achieve a target firing rate by countering tuned excitation. Our algorithm discovers a specific subset of the manifold of rules that can solve this task. Our work is a proof of principle of an automated and unbiased approach to unveil synaptic plasticity rules that obey biological constraints and can solve complex functions. AU - Confavreux, Basile J AU - Zenke, Friedemann AU - Agnes, Everton J. AU - Lillicrap, Timothy AU - Vogels, Tim P ID - 9633 SN - 1049-5258 T2 - Advances in Neural Information Processing Systems TI - A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network VL - 33 ER - TY - JOUR AB - The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone salicylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-independent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuticals in plants and provide insights into the molecular mechanism underlying the cellular action of this class of anti-inflammatory compounds. AU - Tan, Shutang AU - Di Donato, Martin AU - Glanc, Matous AU - Zhang, Xixi AU - Klíma, Petr AU - Liu, Jie AU - Bailly, Aurélien AU - Ferro, Noel AU - Petrášek, Jan AU - Geisler, Markus AU - Friml, Jiří ID - 8943 IS - 9 JF - Cell Reports TI - Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development VL - 33 ER - TY - JOUR AB - Pulsating flows through tubular geometries are laminar provided that velocities are moderate. This in particular is also believed to apply to cardiovascular flows where inertial forces are typically too low to sustain turbulence. On the other hand, flow instabilities and fluctuating shear stresses are held responsible for a variety of cardiovascular diseases. Here we report a nonlinear instability mechanism for pulsating pipe flow that gives rise to bursts of turbulence at low flow rates. Geometrical distortions of small, yet finite, amplitude are found to excite a state consisting of helical vortices during flow deceleration. The resulting flow pattern grows rapidly in magnitude, breaks down into turbulence, and eventually returns to laminar when the flow accelerates. This scenario causes shear stress fluctuations and flow reversal during each pulsation cycle. Such unsteady conditions can adversely affect blood vessels and have been shown to promote inflammation and dysfunction of the shear stress-sensitive endothelial cell layer. AU - Xu, Duo AU - Varshney, Atul AU - Ma, Xingyu AU - Song, Baofang AU - Riedl, Michael AU - Avila, Marc AU - Hof, Björn ID - 7932 IS - 21 JF - Proceedings of the National Academy of Sciences of the United States of America SN - 00278424 TI - Nonlinear hydrodynamic instability and turbulence in pulsatile flow VL - 117 ER - TY - JOUR AB - We study the unique solution m of the Dyson equation \( -m(z)^{-1} = z\1 - a + S[m(z)] \) on a von Neumann algebra A with the constraint Imm≥0. Here, z lies in the complex upper half-plane, a is a self-adjoint element of A and S is a positivity-preserving linear operator on A. We show that m is the Stieltjes transform of a compactly supported A-valued measure on R. Under suitable assumptions, we establish that this measure has a uniformly 1/3-Hölder continuous density with respect to the Lebesgue measure, which is supported on finitely many intervals, called bands. In fact, the density is analytic inside the bands with a square-root growth at the edges and internal cubic root cusps whenever the gap between two bands vanishes. The shape of these singularities is universal and no other singularity may occur. We give a precise asymptotic description of m near the singular points. These asymptotics generalize the analysis at the regular edges given in the companion paper on the Tracy-Widom universality for the edge eigenvalue statistics for correlated random matrices [the first author et al., Ann. Probab. 48, No. 2, 963--1001 (2020; Zbl 1434.60017)] and they play a key role in the proof of the Pearcey universality at the cusp for Wigner-type matrices [G. Cipolloni et al., Pure Appl. Anal. 1, No. 4, 615--707 (2019; Zbl 07142203); the second author et al., Commun. Math. Phys. 378, No. 2, 1203--1278 (2020; Zbl 07236118)]. We also extend the finite dimensional band mass formula from [the first author et al., loc. cit.] to the von Neumann algebra setting by showing that the spectral mass of the bands is topologically rigid under deformations and we conclude that these masses are quantized in some important cases. AU - Alt, Johannes AU - Erdös, László AU - Krüger, Torben H ID - 14694 JF - Documenta Mathematica KW - General Mathematics SN - 1431-0635 TI - The Dyson equation with linear self-energy: Spectral bands, edges and cusps VL - 25 ER - TY - THES AB - We present solutions to several problems originating from geometry and discrete mathematics: existence of equipartitions, maps without Tverberg multiple points, and inscribing quadrilaterals. Equivariant obstruction theory is the natural topological approach to these type of questions. However, for the specific problems we consider it had yielded only partial or no results. We get our results by complementing equivariant obstruction theory with other techniques from topology and geometry. AU - Avvakumov, Sergey ID - 8156 SN - 2663-337X TI - Topological methods in geometry and discrete mathematics ER - TY - JOUR AB - We give the first mathematically rigorous justification of the local density approximation in density functional theory. We provide a quantitative estimate on the difference between the grand-canonical Levy–Lieb energy of a given density (the lowest possible energy of all quantum states having this density) and the integral over the uniform electron gas energy of this density. The error involves gradient terms and justifies the use of the local density approximation in the situation where the density is very flat on sufficiently large regions in space. AU - Lewin, Mathieu AU - Lieb, Elliott H. AU - Seiringer, Robert ID - 14891 IS - 1 JF - Pure and Applied Analysis SN - 2578-5893 TI - The local density approximation in density functional theory VL - 2 ER - TY - JOUR AB - Amyotrophic lateral sclerosis (ALS) leads to a loss of specific motor neuron populations in the spinal cord and cortex. Emerging evidence suggests that interneurons may also be affected, but a detailed characterization of interneuron loss and its potential impacts on motor neuron loss and disease progression is lacking. To examine this issue, the fate of V1 inhibitory neurons during ALS was assessed in the ventral spinal cord using the SODG93A mouse model. The V1 population makes up ∼30% of all ventral inhibitory neurons, ∼50% of direct inhibitory synaptic contacts onto motor neuron cell bodies, and is thought to play a key role in modulating motor output, in part through recurrent and reciprocal inhibitory circuits. We find that approximately half of V1 inhibitory neurons are lost in SODG93A mice at late disease stages, but that this loss is delayed relative to the loss of motor neurons and V2a excitatory neurons. We further identify V1 subpopulations based on transcription factor expression that are differentially susceptible to degeneration in SODG93A mice. At an early disease stage, we show that V1 synaptic contacts with motor neuron cell bodies increase, suggesting an upregulation of inhibition before V1 neurons are lost in substantial numbers. These data support a model in which progressive changes in V1 synaptic contacts early in disease, and in select V1 subpopulations at later stages, represent a compensatory upregulation and then deleterious breakdown of specific interneuron circuits within the spinal cord. AU - Salamatina, Alina AU - Yang, Jerry H AU - Brenner-Morton, Susan AU - Bikoff, Jay B AU - Fang, Linjing AU - Kintner, Christopher R AU - Jessell, Thomas M AU - Sweeney, Lora Beatrice Jaeger ID - 8914 JF - Neuroscience SN - 0306-4522 TI - Differential loss of spinal interneurons in a mouse model of ALS VL - 450 ER - TY - DATA AB - This data collection contains the transport data for figures presented in the supplementary material of "Enhancement of Proximity Induced Superconductivity in Planar Germanium" by K. Aggarwal, et. al. The measurements were done using Labber Software and the data is stored in the hdf5 file format. The files can be opened using either the Labber Log Browser (https://labber.org/overview/) or Labber Python API (http://labber.org/online-doc/api/LogFile.html). AU - Katsaros, Georgios ID - 8834 TI - Enhancement of proximity induced superconductivity in planar Germanium ER - TY - DATA AB - Antibiotics that interfere with translation, when combined, interact in diverse and difficult-to-predict ways. Here, we explain these interactions by "translation bottlenecks": points in the translation cycle where antibiotics block ribosomal progression. To elucidate the underlying mechanisms of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using inducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks causes these interactions. We further show that growth laws, combined with drug uptake and binding kinetics, enable the direct prediction of a large fraction of observed interactions, yet fail to predict suppression. However, varying two translation bottlenecks simultaneously supports that dense traffic of ribosomes and competition for translation factors account for the previously unexplained suppression. These results highlight the importance of "continuous epistasis" in bacterial physiology. AU - Kavcic, Bor ID - 8097 KW - Escherichia coli KW - antibiotic combinations KW - translation KW - growth laws KW - drug interactions KW - bacterial physiology KW - translation inhibitors TI - Analysis scripts and research data for the paper "Mechanisms of drug interactions between translation-inhibiting antibiotics" ER - TY - DATA AB - Here are the research data underlying the publication "Estimating inbreeding and its effects in a long-term study of snapdragons (Antirrhinum majus)". Further information are summed up in the README document. The files for this record have been updated and are now found in the linked DOI https://doi.org/10.15479/AT:ISTA:9192. AU - Arathoon, Louise S ID - 8254 TI - Estimating inbreeding and its effects in a long-term study of snapdragons (Antirrhinum majus) ER - TY - JOUR AB - Semiconductor nanowires have been playing a crucial role in the development of nanoscale devices for the realization of spin qubits, Majorana fermions, single photon emitters, nanoprocessors, etc. The monolithic growth of site‐controlled nanowires is a prerequisite toward the next generation of devices that will require addressability and scalability. Here, combining top‐down nanofabrication and bottom‐up self‐assembly, the growth of Ge wires on prepatterned Si (001) substrates with controllable position, distance, length, and structure is reported. This is achieved by a novel growth process that uses a SiGe strain‐relaxation template and can be potentially generalized to other material combinations. Transport measurements show an electrically tunable spin–orbit coupling, with a spin–orbit length similar to that of III–V materials. Also, charge sensing between quantum dots in closely spaced wires is observed, which underlines their potential for the realization of advanced quantum devices. The reported results open a path toward scalable qubit devices using nanowires on silicon. AU - Gao, Fei AU - Wang, Jian-Huan AU - Watzinger, Hannes AU - Hu, Hao AU - Rančić, Marko J. AU - Zhang, Jie-Yin AU - Wang, Ting AU - Yao, Yuan AU - Wang, Gui-Lei AU - Kukucka, Josip AU - Vukušić, Lada AU - Kloeffel, Christoph AU - Loss, Daniel AU - Liu, Feng AU - Katsaros, Georgios AU - Zhang, Jian-Jun ID - 7541 IS - 16 JF - Advanced Materials SN - 0935-9648 TI - Site-controlled uniform Ge/Si hut wires with electrically tunable spin-orbit coupling VL - 32 ER - TY - DATA AB - Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial “growth laws,” which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems. AU - Kavcic, Bor ID - 8930 KW - Escherichia coli KW - antibiotic combinations KW - translation KW - growth laws KW - drug interactions KW - bacterial physiology KW - translation inhibitors TI - Analysis scripts and research data for the paper "Minimal biophysical model of combined antibiotic action" ER - TY - DATA AB - Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions, such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks remains a major challenge. Here, we use a well-defined synthetic gene regulatory network to study how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one gene regulatory network with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Our results demonstrate that changes in local genetic context can place a single transcriptional unit within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual transcriptional units, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of gene regulatory networks. AU - Nagy-Staron, Anna A ID - 8951 KW - Gene regulatory networks KW - Gene expression KW - Escherichia coli KW - Synthetic Biology TI - Sequences of gene regulatory network permutations for the article "Local genetic context shapes the function of a gene regulatory network" ER - TY - DATA AB - Organisms cope with change by employing transcriptional regulators. However, when faced with rare environments, the evolution of transcriptional regulators and their promoters may be too slow. We ask whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. By real-time monitoring of gene copy number mutations in E. coli, we show that gene duplications and amplifications enable adaptation to fluctuating environments by rapidly generating copy number, and hence expression level, polymorphism. This ‘amplification-mediated gene expression tuning’ occurs on timescales similar to canonical gene regulation and can deal with rapid environmental changes. Mathematical modeling shows that amplifications also tune gene expression in stochastic environments where transcription factor-based schemes are hard to evolve or maintain. The fleeting nature of gene amplifications gives rise to a generic population-level mechanism that relies on genetic heterogeneity to rapidly tune expression of any gene, without leaving any genomic signature. AU - Grah, Rok ID - 7383 KW - Matlab scripts KW - analysis of microfluidics KW - mathematical model TI - Matlab scripts for the Paper: Gene Amplification as a Form of Population-Level Gene Expression regulation ER - TY - DATA AU - Katsaros, Georgios ID - 9222 TI - Transport data for: Site‐controlled uniform Ge/Si Hut wires with electrically tunable spin–orbit coupling ER - TY - THES AB - Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at the same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented. In architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly nontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick and high precision estimation of glass panel shape and stress while handling the shape multimodality. Fabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information into the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible. Both of these methods include inverse design tools keeping the user in the design loop. AU - Guseinov, Ruslan ID - 8366 KW - computer-aided design KW - shape modeling KW - self-morphing KW - mechanical engineering SN - 2663-337X TI - Computational design of curved thin shells: From glass façades to programmable matter ER - TY - JOUR AB - Cold bent glass is a promising and cost-efficient method for realizing doubly curved glass facades. They are produced by attaching planar glass sheets to curved frames and require keeping the occurring stress within safe limits. However, it is very challenging to navigate the design space of cold bent glass panels due to the fragility of the material, which impedes the form-finding for practically feasible and aesthetically pleasing cold bent glass facades. We propose an interactive, data-driven approach for designing cold bent glass facades that can be seamlessly integrated into a typical architectural design pipeline. Our method allows non-expert users to interactively edit a parametric surface while providing real-time feedback on the deformed shape and maximum stress of cold bent glass panels. Designs are automatically refined to minimize several fairness criteria while maximal stresses are kept within glass limits. We achieve interactive frame rates by using a differentiable Mixture Density Network trained from more than a million simulations. Given a curved boundary, our regression model is capable of handling multistable configurations and accurately predicting the equilibrium shape of the panel and its corresponding maximal stress. We show predictions are highly accurate and validate our results with a physical realization of a cold bent glass surface. AU - Gavriil, Konstantinos AU - Guseinov, Ruslan AU - Perez Rodriguez, Jesus AU - Pellis, Davide AU - Henderson, Paul M AU - Rist, Florian AU - Pottmann, Helmut AU - Bickel, Bernd ID - 8562 IS - 6 JF - ACM Transactions on Graphics SN - 0730-0301 TI - Computational design of cold bent glass façades VL - 39 ER - TY - JOUR AB - Using inelastic cotunneling spectroscopy we observe a zero field splitting within the spin triplet manifold of Ge hut wire quantum dots. The states with spin ±1 in the confinement direction are energetically favored by up to 55 μeV compared to the spin 0 triplet state because of the strong spin–orbit coupling. The reported effect should be observable in a broad class of strongly confined hole quantum-dot systems and might need to be considered when operating hole spin qubits. AU - Katsaros, Georgios AU - Kukucka, Josip AU - Vukušić, Lada AU - Watzinger, Hannes AU - Gao, Fei AU - Wang, Ting AU - Zhang, Jian-Jun AU - Held, Karsten ID - 8203 IS - 7 JF - Nano Letters SN - 1530-6984 TI - Zero field splitting of heavy-hole states in quantum dots VL - 20 ER - TY - JOUR AB - In vitro work revealed that excitatory synaptic inputs to hippocampal inhibitory interneurons could undergo Hebbian, associative, or non-associative plasticity. Both behavioral and learning-dependent reorganization of these connections has also been demonstrated by measuring spike transmission probabilities in pyramidal cell-interneuron spike cross-correlations that indicate monosynaptic connections. Here we investigated the activity-dependent modification of these connections during exploratory behavior in rats by optogenetically inhibiting pyramidal cell and interneuron subpopulations. Light application and associated firing alteration of pyramidal and interneuron populations led to lasting changes in pyramidal-interneuron connection weights as indicated by spike transmission changes. Spike transmission alterations were predicted by the light-mediated changes in the number of pre- and postsynaptic spike pairing events and by firing rate changes of interneurons but not pyramidal cells. This work demonstrates the presence of activity-dependent associative and non-associative reorganization of pyramidal-interneuron connections triggered by the optogenetic modification of the firing rate and spike synchrony of cells. AU - Gridchyn, Igor AU - Schönenberger, Philipp AU - O'Neill, Joseph AU - Csicsvari, Jozsef L ID - 8740 JF - eLife TI - Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior VL - 9 ER - TY - DATA AB - Supplementary movies showing the following sequences for spatio-temporarily programmed shells: input geometry and actuation time landscape; comparison of morphing processes from a camera recording and a simulation; final actuated shape. AU - Guseinov, Ruslan ID - 8375 TI - Supplementary data for "Computational design of curved thin shells: from glass façades to programmable matter" ER - TY - DATA AB - These are the supplementary research data to the publication "Zero field splitting of heavy-hole states in quantum dots". All matrix files have the same format. Within each column the bias voltage is changed. Each column corresponds to either a different gate voltage or magnetic field. The voltage values are given in mV, the current values in pA. Find a specific description in the included Readme file. AU - Katsaros, Georgios ID - 7689 TI - Supplementary data for "Zero field splitting of heavy-hole states in quantum dots" ER -