TY - CONF
AB - In addition to being correct, a system should be robust, that is, it should behave reasonably even after receiving unexpected inputs. In this paper, we summarize two formal notions of robustness that we have introduced previously for reactive systems. One of the notions is based on assigning costs for failures on a user-provided notion of incorrect transitions in a specification. Here, we define a system to be robust if a finite number of incorrect inputs does not lead to an infinite number of incorrect outputs. We also give a more refined notion of robustness that aims to minimize the ratio of output failures to input failures. The second notion is aimed at liveness. In contrast to the previous notion, it has no concept of recovery from an error. Instead, it compares the ratio of the number of liveness constraints that the system violates to the number of liveness constraints that the environment violates.
AU - Bloem, Roderick
AU - Chatterjee, Krishnendu
AU - Greimel, Karin
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
ID - 3316
T2 - 6th IEEE International Symposium on Industrial and Embedded Systems
TI - Specification-centered robustness
ER -
TY - JOUR
AB - Parvalbumin is thought to act in a manner similar to EGTA, but how a slow Ca2+ buffer affects nanodomain-coupling regimes at GABAergic synapses is unclear. Direct measurements of parvalbumin concentration and paired recordings in rodent hippocampus and cerebellum revealed that parvalbumin affects synaptic dynamics only when expressed at high levels. Modeling suggests that, in high concentrations, parvalbumin may exert BAPTA-like effects, modulating nanodomain coupling via competition with local saturation of endogenous fixed buffers.
AU - Eggermann, Emmanuel
AU - Jonas, Peter M
ID - 3318
JF - Nature Neuroscience
TI - How the “slow” Ca(2+) buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses
VL - 15
ER -
TY - JOUR
AB - Powerful statistical models that can be learned efficiently from large amounts of data are currently revolutionizing computer vision. These models possess a rich internal structure reflecting task-specific relations and constraints. This monograph introduces the reader to the most popular classes of structured models in computer vision. Our focus is discrete undirected graphical models which we cover in detail together with a description of algorithms for both probabilistic inference and maximum a posteriori inference. We discuss separately recently successful techniques for prediction in general structured models. In the second part of this monograph we describe methods for parameter learning where we distinguish the classic maximum likelihood based methods from the more recent prediction-based parameter learning methods. We highlight developments to enhance current models and discuss kernelized models and latent variable models. To make the monograph more practical and to provide links to further study we provide examples of successful application of many methods in the computer vision literature.
AU - Nowozin, Sebastian
AU - Lampert, Christoph
ID - 3320
IS - 3-4
JF - Foundations and Trends in Computer Graphics and Vision
TI - Structured learning and prediction in computer vision
VL - 6
ER -
TY - CONF
AB - Automated termination provers often use the following schema to prove that a program terminates: construct a relational abstraction of the program's transition relation and then show that the relational abstraction is well-founded. The focus of current tools has been on developing sophisticated techniques for constructing the abstractions while relying on known decidable logics (such as linear arithmetic) to express them. We believe we can significantly increase the class of programs that are amenable to automated termination proofs by identifying more expressive decidable logics for reasoning about well-founded relations. We therefore present a new decision procedure for reasoning about multiset orderings, which are among the most powerful orderings used to prove termination. We show that, using our decision procedure, one can automatically prove termination of natural abstractions of programs.
AU - Piskac, Ruzica
AU - Wies, Thomas
ED - Jhala, Ranjit
ED - Schmidt, David
ID - 3324
TI - Decision procedures for automating termination proofs
VL - 6538
ER -
TY - CONF
AB - Weighted automata map input words to numerical values. Ap- plications of weighted automata include formal verification of quantitative properties, as well as text, speech, and image processing. A weighted au- tomaton is defined with respect to a semiring. For the tropical semiring, the weight of a run is the sum of the weights of the transitions taken along the run, and the value of a word is the minimal weight of an accepting run on it. In the 90’s, Krob studied the decidability of problems on rational series defined with respect to the tropical semiring. Rational series are strongly related to weighted automata, and Krob’s results apply to them. In par- ticular, it follows from Krob’s results that the universality problem (that is, deciding whether the values of all words are below some threshold) is decidable for weighted automata defined with respect to the tropical semir- ing with domain ∪ {∞}, and that the equality problem is undecidable when the domain is ∪ {∞}. In this paper we continue the study of the borders of decidability in weighted automata, describe alternative and direct proofs of the above results, and tighten them further. Unlike the proofs of Krob, which are algebraic in their nature, our proofs stay in the terrain of state machines, and the reduction is from the halting problem of a two-counter machine. This enables us to significantly simplify Krob’s reasoning, make the un- decidability result accessible to the automata-theoretic community, and strengthen it to apply already to a very simple class of automata: all the states are accepting, there are no initial nor final weights, and all the weights on the transitions are from the set {−1, 0, 1}. The fact we work directly with the automata enables us to tighten also the decidability re- sults and to show that the universality problem for weighted automata defined with respect to the tropical semiring with domain ∪ {∞}, and in fact even with domain ≥0 ∪ {∞}, is PSPACE-complete. Our results thus draw a sharper picture about the decidability of decision problems for weighted automata, in both the front of containment vs. universality and the front of the ∪ {∞} vs. the ∪ {∞} domains.
AU - Almagor, Shaull
AU - Boker, Udi
AU - Kupferman, Orna
ID - 3326
TI - What’s decidable about weighted automata
VL - 6996
ER -