TY - CONF AB - Balanced search trees typically use key comparisons to guide their operations, and achieve logarithmic running time. By relying on numerical properties of the keys, interpolation search achieves lower search complexity and better performance. Although interpolation-based data structures were investigated in the past, their non-blocking concurrent variants have received very little attention so far. In this paper, we propose the first non-blocking implementation of the classic interpolation search tree (IST) data structure. For arbitrary key distributions, the data structure ensures worst-case O(log n + p) amortized time for search, insertion and deletion traversals. When the input key distributions are smooth, lookups run in expected O(log log n + p) time, and insertion and deletion run in expected amortized O(log log n + p) time, where p is a bound on the number of threads. To improve the scalability of concurrent insertion and deletion, we propose a novel parallel rebuilding technique, which should be of independent interest. We evaluate whether the theoretical improvements translate to practice by implementing the concurrent interpolation search tree, and benchmarking it on uniform and nonuniform key distributions, for dataset sizes in the millions to billions of keys. Relative to the state-of-the-art concurrent data structures, the concurrent interpolation search tree achieves performance improvements of up to 15% under high update rates, and of up to 50% under moderate update rates. Further, ISTs exhibit up to 2X less cache-misses, and consume 1.2 -- 2.6X less memory compared to the next best alternative on typical dataset sizes. We find that the results are surprisingly robust to distributional skew, which suggests that our data structure can be a promising alternative to classic concurrent search structures. AU - Brown, Trevor A AU - Prokopec, Aleksandar AU - Alistarh, Dan-Adrian ID - 7636 SN - 9781450368186 T2 - Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming TI - Non-blocking interpolation search trees with doubly-logarithmic running time ER - TY - JOUR AB - We present a method for animating yarn-level cloth effects using a thin-shell solver. We accomplish this through numerical homogenization: we first use a large number of yarn-level simulations to build a model of the potential energy density of the cloth, and then use this energy density function to compute forces in a thin shell simulator. We model several yarn-based materials, including both woven and knitted fabrics. Our model faithfully reproduces expected effects like the stiffness of woven fabrics, and the highly deformable nature and anisotropy of knitted fabrics. Our approach does not require any real-world experiments nor measurements; because the method is based entirely on simulations, it can generate entirely new material models quickly, without the need for testing apparatuses or human intervention. We provide data-driven models of several woven and knitted fabrics, which can be used for efficient simulation with an off-the-shelf cloth solver. AU - Sperl, Georg AU - Narain, Rahul AU - Wojtan, Christopher J ID - 8385 IS - 4 JF - ACM Transactions on Graphics SN - 07300301 TI - Homogenized yarn-level cloth VL - 39 ER - TY - JOUR AB - When short-range attractions are combined with long-range repulsions in colloidal particle systems, complex microphases can emerge. Here, we study a system of isotropic particles, which can form lamellar structures or a disordered fluid phase when temperature is varied. We show that, at equilibrium, the lamellar structure crystallizes, while out of equilibrium, the system forms a variety of structures at different shear rates and temperatures above melting. The shear-induced ordering is analyzed by means of principal component analysis and artificial neural networks, which are applied to data of reduced dimensionality. Our results reveal the possibility of inducing ordering by shear, potentially providing a feasible route to the fabrication of ordered lamellar structures from isotropic particles. AU - Pȩkalski, J. AU - Rzadkowski, Wojciech AU - Panagiotopoulos, A. Z. ID - 7956 IS - 20 JF - The Journal of chemical physics TI - Shear-induced ordering in systems with competing interactions: A machine learning study VL - 152 ER - TY - CONF AB - We present the first deterministic wait-free long-lived snapshot algorithm, using only read and write operations, that guarantees polylogarithmic amortized step complexity in all executions. This is the first non-blocking snapshot algorithm, using reads and writes only, that has sub-linear amortized step complexity in executions of arbitrary length. The key to our construction is a novel implementation of a 2-component max array object which may be of independent interest. AU - Baig, Mirza Ahad AU - Hendler, Danny AU - Milani, Alessia AU - Travers, Corentin ID - 8382 SN - 9781450375825 T2 - Proceedings of the 39th Symposium on Principles of Distributed Computing TI - Long-lived snapshots with polylogarithmic amortized step complexity ER - TY - JOUR AB - In the superconducting regime of FeTe(1−x)Sex, there exist two types of vortices which are distinguished by the presence or absence of zero-energy states in their core. To understand their origin, we examine the interplay of Zeeman coupling and superconducting pairings in three-dimensional metals with band inversion. Weak Zeeman fields are found to suppress intraorbital spin-singlet pairing, known to localize the states at the ends of the vortices on the surface. On the other hand, an orbital-triplet pairing is shown to be stable against Zeeman interactions, but leads to delocalized zero-energy Majorana modes which extend through the vortex. In contrast, the finite-energy vortex modes remain localized at the vortex ends even when the pairing is of orbital-triplet form. Phenomenologically, this manifests as an observed disappearance of zero-bias peaks within the cores of topological vortices upon an increase of the applied magnetic field. The presence of magnetic impurities in FeTe(1−x)Sex, which are attracted to the vortices, would lead to such Zeeman-induced delocalization of Majorana modes in a fraction of vortices that capture a large enough number of magnetic impurities. Our results provide an explanation for the dichotomy between topological and nontopological vortices recently observed in FeTe(1−x)Sex. AU - Ghazaryan, Areg AU - Lopes, P. L.S. AU - Hosur, Pavan AU - Gilbert, Matthew J. AU - Ghaemi, Pouyan ID - 7428 IS - 2 JF - Physical Review B SN - 24699950 TI - Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors VL - 101 ER -