TY - GEN AB - This dataset comprises all data shown in the figures of the submitted article "Surpassing the resistance quantum with a geometric superinductor". Additional raw data are available from the corresponding author on reasonable request. AU - Peruzzo, Matilda AU - Trioni, Andrea AU - Hassani, Farid AU - Zemlicka, Martin AU - Fink, Johannes M ID - 13070 TI - Surpassing the resistance quantum with a geometric superinductor ER - TY - JOUR AB - Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets. AU - Nicolai, Leo AU - Schiefelbein, Karin AU - Lipsky, Silvia AU - Leunig, Alexander AU - Hoffknecht, Marie AU - Pekayvaz, Kami AU - Raude, Ben AU - Marx, Charlotte AU - Ehrlich, Andreas AU - Pircher, Joachim AU - Zhang, Zhe AU - Saleh, Inas AU - Marel, Anna-Kristina AU - Löf, Achim AU - Petzold, Tobias AU - Lorenz, Michael AU - Stark, Konstantin AU - Pick, Robert AU - Rosenberger, Gerhild AU - Weckbach, Ludwig AU - Uhl, Bernd AU - Xia, Sheng AU - Reichel, Christoph Andreas AU - Walzog, Barbara AU - Schulz, Christian AU - Zheden, Vanessa AU - Bender, Markus AU - Li, Rong AU - Massberg, Steffen AU - Gärtner, Florian R ID - 8787 JF - Nature Communications TI - Vascular surveillance by haptotactic blood platelets in inflammation and infection VL - 11 ER - TY - JOUR AB - Cooperation is a ubiquitous and beneficial behavioural trait despite being prone to exploitation by free-riders. Hence, cooperative populations are prone to invasions by selfish individuals. However, a population consisting of only free-riders typically does not survive. Thus, cooperators and free-riders often coexist in some proportion. An evolutionary version of a Snowdrift Game proved its efficiency in analysing this phenomenon. However, what if the system has already reached its stable state but was perturbed due to a change in environmental conditions? Then, individuals may have to re-learn their effective strategies. To address this, we consider behavioural mistakes in strategic choice execution, which we refer to as incompetence. Parametrising the propensity to make such mistakes allows for a mathematical description of learning. We compare strategies based on their relative strategic advantage relying on both fitness and learning factors. When strategies are learned at distinct rates, allowing learning according to a prescribed order is optimal. Interestingly, the strategy with the lowest strategic advantage should be learnt first if we are to optimise fitness over the learning path. Then, the differences between strategies are balanced out in order to minimise the effect of behavioural uncertainty. AU - Kleshnina, Maria AU - Streipert, Sabrina AU - Filar, Jerzy AU - Chatterjee, Krishnendu ID - 8789 IS - 11 JF - Mathematics TI - Prioritised learning in snowdrift-type games VL - 8 ER - TY - CONF AB - Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this paper, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks. AU - Bogomolov, Sergiy AU - Forets, Marcelo AU - Frehse, Goran AU - Potomkin, Kostiantyn AU - Schilling, Christian ID - 8287 KW - reachability KW - hybrid systems KW - decomposition T2 - Proceedings of the International Conference on Embedded Software TI - Reachability analysis of linear hybrid systems via block decomposition ER - TY - JOUR AB - Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this article, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks. AU - Bogomolov, Sergiy AU - Forets, Marcelo AU - Frehse, Goran AU - Potomkin, Kostiantyn AU - Schilling, Christian ID - 8790 IS - 11 JF - IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems SN - 02780070 TI - Reachability analysis of linear hybrid systems via block decomposition VL - 39 ER -