TY - JOUR AB - The analogy between an equilibrium partition function and the return probability in many-body unitary dynamics has led to the concept of dynamical quantum phase transition (DQPT). DQPTs are defined by nonanalyticities in the return amplitude and are present in many models. In some cases, DQPTs can be related to equilibrium concepts, such as order parameters, yet their universal description is an open question. In this Letter, we provide first steps toward a classification of DQPTs by using a matrix product state description of unitary dynamics in the thermodynamic limit. This allows us to distinguish the two limiting cases of “precession” and “entanglement” DQPTs, which are illustrated using an analytical description in the quantum Ising model. While precession DQPTs are characterized by a large entanglement gap and are semiclassical in their nature, entanglement DQPTs occur near avoided crossings in the entanglement spectrum and can be distinguished by a complex pattern of nonlocal correlations. We demonstrate the existence of precession and entanglement DQPTs beyond Ising models, discuss observables that can distinguish them, and relate their interplay to complex DQPT phenomenology. AU - De Nicola, Stefano AU - Michailidis, Alexios AU - Serbyn, Maksym ID - 9048 IS - 4 JF - Physical Review Letters KW - General Physics and Astronomy SN - 0031-9007 TI - Entanglement view of dynamical quantum phase transitions VL - 126 ER - TY - JOUR AB - The quality control system for messenger RNA (mRNA) is fundamental for cellular activities in eukaryotes. To elucidate the molecular mechanism of 3'-Phosphoinositide-Dependent Protein Kinase1 (PDK1), a master regulator that is essential throughout eukaryotic growth and development, we employed a forward genetic approach to screen for suppressors of the loss-of-function T-DNA insertion double mutant pdk1.1 pdk1.2 in Arabidopsis thaliana. Notably, the severe growth attenuation of pdk1.1 pdk1.2 was rescued by sop21 (suppressor of pdk1.1 pdk1.2), which harbours a loss-of-function mutation in PELOTA1 (PEL1). PEL1 is a homologue of mammalian PELOTA and yeast (Saccharomyces cerevisiae) DOM34p, which each form a heterodimeric complex with the GTPase HBS1 (HSP70 SUBFAMILY B SUPPRESSOR1, also called SUPERKILLER PROTEIN7, SKI7), a protein that is responsible for ribosomal rescue and thereby assures the quality and fidelity of mRNA molecules during translation. Genetic analysis further revealed that a dysfunctional PEL1-HBS1 complex failed to degrade the T-DNA-disrupted PDK1 transcripts, which were truncated but functional, and thus rescued the growth and developmental defects of pdk1.1 pdk1.2. Our studies demonstrated the functionality of a homologous PELOTA-HBS1 complex and identified its essential regulatory role in plants, providing insights into the mechanism of mRNA quality control. AU - Kong, W AU - Tan, Shutang AU - Zhao, Q AU - Lin, DL AU - Xu, ZH AU - Friml, Jiří AU - Xue, HW ID - 9368 IS - 4 JF - Plant Physiology SN - 0032-0889 TI - mRNA surveillance complex PELOTA-HBS1 eegulates phosphoinositide-sependent protein kinase1 and plant growth VL - 186 ER - TY - JOUR AB - A tight frame is the orthogonal projection of some orthonormal basis of Rn onto Rk. We show that a set of vectors is a tight frame if and only if the set of all cross products of these vectors is a tight frame. We reformulate a range of problems on the volume of projections (or sections) of regular polytopes in terms of tight frames and write a first-order necessary condition for local extrema of these problems. As applications, we prove new results for the problem of maximization of the volume of zonotopes. AU - Ivanov, Grigory ID - 10860 IS - 4 JF - Canadian Mathematical Bulletin KW - General Mathematics KW - Tight frame KW - Grassmannian KW - zonotope SN - 0008-4395 TI - Tight frames and related geometric problems VL - 64 ER - TY - JOUR AB - Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development. AU - Glanc, Matous AU - Van Gelderen, K AU - Hörmayer, Lukas AU - Tan, Shutang AU - Naramoto, S AU - Zhang, Xixi AU - Domjan, David AU - Vcelarova, L AU - Hauschild, Robert AU - Johnson, Alexander J AU - de Koning, E AU - van Dop, M AU - Rademacher, E AU - Janson, S AU - Wei, X AU - Molnar, Gergely AU - Fendrych, Matyas AU - De Rybel, B AU - Offringa, R AU - Friml, Jiří ID - 9290 IS - 9 JF - Current Biology SN - 0960-9822 TI - AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells VL - 31 ER - TY - JOUR AB - Plants are able to orient their growth according to gravity, which ultimately controls both shoot and root architecture.1 Gravitropism is a dynamic process whereby gravistimulation induces the asymmetric distribution of the plant hormone auxin, leading to asymmetric growth, organ bending, and subsequent reset of auxin distribution back to the original pre-gravistimulation situation.1, 2, 3 Differential auxin accumulation during the gravitropic response depends on the activity of polarly localized PIN-FORMED (PIN) auxin-efflux carriers.1, 2, 3, 4 In particular, the timing of this dynamic response is regulated by PIN2,5,6 but the underlying molecular mechanisms are poorly understood. Here, we show that MEMBRANE ASSOCIATED KINASE REGULATOR2 (MAKR2) controls the pace of the root gravitropic response. We found that MAKR2 is required for the PIN2 asymmetry during gravitropism by acting as a negative regulator of the cell-surface signaling mediated by the receptor-like kinase TRANSMEMBRANE KINASE1 (TMK1).2,7, 8, 9, 10 Furthermore, we show that the MAKR2 inhibitory effect on TMK1 signaling is antagonized by auxin itself, which triggers rapid MAKR2 membrane dissociation in a TMK1-dependent manner. Our findings suggest that the timing of the root gravitropic response is orchestrated by the reversible inhibition of the TMK1 signaling pathway at the cell surface. AU - Marquès-Bueno, MM AU - Armengot, L AU - Noack, LC AU - Bareille, J AU - Rodriguez Solovey, Lesia AU - Platre, MP AU - Bayle, V AU - Liu, M AU - Opdenacker, D AU - Vanneste, S AU - Möller, BK AU - Nimchuk, ZL AU - Beeckman, T AU - Caño-Delgado, AI AU - Friml, Jiří AU - Jaillais, Y ID - 8824 IS - 1 JF - Current Biology SN - 0960-9822 TI - Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism VL - 31 ER -