TY - JOUR
AB - We present DILS, a deployable statistical analysis platform for conducting demographic inferences with linked selection from population genomic data using an Approximate Bayesian Computation framework. DILS takes as input single‐population or two‐population data sets (multilocus fasta sequences) and performs three types of analyses in a hierarchical manner, identifying: (a) the best demographic model to study the importance of gene flow and population size change on the genetic patterns of polymorphism and divergence, (b) the best genomic model to determine whether the effective size Ne and migration rate N, m are heterogeneously distributed along the genome (implying linked selection) and (c) loci in genomic regions most associated with barriers to gene flow. Also available via a Web interface, an objective of DILS is to facilitate collaborative research in speciation genomics. Here, we show the performance and limitations of DILS by using simulations and finally apply the method to published data on a divergence continuum composed by 28 pairs of Mytilus mussel populations/species.
AU - Fraisse, Christelle
AU - Popovic, Iva
AU - Mazoyer, Clément
AU - Spataro, Bruno
AU - Delmotte, Stéphane
AU - Romiguier, Jonathan
AU - Loire, Étienne
AU - Simon, Alexis
AU - Galtier, Nicolas
AU - Duret, Laurent
AU - Bierne, Nicolas
AU - Vekemans, Xavier
AU - Roux, Camille
ID - 9119
JF - Molecular Ecology Resources
SN - 1755098X
TI - DILS: Demographic inferences with linked selection by using ABC
ER -
TY - JOUR
AB - We show that the energy gap for the BCS gap equation is
Ξ=μ(8e−2+o(1))exp(π2μ−−√a)
in the low density limit μ→0. Together with the similar result for the critical temperature by Hainzl and Seiringer (Lett Math Phys 84: 99–107, 2008), this shows that, in the low density limit, the ratio of the energy gap and critical temperature is a universal constant independent of the interaction potential V. The results hold for a class of potentials with negative scattering length a and no bound states.
AU - Lauritsen, Asbjørn Bækgaard
ID - 9121
JF - Letters in Mathematical Physics
KW - Mathematical Physics
KW - Statistical and Nonlinear Physics
SN - 0377-9017
TI - The BCS energy gap at low density
VL - 111
ER -
TY - JOUR
AB - While several tools have been developed to study the ground state of many-body quantum spin systems, the limitations of existing techniques call for the exploration of new approaches. In this manuscript we develop an alternative analytical and numerical framework for many-body quantum spin ground states, based on the disentanglement formalism. In this approach, observables are exactly expressed as Gaussian-weighted functional integrals over scalar fields. We identify the leading contribution to these integrals, given by the saddle point of a suitable effective action. Analytically, we develop a field-theoretical expansion of the functional integrals, performed by means of appropriate Feynman rules. The expansion can be truncated to a desired order to obtain analytical approximations to observables. Numerically, we show that the disentanglement approach can be used to compute ground state expectation values from classical stochastic processes. While the associated fluctuations grow exponentially with imaginary time and the system size, this growth can be mitigated by means of an importance sampling scheme based on knowledge of the saddle point configuration. We illustrate the advantages and limitations of our methods by considering the quantum Ising model in 1, 2 and 3 spatial dimensions. Our analytical and numerical approaches are applicable to a broad class of systems, bridging concepts from quantum lattice models, continuum field theory, and classical stochastic processes.
AU - De Nicola, Stefano
ID - 9158
IS - 1
JF - Journal of Statistical Mechanics: Theory and Experiment
KW - Statistics
KW - Probability and Uncertainty
KW - Statistics and Probability
KW - Statistical and Nonlinear Physics
SN - 1742-5468
TI - Disentanglement approach to quantum spin ground states: Field theory and stochastic simulation
VL - 2021
ER -
TY - JOUR
AB - We show that Hilbert schemes of points on supersingular Enriques surface in characteristic 2, Hilbn(X), for n ≥ 2 are simply connected, symplectic varieties but are not irreducible symplectic as the hodge number h2,0 > 1, even though a supersingular Enriques surface is an irreducible symplectic variety. These are the classes of varieties which appear only in characteristic 2 and they show that the hodge number formula for G¨ottsche-Soergel does not hold over haracteristic 2. It also gives examples of varieties with trivial canonical class which are neither irreducible symplectic nor Calabi-Yau, thereby showing that there are strictly more classes of simply connected varieties with trivial canonical class in characteristic 2 than over C as given by Beauville-Bogolomov decomposition theorem.
AU - Srivastava, Tanya K
ID - 9173
IS - 03
JF - Bulletin des Sciences Mathematiques
SN - 0007-4497
TI - Pathologies of the Hilbert scheme of points of a supersingular Enriques surface
VL - 167
ER -
TY - GEN
AB - We associate a certain tensor product lattice to any primitive integer lattice and ask about its typical shape. These lattices are related to the tangent bundle of Grassmannians and their study is motivated by Peyre's programme on "freeness" for rational points of bounded height on Fano
varieties.
AU - Browning, Timothy D
AU - Horesh, Tal
AU - Wilsch, Florian Alexander
ID - 9199
T2 - arXiv
TI - Equidistribution and freeness on Grassmannians
ER -
TY - JOUR
AB - Cryo-EM grid preparation is an important bottleneck in protein structure determination, especially for membrane proteins, typically requiring screening of a large number of conditions. We systematically investigated the effects of buffer components, blotting conditions and grid types on the outcome of grid preparation of five different membrane protein samples. Aggregation was the most common type of problem which was addressed by changing detergents, salt concentration or reconstitution of proteins into nanodiscs or amphipols. We show that the optimal concentration of detergent is between 0.05 and 0.4% and that the presence of a low concentration of detergent with a high critical micellar concentration protects the proteins from denaturation at the air-water interface. Furthermore, we discuss the strategies for achieving an adequate ice thickness, particle coverage and orientation distribution on free ice and on support films. Our findings provide a clear roadmap for comprehensive screening of conditions for cryo-EM grid preparation of membrane proteins.
AU - Kampjut, Domen
AU - Steiner, Julia
AU - Sazanov, Leonid A
ID - 9205
IS - 3
JF - iScience
TI - Cryo-EM grid optimization for membrane proteins
VL - 24
ER -
TY - JOUR
AB - The precise engineering of thermoelectric materials using nanocrystals as their building blocks has proven to be an excellent strategy to increase energy conversion efficiency. Here we present a synthetic route to produce Sb-doped PbS colloidal nanoparticles. These nanoparticles are then consolidated into nanocrystalline PbS:Sb using spark plasma sintering. We demonstrate that the introduction of Sb significantly influences the size, geometry, crystal lattice and especially the carrier concentration of PbS. The increase of charge carrier concentration achieved with the introduction of Sb translates into an increase of the electrical and thermal conductivities and a decrease of the Seebeck coefficient. Overall, PbS:Sb nanomaterial were characterized by two-fold higher thermoelectric figures of merit than undoped PbS.
AU - Cadavid, Doris
AU - Wei, Kaya
AU - Liu, Yu
AU - Zhang, Yu
AU - Li, Mengyao
AU - Genç, Aziz
AU - Berestok, Taisiia
AU - Ibáñez, Maria
AU - Shavel, Alexey
AU - Nolas, George S.
AU - Cabot, Andreu
ID - 9206
IS - 4
JF - Materials
TI - Synthesis, bottom up assembly and thermoelectric properties of Sb-doped PbS nanocrystal building blocks
VL - 14
ER -
TY - CONF
AB - We propose a novel hybridization method for stability analysis that over-approximates nonlinear dynamical systems by switched systems with linear inclusion dynamics. We observe that existing hybridization techniques for safety analysis that over-approximate nonlinear dynamical systems by switched affine inclusion dynamics and provide fixed approximation error, do not suffice for stability analysis. Hence, we propose a hybridization method that provides a state-dependent error which converges to zero as the state tends to the equilibrium point. The crux of our hybridization computation is an elegant recursive algorithm that uses partial derivatives of a given function to obtain upper and lower bound matrices for the over-approximating linear inclusion. We illustrate our method on some examples to demonstrate the application of the theory for stability analysis. In particular, our method is able to establish stability of a nonlinear system which does not admit a polynomial Lyapunov function.
AU - Garcia Soto, Miriam
AU - Prabhakar, Pavithra
ID - 9202
T2 - 2020 IEEE Real-Time Systems Symposium
TI - Hybridization for stability verification of nonlinear switched systems
ER -
TY - JOUR
AB - The Landau–Pekar equations describe the dynamics of a strongly coupled polaron.
Here, we provide a class of initial data for which the associated effective Hamiltonian
has a uniform spectral gap for all times. For such initial data, this allows us to extend the
results on the adiabatic theorem for the Landau–Pekar equations and their derivation
from the Fröhlich model obtained in previous works to larger times.
AU - Feliciangeli, Dario
AU - Rademacher, Simone Anna Elvira
AU - Seiringer, Robert
ID - 9225
JF - Letters in Mathematical Physics
SN - 03779017
TI - Persistence of the spectral gap for the Landau–Pekar equations
VL - 111
ER -
TY - GEN
AB - We consider a model of the Riemann zeta function on the critical axis and study its maximum over intervals of length (log T)θ, where θ is either fixed or tends to zero at a suitable rate.
It is shown that the deterministic level of the maximum interpolates smoothly between the ones
of log-correlated variables and of i.i.d. random variables, exhibiting a smooth transition ‘from
3/4 to 1/4’ in the second order. This provides a natural context where extreme value statistics of
log-correlated variables with time-dependent variance and rate occur. A key ingredient of the
proof is a precise upper tail tightness estimate for the maximum of the model on intervals of
size one, that includes a Gaussian correction. This correction is expected to be present for the
Riemann zeta function and pertains to the question of the correct order of the maximum of
the zeta function in large intervals.
AU - Arguin, Louis-Pierre
AU - Dubach, Guillaume
AU - Hartung, Lisa
ID - 9230
T2 - arXiv
TI - Maxima of a random model of the Riemann zeta function over intervals of varying length
ER -
TY - JOUR
AB - Genomic imprinting is an epigenetic mechanism that results in parental allele-specific expression of ~1% of all genes in mouse and human. Imprinted genes are key developmental regulators and play pivotal roles in many biological processes such as nutrient transfer from the mother to offspring and neuronal development. Imprinted genes are also involved in human disease, including neurodevelopmental disorders, and often occur in clusters that are regulated by a common imprint control region (ICR). In extra-embryonic tissues ICRs can act over large distances, with the largest surrounding Igf2r spanning over 10 million base-pairs. Besides classical imprinted expression that shows near exclusive maternal or paternal expression, widespread biased imprinted expression has been identified mainly in brain. In this review we discuss recent developments mapping cell type specific imprinted expression in extra-embryonic tissues and neocortex in the mouse. We highlight the advantages of using an inducible uniparental chromosome disomy (UPD) system to generate cells carrying either two maternal or two paternal copies of a specific chromosome to analyze the functional consequences of genomic imprinting. Mosaic Analysis with Double Markers (MADM) allows fluorescent labeling and concomitant induction of UPD sparsely in specific cell types, and thus to over-express or suppress all imprinted genes on that chromosome. To illustrate the utility of this technique, we explain how MADM-induced UPD revealed new insights about the function of the well-studied Cdkn1c imprinted gene, and how MADM-induced UPDs led to identification of highly cell type specific phenotypes related to perturbed imprinted expression in the mouse neocortex. Finally, we give an outlook on how MADM could be used to probe cell type specific imprinted expression in other tissues in mouse, particularly in extra-embryonic tissues.
AU - Pauler, Florian
AU - Hudson, Quanah
AU - Laukoter, Susanne
AU - Hippenmeyer, Simon
ID - 9188
IS - 5
JF - Neurochemistry International
KW - Cell Biology
KW - Cellular and Molecular Neuroscience
SN - 0197-0186
TI - Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond
VL - 145
ER -
TY - JOUR
AB - Cesium lead halides have intrinsically unstable crystal lattices and easily transform within perovskite and nonperovskite structures. In this work, we explore the conversion of the perovskite CsPbBr3 into Cs4PbBr6 in the presence of PbS at 450 °C to produce doped nanocrystal-based composites with embedded Cs4PbBr6 nanoprecipitates. We show that PbBr2 is extracted from CsPbBr3 and diffuses into the PbS lattice with a consequent increase in the concentration of free charge carriers. This new doping strategy enables the adjustment of the density of charge carriers between 1019 and 1020 cm–3, and it may serve as a general strategy for doping other nanocrystal-based semiconductors.
AU - Calcabrini, Mariano
AU - Genc, Aziz
AU - Liu, Yu
AU - Kleinhanns, Tobias
AU - Lee, Seungho
AU - Dirin, Dmitry N.
AU - Akkerman, Quinten A.
AU - Kovalenko, Maksym V.
AU - Arbiol, Jordi
AU - Ibáñez, Maria
ID - 9118
IS - 2
JF - ACS Energy Letters
TI - Exploiting the lability of metal halide perovskites for doping semiconductor nanocomposites
VL - 6
ER -
TY - JOUR
AB - In this paper, we present two new inertial projection-type methods for solving multivalued variational inequality problems in finite-dimensional spaces. We establish the convergence of the sequence generated by these methods when the multivalued mapping associated with the problem is only required to be locally bounded without any monotonicity assumption. Furthermore, the inertial techniques that we employ in this paper are quite different from the ones used in most papers. Moreover, based on the weaker assumptions on the inertial factor in our methods, we derive several special cases of our methods. Finally, we present some experimental results to illustrate the profits that we gain by introducing the inertial extrapolation steps.
AU - Izuchukwu, Chinedu
AU - Shehu, Yekini
ID - 9234
JF - Networks and Spatial Economics
KW - Computer Networks and Communications
KW - Software
KW - Artificial Intelligence
SN - 1566-113X
TI - New inertial projection methods for solving multivalued variational inequality problems beyond monotonicity
ER -
TY - JOUR
AB - We consider the Fröhlich polaron model in the strong coupling limit. It is well‐known that to leading order the ground state energy is given by the (classical) Pekar energy. In this work, we establish the subleading correction, describing quantum fluctuation about the classical limit. Our proof applies to a model of a confined polaron, where both the electron and the polarization field are restricted to a set of finite volume, with linear size determined by the natural length scale of the Pekar problem.
AU - Frank, Rupert
AU - Seiringer, Robert
ID - 8603
IS - 3
JF - Communications on Pure and Applied Mathematics
SN - 00103640
TI - Quantum corrections to the Pekar asymptotics of a strongly coupled polaron
VL - 74
ER -
TY - JOUR
AB - This paper is concerned with a non-isothermal Cahn-Hilliard model based on a microforce balance. The model was derived by A. Miranville and G. Schimperna starting from the two fundamental laws of Thermodynamics, following M. Gurtin's two-scale approach. The main working assumptions are made on the behaviour of the heat flux as the absolute temperature tends to zero and to infinity. A suitable Ginzburg-Landau free energy is considered. Global-in-time existence for the initial-boundary value problem associated to the entropy formulation and, in a subcase, also to the weak formulation of the model is proved by deriving suitable a priori estimates and by showing weak sequential stability of families of approximating solutions. At last, some highlights are given regarding a possible approximation scheme compatible with the a-priori estimates available for the system.
AU - Marveggio, Alice
AU - Schimperna, Giulio
ID - 8792
IS - 2
JF - Journal of Differential Equations
SN - 00220396
TI - On a non-isothermal Cahn-Hilliard model based on a microforce balance
VL - 274
ER -
TY - JOUR
AB - Interspecific crossing experiments have shown that sex chromosomes play a major role in reproductive isolation between many pairs of species. However, their ability to act as reproductive barriers, which hamper interspecific genetic exchange, has rarely been evaluated quantitatively compared to Autosomes. This genome-wide limitation of gene flow is essential for understanding the complete separation of species, and thus speciation. Here, we develop a mainland-island model of secondary contact between hybridizing species of an XY (or ZW) sexual system. We obtain theoretical predictions for the frequency of introgressed alleles, and the strength of the barrier to neutral gene flow for the two types of chromosomes carrying multiple interspecific barrier loci. Theoretical predictions are obtained for scenarios where introgressed alleles are rare. We show that the same analytical expressions apply for sex chromosomes and autosomes, but with different sex-averaged effective parameters. The specific features of sex chromosomes (hemizygosity and absence of recombination in the heterogametic sex) lead to reduced levels of introgression on the X (or Z) compared to autosomes. This effect can be enhanced by certain types of sex-biased forces, but it remains overall small (except when alleles causing incompatibilities are recessive). We discuss these predictions in the light of empirical data comprising model-based tests of introgression and cline surveys in various biological systems.
AU - Fraisse, Christelle
AU - Sachdeva, Himani
ID - 9168
IS - 2
JF - Genetics
SN - 1943-2631
TI - The rates of introgression and barriers to genetic exchange between hybridizing species: Sex chromosomes vs autosomes
VL - 217
ER -
TY - JOUR
AB - This paper continues the discussion started in [CK19] concerning Arnold's legacy on classical KAM theory and (some of) its modern developments. We prove a detailed and explicit `global' Arnold's KAM Theorem, which yields, in particular, the Whitney conjugacy of a non{degenerate, real{analytic, nearly-integrable Hamiltonian system to an integrable system on a closed, nowhere dense, positive measure subset of the phase space. Detailed measure estimates on the Kolmogorov's set are provided in the case the phase space is: (A) a uniform neighbourhood of an arbitrary (bounded) set times the d-torus and (B) a domain with C2 boundary times the d-torus. All constants are explicitly given.
AU - Chierchia, Luigi
AU - Koudjinan, Edmond
ID - 8689
IS - 1
JF - Regular and Chaotic Dynamics
KW - Nearly{integrable Hamiltonian systems
KW - perturbation theory
KW - KAM Theory
KW - Arnold's scheme
KW - Kolmogorov's set
KW - primary invariant tori
KW - Lagrangian tori
KW - measure estimates
KW - small divisors
KW - integrability on nowhere dense sets
KW - Diophantine frequencies.
SN - 1560-3547
TI - V.I. Arnold's ''Global'' KAM theorem and geometric measure estimates
VL - 26
ER -
TY - JOUR
AB - In this paper we experimentally study the transitional range of Reynolds numbers in
plane Couette–Poiseuille flow, focusing our attention on the localized turbulent structures
triggered by a strong impulsive jet and the large-scale flow generated around these
structures. We present a detailed investigation of the large-scale flow and show how
its amplitude depends on Reynolds number and amplitude perturbation. In addition,
we characterize the initial dynamics of the localized turbulent spot, which includes the
coupling between the small and large scales, as well as the dependence of the advection
speed on the large-scale flow generated around the spot. Finally, we provide the first
experimental measurements of the large-scale flow around an oblique turbulent band.
AU - Klotz, Lukasz
AU - Pavlenko, A. M.
AU - Wesfreid, J. E.
ID - 9207
JF - Journal of Fluid Mechanics
SN - 0022-1120
TI - Experimental measurements in plane Couette-Poiseuille flow: Dynamics of the large- and small-scale flow
VL - 912
ER -
TY - GEN
AB - Metabolic adaptation to changing demands underlies homeostasis. During inflammation or metastasis, cells leading migration into challenging environments require an energy boost, however what controls this capacity is unknown. We identify a previously unstudied nuclear protein, Atossa, as changing metabolism in Drosophila melanogaster immune cells to promote tissue invasion. Atossa’s vertebrate orthologs, FAM214A-B, can fully substitute for Atossa, indicating functional conservation from flies to mammals. Atossa increases mRNA levels of Porthos, an unstudied RNA helicase and two metabolic enzymes, LKR/SDH and GR/HPR. Porthos increases translation of a gene subset, including those affecting mitochondrial functions, the electron transport chain, and metabolism. Respiration measurements and metabolomics indicate that Atossa and Porthos powers up mitochondrial oxidative phosphorylation to produce sufficient energy for leading macrophages to forge a path into tissues. As increasing oxidative phosphorylation enables many crucial physiological responses, this unique genetic program may modulate a wide range of cellular behaviors beyond migration.
AU - Emtenani, Shamsi
AU - Martin, Elliott T.
AU - György, Attila
AU - Bicher, Julia
AU - Genger, Jakob-Wendelin
AU - Hurd, Thomas R.
AU - Köcher, Thomas
AU - Bergthaler, Andreas
AU - Rangan, Prashanth
AU - Siekhaus, Daria E
ID - 9238
T2 - bioRxiv
TI - A genetic program boosts mitochondrial function to power macrophage tissue invasion
ER -
TY - JOUR
AB - Peptidoglycan is an essential component of the bacterial cell envelope that surrounds the cytoplasmic membrane to protect the cell from osmotic lysis. Important antibiotics such as β-lactams and glycopeptides target peptidoglycan biosynthesis. Class A penicillin-binding proteins (PBPs) are bifunctional membrane-bound peptidoglycan synthases that polymerize glycan chains and connect adjacent stem peptides by transpeptidation. How these enzymes work in their physiological membrane environment is poorly understood. Here, we developed a novel Förster resonance energy transfer-based assay to follow in real time both reactions of class A PBPs reconstituted in liposomes or supported lipid bilayers and applied this assay with PBP1B homologues from Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii in the presence or absence of their cognate lipoprotein activator. Our assay will allow unravelling the mechanisms of peptidoglycan synthesis in a lipid-bilayer environment and can be further developed to be used for high-throughput screening for new antimicrobials.
AU - Hernández-Rocamora, Víctor M.
AU - Baranova, Natalia S.
AU - Peters, Katharina
AU - Breukink, Eefjan
AU - Loose, Martin
AU - Vollmer, Waldemar
ID - 9243
JF - eLife
TI - Real time monitoring of peptidoglycan synthesis by membrane-reconstituted penicillin binding proteins
VL - 10
ER -