TY - JOUR
AB - The problem of obtaining the maximum a posteriori estimate of a general discrete Markov random field (i.e., a Markov random field defined using a discrete set of labels) is known to be NP-hard. However, due to its central importance in many applications, several approximation algorithms have been proposed in the literature. In this paper, we present an analysis of three such algorithms based on convex relaxations: (i) LP-S: the linear programming (LP) relaxation proposed by Schlesinger (1976) for a special case and independently in Chekuri et al. (2001), Koster et al. (1998), and Wainwright et al. (2005) for the general case; (ii) QP-RL: the quadratic programming (QP) relaxation of Ravikumar and Lafferty (2006); and (iii) SOCP-MS: the second order cone programming (SOCP) relaxation first proposed by Muramatsu and Suzuki (2003) for two label problems and later extended by Kumar et al. (2006) for a general label set.
We show that the SOCP-MS and the QP-RL relaxations are equivalent. Furthermore, we prove that despite the flexibility in the form of the constraints/objective function offered by QP and SOCP, the LP-S relaxation strictly dominates (i.e., provides a better approximation than) QP-RL and SOCP-MS. We generalize these results by defining a large class of SOCP (and equivalent QP) relaxations which is dominated by the LP-S relaxation. Based on these results we propose some novel SOCP relaxations which define constraints using random variables that form cycles or cliques in the graphical model representation of the random field. Using some examples we show that the new SOCP relaxations strictly dominate the previous approaches.
AU - Kumar, M Pawan
AU - Vladimir Kolmogorov
AU - Torr, Philip H
ID - 3197
JF - Journal of Machine Learning Research
TI - An analysis of convex relaxations for MAP estimation of discrete MRFs
VL - 10
ER -
TY - CONF
AB - We give polynomial-time algorithms for computing the values of Markov decision processes (MDPs) with limsup and liminf objectives. A real-valued reward is assigned to each state, and the value of an infinite path in the MDP is the limsup (resp. liminf) of all rewards along the path. The value of an MDP is the maximal expected value of an infinite path that can be achieved by resolving the decisions of the MDP. Using our result on MDPs, we show that turn-based stochastic games with limsup and liminf objectives can be solved in NP ∩ coNP.
AU - Krishnendu Chatterjee
AU - Thomas Henzinger
ID - 3503
TI - Probabilistic systems with limsup and liminf objectives
VL - 5489
ER -
TY - CONF
AB - We present a review of recent work on the mathematical aspects of the BCS gap equation, covering our results of Ref. 9 as well our recent joint work with Hamza and Solovej and with Frank and Naboko, respectively. In addition, we mention some related new results.
AU - Hainzl, Christian
AU - Robert Seiringer
ID - 2331
TI - Spectral properties of the BCS gap equation of superfluidity
ER -
TY - CONF
AB - We present a rigorous proof of the appearance of quantized vortices in dilute trapped Bose gases with repulsive two-body interactions subject to rotation, which was obtained recently in joint work with Elliott Lieb.14 Starting from the many-body Schrödinger equation, we show that the ground state of such gases is, in a suitable limit, well described by the nonlinear Gross-Pitaevskii equation. In the case of axially symmetric traps, our results show that the appearance of quantized vortices causes spontaneous symmetry breaking in the ground state.
AU - Robert Seiringer
ID - 2332
TI - Vortices and Spontaneous Symmetry Breaking in Rotating Bose Gases
ER -
TY - JOUR
AB - A lower bound is derived on the free energy (per unit volume) of a homogeneous Bose gas at density Q and temperature T. In the dilute regime, i.e., when a3 1, where a denotes the scattering length of the pair-interaction potential, our bound differs to leading order from the expression for non-interacting particles by the term 4πa(2 2}-[ - c]2+). Here, c(T) denotes the critical density for Bose-Einstein condensation (for the non-interacting gas), and [ · ]+ = max{ ·, 0} denotes the positive part. Our bound is uniform in the temperature up to temperatures of the order of the critical temperature, i.e., T ~ 2/3 or smaller. One of the key ingredients in the proof is the use of coherent states to extend the method introduced in [17] for estimating correlations to temperatures below the critical one.
AU - Robert Seiringer
ID - 2374
IS - 3
JF - Communications in Mathematical Physics
TI - Free energy of a dilute Bose gas: Lower bound
VL - 279
ER -
TY - JOUR
AB - We derive upper and lower bounds on the critical temperature Tc and the energy gap Ξ (at zero temperature) for the BCS gap equation, describing spin- 1 2 fermions interacting via a local two-body interaction potential λV(x). At weak coupling λ 1 and under appropriate assumptions on V(x), our bounds show that Tc ∼A exp(-B/λ) and Ξ∼C exp(-B/λ) for some explicit coefficients A, B, and C depending on the interaction V(x) and the chemical potential μ. The ratio A/C turns out to be a universal constant, independent of both V(x) and μ. Our analysis is valid for any μ; for small μ, or low density, our formulas reduce to well-known expressions involving the scattering length of V(x).
AU - Hainzl, Christian
AU - Robert Seiringer
ID - 2376
IS - 18
JF - Physical Review B - Condensed Matter and Materials Physics
TI - Critical temperature and energy gap for the BCS equation
VL - 77
ER -
TY - JOUR
AB - We prove that the critical temperature for the BCS gap equation is given by T c = μ ( 8\π e γ-2+ o(1)) e π/(2μa) in the low density limit μ→ 0, with γ denoting Euler's constant. The formula holds for a suitable class of interaction potentials with negative scattering length a in the absence of bound states.
AU - Hainzl, Christian
AU - Robert Seiringer
ID - 2377
IS - 2-3
JF - Letters in Mathematical Physics
TI - The BCS critical temperature for potentials with negative scattering length
VL - 84
ER -
TY - JOUR
AB - We derive a lower bound on the ground state energy of the Hubbard model for given value of the total spin. In combination with the upper bound derived previously by Giuliani (J. Math. Phys. 48:023302, [2007]), our result proves that in the low density limit the leading order correction compared to the ground state energy of a non-interacting lattice Fermi gas is given by 8πaσ uσ d , where σ u(d) denotes the density of the spin-up (down) particles, and a is the scattering length of the contact interaction potential. This result extends previous work on the corresponding continuum model to the lattice case.
AU - Robert Seiringer
AU - Yin, Jun
ID - 2378
IS - 6
JF - Journal of Statistical Physics
TI - Ground state energy of the low density hubbard model
VL - 131
ER -
TY - JOUR
AU - Frank, Rupert L
AU - Lieb, Élliott H
AU - Robert Seiringer
ID - 2379
IS - 4
JF - Journal of the American Mathematical Society
TI - Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators
VL - 21
ER -
TY - JOUR
AB - The Bardeen-Cooper-Schrieffer (BCS) functional has recently received renewed attention as a description of fermionic gases interacting with local pairwise interactions. We present here a rigorous analysis of the BCS functional for general pair interaction potentials. For both zero and positive temperature, we show that the existence of a non-trivial solution of the nonlinear BCS gap equation is equivalent to the existence of a negative eigenvalue of a certain linear operator. From this we conclude the existence of a critical temperature below which the BCS pairing wave function does not vanish identically. For attractive potentials, we prove that the critical temperature is non-zero and exponentially small in the strength of the potential.
AU - Hainzl, Christian
AU - Hamza, Eman
AU - Robert Seiringer
AU - Solovej, Jan P
ID - 2380
IS - 2
JF - Communications in Mathematical Physics
TI - The BCS functional for general pair interactions
VL - 281
ER -
TY - JOUR
AB - We determine the sharp constant in the Hardy inequality for fractional Sobolev spaces. To do so, we develop a non-linear and non-local version of the ground state representation, which even yields a remainder term. From the sharp Hardy inequality we deduce the sharp constant in a Sobolev embedding which is optimal in the Lorentz scale. In the appendix, we characterize the cases of equality in the rearrangement inequality in fractional Sobolev spaces.
AU - Frank, Rupert L
AU - Robert Seiringer
ID - 2381
IS - 12
JF - Journal of Functional Analysis
TI - Non-linear ground state representations and sharp Hardy inequalities
VL - 255
ER -
TY - JOUR
AB - We show that the Lieb-Liniger model for one-dimensional bosons with repulsive δ-function interaction can be rigorously derived via a scaling limit from a dilute three-dimensional Bose gas with arbitrary repulsive interaction potential of finite scattering length. For this purpose, we prove bounds on both the eigenvalues and corresponding eigenfunctions of three-dimensional bosons in strongly elongated traps and relate them to the corresponding quantities in the Lieb-Liniger model. In particular, if both the scattering length a and the radius r of the cylindrical trap go to zero, the Lieb-Liniger model with coupling constant g ∼ a/r 2 is derived. Our bounds are uniform in g in the whole parameter range 0 ≤ g ≤ ∞, and apply to the Hamiltonian for three-dimensional bosons in a spectral window of size ∼ r -2 above the ground state energy.
AU - Robert Seiringer
AU - Yin, Jun
ID - 2382
IS - 2
JF - Communications in Mathematical Physics
TI - The Lieb-Liniger model as a limit of dilute bosons in three dimensions
VL - 284
ER -
TY - JOUR
AB - We study the relativistic electron-positron field at positive temperature in the Hartree-Fock approximation. We consider both the case with and without exchange terms, and investigate the existence and properties of minimizers. Our approach is non-perturbative in the sense that the relevant electron subspace is determined in a self-consistent way. The present work is an extension of previous work by Hainzl, Lewin, Séré and Solovej where the case of zero temperature was considered.
AU - Hainzl, Christian
AU - Lewin, Mathieu
AU - Robert Seiringer
ID - 2383
IS - 10
JF - Reviews in Mathematical Physics
TI - A nonlinear model for relativistic electrons at positive temperature
VL - 20
ER -
TY - CONF
AB - We review our proof that in a scaling limit, the time evolution of a quantum particle in a static random environment leads to a diffusion equation. In particular, we discuss the role of Feynman graph expansions and of renormalization.
AU - László Erdös
AU - Salmhofer, Manfred
AU - Yau, Horng-Tzer
ID - 2702
TI - Feynman graphs and renormalization in quantum diffusion
ER -
TY - JOUR
AB - The field of cavity quantum electrodynamics (QED), traditionally studied in atomic systems, has gained new momentum by recent reports of quantum optical experiments with solid-state semiconducting and superconducting systems. In cavity QED, the observation of the vacuum Rabi mode splitting is used to investigate the nature of matter-light interaction at a quantum-mechanical level. However, this effect can, at least in principle, be explained classically as the normal mode splitting of two coupled linear oscillators. It has been suggested that an observation of the scaling of the resonant atom-photon coupling strength in the Jaynes-Cummings energy ladder with the square root of photon number n is sufficient to prove that the system is quantum mechanical in nature. Here we report a direct spectroscopic observation of this characteristic quantum nonlinearity. Measuring the photonic degree of freedom of the coupled system, our measurements provide unambiguous spectroscopic evidence for the quantum nature of the resonant atom-field interaction in cavity QED. We explore atom-photon superposition states involving up to two photons, using a spectroscopic pump and probe technique. The experiments have been performed in a circuit QED set-up, in which very strong coupling is realized by the large dipole coupling strength and the long coherence time of a superconducting qubit embedded in a high-quality on-chip microwave cavity. Circuit QED systems also provide a natural quantum interface between flying qubits (photons) and stationary qubits for applications in quantum information processing and communication.
AU - Johannes Fink
AU - Göppl, M
AU - Baur, Matthias P
AU - Bianchetti, R
AU - Leek, Peter J
AU - Blais, Alexandre
AU - Wallraff, Andreas
ID - 1763
IS - 7202
JF - Nature
TI - Climbing the Jaynes-Cummings ladder and observing its √n nonlinearity in a cavity QED system
VL - 454
ER -
TY - JOUR
AB - High quality on-chip microwave resonators have recently found prominent new applications in quantum optics and quantum information processing experiments with superconducting electronic circuits, a field now known as circuit quantum electrodynamics (QED). They are also used as single photon detectors and parametric amplifiers. Here we analyze the physical properties of coplanar waveguide resonators and their relation to the materials properties for use in circuit QED. We have designed and fabricated resonators with fundamental frequencies from 2 to 9 GHz and quality factors ranging from a few hundreds to a several hundred thousands controlled by appropriately designed input and output coupling capacitors. The microwave transmission spectra measured at temperatures of 20 mK are shown to be in good agreement with theoretical lumped element and distributed element transmission matrix models. In particular, the experimentally determined resonance frequencies, quality factors, and insertion losses are fully and consistently explained by the two models for all measured devices. The high level of control and flexibility in design renders these resonators ideal for storing and manipulating quantum electromagnetic fields in integrated superconducting electronic circuits.
AU - Göppl, M
AU - Fragner, A
AU - Baur, Matthias P
AU - Bianchetti, R
AU - Filipp, Stefan
AU - Johannes Fink
AU - Leek, Peter J
AU - Puebla, G
AU - Steffen, L. Kraig
AU - Wallraff, Andreas
ID - 1765
IS - 11
JF - Journal of Applied Physics
TI - Coplanar waveguide resonators for circuit quantum electrodynamics
VL - 104
ER -
TY - JOUR
AB - We consider the linear stochastic Cauchy problem dX (t) =AX (t) dt +B dWH (t), t≥ 0, where A generates a C0-semigroup on a Banach space E, WH is a cylindrical Brownian motion over a Hilbert space H, and B: H → E is a bounded operator. Assuming the existence of a unique minimal invariant measure μ∞, let Lp denote the realization of the Ornstein-Uhlenbeck operator associated with this problem in Lp (E, μ∞). Under suitable assumptions concerning the invariance of the range of B under the semigroup generated by A, we prove the following domain inclusions, valid for 1 < p ≤ 2: Image omitted. Here WHk, p (E, μinfin; denotes the kth order Sobolev space of functions with Fréchet derivatives up to order k in the direction of H. No symmetry assumptions are made on L p.
AU - Jan Maas
AU - van Neerven, Jan M
ID - 2120
IS - 4
JF - Infinite Dimensional Analysis, Quantum Probability and Related Topics
TI - On the domain of non-symmetric Ornstein-Uhlenbeck operators in banach spaces
VL - 11
ER -
TY - JOUR
AB - Let H be a separable real Hubert space and let double struck F sign = (ℱt)t∈[0,T] be the augmented filtration generated by an H-cylindrical Brownian motion (WH(t))t∈[0,T] on a probability space (Ω, ℱ ℙ). We prove that if E is a UMD Banach space, 1 ≤ p < ∞, and F ∈ double struck D sign1,p(Ω E) is ℱT-measurable, then F = double struck E sign(F) + ∫0T Pdouble struck F sign(DF) dW H, where D is the Malliavin derivative of F and P double struck F sign is the projection onto the F-adapted elements in a suitable Banach space of Lp-stochastically integrable ℒ(H, E)-valued processes.
AU - van Neerven, Jan M
AU - Jan Maas
ID - 2121
JF - Electronic Communications in Probability
TI - A Clark-Ocone formula in UMD Banach spaces
VL - 13
ER -
TY - JOUR
AB - We present an analytic model of thermal state-to-state rotationally inelastic collisions of polar molecules in electric fields. The model is based on the Fraunhofer scattering of matter waves and requires Legendre moments characterizing the “shape” of the target in the body-fixed frame as its input. The electric field orients the target in the space-fixed frame and thereby effects a striking alteration of the dynamical observables: both the phase and amplitude of the oscillations in the partial differential cross sections undergo characteristic field-dependent changes that transgress into the partial integral cross sections. As the cross sections can be evaluated for a field applied parallel or perpendicular to the relative velocity, the model also offers predictions about steric asymmetry. We exemplify the field-dependent quantum collision dynamics with the behavior of the Ne–OCS(Σ1) and Ar–NO(Π2) systems. A comparison with the close-coupling calculations available for the latter system [Chem. Phys. Lett.313, 491 (1999)] demonstrates the model’s ability to qualitatively explain the field dependence of all the scattering features observed.
AU - Mikhail Lemeshko
AU - Friedrich, Břetislav
ID - 2146
IS - 2
JF - Journal of Chemical Physics
TI - An analytic model of rotationally inelastic collisions of polar molecules in electric fields
VL - 129
ER -
TY - JOUR
AB - Homeostasis of internal carbon dioxide (CO2) and oxygen (O2) levels is fundamental to all animals. Here we examine the CO2 response of the nematode Caenorhabditis elegans. This species inhabits rotting material, which typically has a broad CO2 concentration range. We show that well fed C. elegans avoid CO2 levels above 0.5%. Animals can respond to both absolute CO2 concentrations and changes in CO2 levels within seconds. Responses to CO2 do not reflect avoidance of acid pH but appear to define a new sensory response. Sensation of CO2 is promoted by the cGMP-gated ion channel subunits TAX-2 and TAX-4, but other pathways are also important. Robust CO2 avoidance in well fed animals requires inhibition of the DAF-16 forkhead transcription factor by the insulin-like receptor DAF-2. Starvation, which activates DAF-16, strongly suppresses CO2 avoidance. Exposure to hypoxia (<1% O2) also suppresses CO2 avoidance via activation of the hypoxia-inducible transcription factor HIF-1. The npr-1 215V allele of the naturally polymorphic neuropeptide receptor npr-1, besides inhibiting avoidance of high ambient O2 in feeding C. elegans, also promotes avoidance of high CO2. C. elegans integrates competing O2 and CO2 sensory inputs so that one response dominates. Food and allelic variation at NPR-1 regulate which response prevails. Our results suggest that multiple sensory inputs are coordinated by C. elegans to generate different coherent foraging strategies.
AU - Bretscher, A. J.
AU - Busch, K. E.
AU - de Bono, Mario
ID - 6146
IS - 23
JF - Proceedings of the National Academy of Sciences
SN - 0027-8424
TI - A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans
VL - 105
ER -