TY - CONF AB - Network games are widely used as a model for selfish resource-allocation problems. In the classicalmodel, each player selects a path connecting her source and target vertices. The cost of traversingan edge depends on theload; namely, number of players that traverse it. Thus, it abstracts the factthat different users may use a resource at different times and for different durations, which playsan important role in determining the costs of the users in reality. For example, when transmittingpackets in a communication network, routing traffic in a road network, or processing a task in aproduction system, actual sharing and congestion of resources crucially depends on time.In [13], we introducedtimed network games, which add a time component to network games.Each vertexvin the network is associated with a cost function, mapping the load onvto theprice that a player pays for staying invfor one time unit with this load. Each edge in thenetwork is guarded by the time intervals in which it can be traversed, which forces the players tospend time in the vertices. In this work we significantly extend the way time can be referred toin timed network games. In the model we study, the network is equipped withclocks, and, as intimed automata, edges are guarded by constraints on the values of the clocks, and their traversalmay involve a reset of some clocks. We argue that the stronger model captures many realisticnetworks. The addition of clocks breaks the techniques we developed in [13] and we developnew techniques in order to show that positive results on classic network games carry over to thestronger timed setting. AU - Avni, Guy AU - Guha, Shibashis AU - Kupferman, Orna ID - 6005 SN - 1868-8969 TI - Timed network games with clocks VL - 117 ER - TY - JOUR AB - Estimating the homogeneous ice nucleation rate from undercooled liquid water is crucial for understanding many important physical phenomena and technological applications, and challenging for both experiments and theory. From a theoretical point of view, difficulties arise due to the long time scales required, as well as the numerous nucleation pathways involved to form ice nuclei with different stacking disorders. We computed the homogeneous ice nucleation rate at a physically relevant undercooling for a single-site water model, taking into account the diffuse nature of ice–water interfaces, stacking disorders in ice nuclei, and the addition rate of particles to the critical nucleus. We disentangled and investigated the relative importance of all the terms, including interfacial free energy, entropic contributions and the kinetic prefactor, that contribute to the overall nucleation rate. Breaking down the problem into pieces not only provides physical insights into ice nucleation, but also sheds light on the long-standing discrepancy between different theoretical predictions, as well as between theoretical and experimental determinations of the nucleation rate. Moreover, we pinpoint the main shortcomings and suggest strategies to systematically improve the existing simulation methods. AU - Cheng, Bingqing AU - Dellago, Christoph AU - Ceriotti, Michele ID - 9668 IS - 45 JF - Physical Chemistry Chemical Physics SN - 1463-9076 TI - Theoretical prediction of the homogeneous ice nucleation rate: Disentangling thermodynamics and kinetics VL - 20 ER - TY - JOUR AB - The Gibbs free energy is the fundamental thermodynamic potential underlying the relative stability of different states of matter under constant-pressure conditions. However, computing this quantity from atomic-scale simulations is far from trivial, so the potential energy of a system is often used as a proxy. In this paper, we use a combination of thermodynamic integration methods to accurately evaluate the Gibbs free energies associated with defects in crystals, including the vacancy formation energy in bcc iron, and the stacking fault energy in fcc nickel, iron, and cobalt. We quantify the importance of entropic and anharmonic effects in determining the free energies of defects at high temperatures, and show that the potential energy approximation as well as the harmonic approximation may produce inaccurate or even qualitatively wrong results. Our calculations manifest the necessity to employ accurate free energy methods such as thermodynamic integration to estimate the stability of crystallographic defects at high temperatures. AU - Cheng, Bingqing AU - Ceriotti, Michele ID - 9687 IS - 5 JF - Physical Review B SN - 2469-9950 TI - Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids VL - 97 ER - TY - JOUR AB - More than 100 years after Grigg’s influential analysis of species’ borders, the causes of limits to species’ ranges still represent a puzzle that has never been understood with clarity. The topic has become especially important recently as many scientists have become interested in the potential for species’ ranges to shift in response to climate change—and yet nearly all of those studies fail to recognise or incorporate evolutionary genetics in a way that relates to theoretical developments. I show that range margins can be understood based on just two measurable parameters: (i) the fitness cost of dispersal—a measure of environmental heterogeneity—and (ii) the strength of genetic drift, which reduces genetic diversity. Together, these two parameters define an ‘expansion threshold’: adaptation fails when genetic drift reduces genetic diversity below that required for adaptation to a heterogeneous environment. When the key parameters drop below this expansion threshold locally, a sharp range margin forms. When they drop below this threshold throughout the species’ range, adaptation collapses everywhere, resulting in either extinction or formation of a fragmented metapopulation. Because the effects of dispersal differ fundamentally with dimension, the second parameter—the strength of genetic drift—is qualitatively different compared to a linear habitat. In two-dimensional habitats, genetic drift becomes effectively independent of selection. It decreases with ‘neighbourhood size’—the number of individuals accessible by dispersal within one generation. Moreover, in contrast to earlier predictions, which neglected evolution of genetic variance and/or stochasticity in two dimensions, dispersal into small marginal populations aids adaptation. This is because the reduction of both genetic and demographic stochasticity has a stronger effect than the cost of dispersal through increased maladaptation. The expansion threshold thus provides a novel, theoretically justified, and testable prediction for formation of the range margin and collapse of the species’ range. AU - Polechova, Jitka ID - 315 IS - 6 JF - PLoS Biology SN - 15449173 TI - Is the sky the limit? On the expansion threshold of a species’ range VL - 16 ER - TY - JOUR AB - The Birkhoff conjecture says that the boundary of a strictly convex integrable billiard table is necessarily an ellipse. In this article, we consider a stronger notion of integrability, namely integrability close to the boundary, and prove a local version of this conjecture: a small perturbation of an ellipse of small eccentricity which preserves integrability near the boundary, is itself an ellipse. This extends the result in Avila et al. (Ann Math 184:527–558, ADK16), where integrability was assumed on a larger set. In particular, it shows that (local) integrability near the boundary implies global integrability. One of the crucial ideas in the proof consists in analyzing Taylor expansion of the corresponding action-angle coordinates with respect to the eccentricity parameter, deriving and studying higher order conditions for the preservation of integrable rational caustics. AU - Huang, Guan AU - Kaloshin, Vadim AU - Sorrentino, Alfonso ID - 8422 IS - 2 JF - Geometric and Functional Analysis KW - Geometry and Topology KW - Analysis SN - 1016-443X TI - Nearly circular domains which are integrable close to the boundary are ellipses VL - 28 ER - TY - JOUR AB - The classical Birkhoff conjecture claims that the boundary of a strictly convex integrable billiard table is necessarily an ellipse (or a circle as a special case). In this article we prove a complete local version of this conjecture: a small integrable perturbation of an ellipse must be an ellipse. This extends and completes the result in Avila-De Simoi-Kaloshin, where nearly circular domains were considered. One of the crucial ideas in the proof is to extend action-angle coordinates for elliptic billiards into complex domains (with respect to the angle), and to thoroughly analyze the nature of their complex singularities. As an application, we are able to prove some spectral rigidity results for elliptic domains. AU - Kaloshin, Vadim AU - Sorrentino, Alfonso ID - 8421 IS - 1 JF - Annals of Mathematics KW - Statistics KW - Probability and Uncertainty KW - Statistics and Probability SN - 0003-486X TI - On the local Birkhoff conjecture for convex billiards VL - 188 ER - TY - JOUR AB - We show that in the space of all convex billiard boundaries, the set of boundaries with rational caustics is dense. More precisely, the set of billiard boundaries with caustics of rotation number 1/q is polynomially sense in the smooth case, and exponentially dense in the analytic case. AU - Kaloshin, Vadim AU - Zhang, Ke ID - 8420 IS - 11 JF - Nonlinearity KW - Mathematical Physics KW - General Physics and Astronomy KW - Applied Mathematics KW - Statistical and Nonlinear Physics SN - 0951-7715 TI - Density of convex billiards with rational caustics VL - 31 ER - TY - JOUR AB - For any strictly convex planar domain Ω ⊂ R2 with a C∞ boundary one can associate an infinite sequence of spectral invariants introduced by Marvizi–Merlose [5]. These invariants can generically be determined using the spectrum of the Dirichlet problem of the Laplace operator. A natural question asks if this collection is sufficient to determine Ω up to isometry. In this paper we give a counterexample, namely, we present two nonisometric domains Ω and Ω¯ with the same collection of Marvizi–Melrose invariants. Moreover, each domain has countably many periodic orbits {Sn}n≥1 (resp. {S¯n}n⩾1) of period going to infinity such that Sn and S¯n have the same period and perimeter for each n. AU - Buhovsky, Lev AU - Kaloshin, Vadim ID - 8426 JF - Regular and Chaotic Dynamics SN - 1560-3547 TI - Nonisometric domains with the same Marvizi-Melrose invariants VL - 23 ER - TY - JOUR AB - The development of strategies to assemble microscopic machines from dissipative building blocks are essential on the route to novel active materials. We recently demonstrated the hierarchical self-assembly of phoretic microswimmers into self-spinning microgears and their synchronization by diffusiophoretic interactions [Aubret et al., Nat. Phys., 2018]. In this paper, we adopt a pedagogical approach and expose our strategy to control self-assembly and build machines using phoretic phenomena. We notably introduce Highly Inclined Laminated Optical sheets microscopy (HILO) to image and characterize anisotropic and dynamic diffusiophoretic interactions, which cannot be performed by conventional fluorescence microscopy. The dynamics of a (haematite) photocatalytic material immersed in (hydrogen peroxide) fuel under various illumination patterns is first described and quantitatively rationalized by a model of diffusiophoresis, the migration of a colloidal particle in a concentration gradient. It is further exploited to design phototactic microswimmers that direct towards the high intensity of light, as a result of the reorientation of the haematite in a light gradient. We finally show the assembly of self-spinning microgears from colloidal microswimmers and carefully characterize the interactions using HILO techniques. The results are compared with analytical and numerical predictions and agree quantitatively, stressing the important role played by concentration gradients induced by chemical activity to control and design interactions. Because the approach described hereby is generic, this works paves the way for the rational design of machines by controlling phoretic phenomena. AU - Aubret, Antoine AU - Palacci, Jérémie A ID - 9053 IS - 47 JF - Soft Matter KW - General Chemistry KW - Condensed Matter Physics SN - 1744-683X TI - Diffusiophoretic design of self-spinning microgears from colloidal microswimmers VL - 14 ER - TY - JOUR AB - In this study we investigate the scaling of precipitation extremes with temperature in the Mediterranean region by assessing against observations the present day and future regional climate simulations performed in the frame of the HyMeX and MED-CORDEX programs. Over the 1979–2008 period, despite differences in quantitative precipitation simulation across the various models, the change in precipitation extremes with respect to temperature is robust and consistent. The spatial variability of the temperature–precipitation extremes relationship displays a hook shape across the Mediterranean, with negative slope at high temperatures and a slope following Clausius–Clapeyron (CC)-scaling at low temperatures. The temperature at which the slope of the temperature–precipitation extreme relation sharply changes (or temperature break), ranges from about 20 °C in the western Mediterranean to <10 °C in Greece. In addition, this slope is always negative in the arid regions of the Mediterranean. The scaling of the simulated precipitation extremes is insensitive to ocean–atmosphere coupling, while it depends very weakly on the resolution at high temperatures for short precipitation accumulation times. In future climate scenario simulations covering the 2070–2100 period, the temperature break shifts to higher temperatures by a value which is on average the mean regional temperature change due to global warming. The slope of the simulated future temperature–precipitation extremes relationship is close to CC-scaling at temperatures below the temperature break, while at high temperatures, the negative slope is close, but somewhat flatter or steeper, than in the current climate depending on the model. Overall, models predict more intense precipitation extremes in the future. Adjusting the temperature–precipitation extremes relationship in the present climate using the CC law and the temperature shift in the future allows the recovery of the temperature–precipitation extremes relationship in the future climate. This implies negligible regional changes of relative humidity in the future despite the large warming and drying over the Mediterranean. This suggests that the Mediterranean Sea is the primary source of moisture which counteracts the drying and warming impacts on relative humidity in parts of the Mediterranean region. AU - Drobinski, Philippe AU - Silva, Nicolas Da AU - Panthou, Gérémy AU - Bastin, Sophie AU - Muller, Caroline J AU - Ahrens, Bodo AU - Borga, Marco AU - Conte, Dario AU - Fosser, Giorgia AU - Giorgi, Filippo AU - Güttler, Ivan AU - Kotroni, Vassiliki AU - Li, Laurent AU - Morin, Efrat AU - Önol, Bariş AU - Quintana-Segui, Pere AU - Romera, Raquel AU - Torma, Csaba Zsolt ID - 9136 IS - 3 JF - Climate Dynamics KW - Atmospheric Science SN - 0930-7575 TI - Scaling precipitation extremes with temperature in the Mediterranean: Past climate assessment and projection in anthropogenic scenarios VL - 51 ER - TY - JOUR AB - Several studies have shown the existence of a critical latitude where the dissipation of internal tides is strongly enhanced. Internal tides are internal waves generated by barotropic tidal currents impinging rough topography at the seafloor. Their dissipation and concomitant diapycnal mixing are believed to be important for water masses and the large‐scale ocean circulation. The purpose of this study is to clarify the physical processes at the origin of this strong latitudinal dependence of tidal energy dissipation. We find that different mechanisms are involved equatorward and poleward of the critical latitude. Triadic resonant instabilities are responsible for the dissipation of internal tides equatorward of the critical latitude. In particular, a dominant triad involving the primary internal tide and near‐inertial waves is key. At the critical latitude, the peak of energy dissipation is explained by both increased instability growth rates, and smaller scales of secondary waves thus more prone to break and dissipate their energy. Surprisingly, poleward of the critical latitude, the generation of evanescent waves appears to be crucial. Triadic instabilities have been widely studied, but the transfer of energy to evanescent waves has received comparatively little attention. Our work suggests that the nonlinear transfer of energy from the internal tide to evanescent waves (corresponding to the 2f‐pump mechanism described by Young et al., 2008, https://doi.org/10.1017/S0022112008001742) is an efficient mechanism to dissipate internal tide energy near and poleward of the critical latitude. The theoretical results are confirmed in idealized high‐resolution numerical simulations of a barotropic M2 tide impinging sinusoidal topography in a linearly stratified fluid. AU - Richet, O. AU - Chomaz, J.-M. AU - Muller, Caroline J ID - 9134 IS - 9 JF - Journal of Geophysical Research: Oceans SN - 2169-9275 TI - Internal tide dissipation at topography: Triadic resonant instability equatorward and evanescent waves poleward of the critical latitude VL - 123 ER - TY - JOUR AB - Idealized simulations of tropical moist convection have revealed that clouds can spontaneously clump together in a process called self-aggregation. This results in a state where a moist cloudy region with intense deep convection is surrounded by extremely dry subsiding air devoid of deep convection. Because of the idealized settings of the simulations where it was discovered, the relevance of self-aggregation to the real world is still debated. Here, we show that self-aggregation feedbacks play a leading-order role in the spontaneous genesis of tropical cyclones in cloud-resolving simulations. Those feedbacks accelerate the cyclogenesis process by a factor of 2, and the feedbacks contributing to the cyclone formation show qualitative and quantitative agreement with the self-aggregation process. Once the cyclone is formed, wind-induced surface heat exchange (WISHE) effects dominate, although we find that self-aggregation feedbacks have a small but nonnegligible contribution to the maintenance of the mature cyclone. Our results suggest that self-aggregation, and the framework developed for its study, can help shed more light into the physical processes leading to cyclogenesis and cyclone intensification. In particular, our results point out the importance of the longwave radiative cooling outside the cyclone. AU - Muller, Caroline J AU - Romps, David M. ID - 9135 IS - 12 JF - Proceedings of the National Academy of Sciences KW - Multidisciplinary SN - 0027-8424 TI - Acceleration of tropical cyclogenesis by self-aggregation feedbacks VL - 115 ER - TY - JOUR AB - The DEMETER (DME) DNA glycosylase catalyzes genome-wide DNA demethylation and is required for endosperm genomic imprinting and embryo viability. Targets of DME-mediated DNA demethylation reside in small, euchromatic, AT-rich transposons and at the boundaries of large transposons, but how DME interacts with these diverse chromatin states is unknown. The STRUCTURE SPECIFIC RECOGNITION PROTEIN 1 (SSRP1) subunit of the chromatin remodeler FACT (facilitates chromatin transactions), was previously shown to be involved in the DME-dependent regulation of genomic imprinting in Arabidopsis endosperm. Therefore, to investigate the interaction between DME and chromatin, we focused on the activity of the two FACT subunits, SSRP1 and SUPPRESSOR of TY16 (SPT16), during reproduction in Arabidopsis. We found that FACT colocalizes with nuclear DME in vivo, and that DME has two classes of target sites, the first being euchromatic and accessible to DME, but the second, representing over half of DME targets, requiring the action of FACT for DME-mediated DNA demethylation genome-wide. Our results show that the FACT-dependent DME targets are GC-rich heterochromatin domains with high nucleosome occupancy enriched with H3K9me2 and H3K27me1. Further, we demonstrate that heterochromatin-associated linker histone H1 specifically mediates the requirement for FACT at a subset of DME-target loci. Overall, our results demonstrate that FACT is required for DME targeting by facilitating its access to heterochromatin. AU - Frost, Jennifer M. AU - Kim, M. Yvonne AU - Park, Guen Tae AU - Hsieh, Ping-Hung AU - Nakamura, Miyuki AU - Lin, Samuel J. H. AU - Yoo, Hyunjin AU - Choi, Jaemyung AU - Ikeda, Yoko AU - Kinoshita, Tetsu AU - Choi, Yeonhee AU - Zilberman, Daniel AU - Fischer, Robert L. ID - 9471 IS - 20 JF - Proceedings of the National Academy of Sciences KW - Multidisciplinary SN - 0027-8424 TI - FACT complex is required for DNA demethylation at heterochromatin during reproduction in Arabidopsis VL - 115 ER - TY - JOUR AB - Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to OH− ions as the charge carriers. AU - Lee, Victor AU - James, Nicole AU - Waitukaitis, Scott R AU - Jaeger, Heinrich ID - 95 IS - 3 JF - Physical Review Materials TI - Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer VL - 2 ER - TY - JOUR AB - Let P be a graph property which is preserved by removal of edges, and consider the random graph process that starts with the empty n-vertex graph and then adds edges one-by-one, each chosen uniformly at random subject to the constraint that P is not violated. These types of random processes have been the subject of extensive research over the last 20 years, having striking applications in extremal combinatorics, and leading to the discovery of important probabilistic tools. In this paper we consider the k-matching-free process, where P is the property of not containing a matching of size k. We are able to analyse the behaviour of this process for a wide range of values of k; in particular we prove that if k=o(n) or if n−2k=o(n−−√/logn) then this process is likely to terminate in a k-matching-free graph with the maximum possible number of edges, as characterised by Erdős and Gallai. We also show that these bounds on k are essentially best possible, and we make a first step towards understanding the behaviour of the process in the intermediate regime. AU - Krivelevich, Michael AU - Kwan, Matthew Alan AU - Loh, Po‐Shen AU - Sudakov, Benny ID - 9567 IS - 4 JF - Random Structures and Algorithms SN - 1042-9832 TI - The random k‐matching‐free process VL - 53 ER - TY - JOUR AB - Let D(n,p) be the random directed graph on n vertices where each of the n(n-1) possible arcs is present independently with probability p. A celebrated result of Frieze shows that if p≥(logn+ω(1))/n then D(n,p) typically has a directed Hamilton cycle, and this is best possible. In this paper, we obtain a strengthening of this result, showing that under the same condition, the number of directed Hamilton cycles in D(n,p) is typically n!(p(1+o(1)))n. We also prove a hitting-time version of this statement, showing that in the random directed graph process, as soon as every vertex has in-/out-degrees at least 1, there are typically n!(logn/n(1+o(1)))n directed Hamilton cycles. AU - Ferber, Asaf AU - Kwan, Matthew Alan AU - Sudakov, Benny ID - 9565 IS - 4 JF - Random Structures and Algorithms SN - 1042-9832 TI - Counting Hamilton cycles in sparse random directed graphs VL - 53 ER - TY - JOUR AB - An intercalate in a Latin square is a 2×2 Latin subsquare. Let N be the number of intercalates in a uniformly random n×n Latin square. We prove that asymptotically almost surely N≥(1−o(1))n2/4, and that EN≤(1+o(1))n2/2 (therefore asymptotically almost surely N≤fn2 for any f→∞). This significantly improves the previous best lower and upper bounds. We also give an upper tail bound for the number of intercalates in two fixed rows of a random Latin square. In addition, we discuss a problem of Linial and Luria on low-discrepancy Latin squares. AU - Kwan, Matthew Alan AU - Sudakov, Benny ID - 9568 IS - 2 JF - Random Structures and Algorithms SN - 1042-9832 TI - Intercalates and discrepancy in random Latin squares VL - 52 ER - TY - JOUR AB - We say a family of sets is intersecting if any two of its sets intersect, and we say it is trivially intersecting if there is an element which appears in every set of the family. In this paper we study the maximum size of a non-trivially intersecting family in a natural “multi-part” setting. Here the ground set is divided into parts, and one considers families of sets whose intersection with each part is of a prescribed size. Our work is motivated by classical results in the single-part setting due to Erdős, Ko and Rado, and Hilton and Milner, and by a theorem of Frankl concerning intersecting families in this multi-part setting. In the case where the part sizes are sufficiently large we determine the maximum size of a non-trivially intersecting multi-part family, disproving a conjecture of Alon and Katona. AU - Kwan, Matthew Alan AU - Sudakov, Benny AU - Vieira, Pedro ID - 9587 JF - Journal of Combinatorial Theory Series A SN - 0097-3165 TI - Non-trivially intersecting multi-part families VL - 156 ER - TY - JOUR AB - We investigate the thermodynamics and kinetics of a hydrogen interstitial in magnetic α-iron, taking account of the quantum fluctuations of the proton as well as the anharmonicities of lattice vibrations and hydrogen hopping. We show that the diffusivity of hydrogen in the lattice of bcc iron deviates strongly from an Arrhenius behavior at and below room temperature. We compare a quantum transition state theory to explicit ring polymer molecular dynamics in the calculation of diffusivity. We then address the trapping of hydrogen by a vacancy as a prototype lattice defect. By a sequence of steps in a thought experiment, each involving a thermodynamic integration, we are able to separate out the binding free energy of a proton to a defect into harmonic and anharmonic, and classical and quantum contributions. We find that about 30% of a typical binding free energy of hydrogen to a lattice defect in iron is accounted for by finite temperature effects, and about half of these arise from quantum proton fluctuations. This has huge implications for the comparison between thermal desorption and permeation experiments and standard electronic structure theory. The implications are even greater for the interpretation of muon spin resonance experiments. AU - Cheng, Bingqing AU - Paxton, Anthony T. AU - Ceriotti, Michele ID - 9665 IS - 22 JF - Physical Review Letters SN - 0031-9007 TI - Hydrogen diffusion and trapping in α-iron: The role of quantum and anharmonic fluctuations VL - 120 ER - TY - JOUR AB - The curvature dependence of interfacial free energy, which is crucial in quantitatively predicting nucleation kinetics and the stability of bubbles and droplets, is quantified by the Tolman length δ. For solid-liquid interfaces, however, δ has never been computed directly due to various theoretical and practical challenges. Here we perform a direct evaluation of the Tolman length from atomistic simulations of a solid-liquid planar interface in out-of-equilibrium conditions, by first computing the surface tension from the amplitude of thermal capillary fluctuations of a localized version of the Gibbs dividing surface and by then calculating how much the surface energy changes when it is defined relative to the equimolar dividing surface. We computed δ for a model potential, and found a good agreement with the values indirectly inferred from nucleation simulations. The agreement not only validates our approach but also suggests that the nucleation free energy of the system can be perfectly described using classical nucleation theory if the Tolman length is taken into account. AU - Cheng, Bingqing AU - Ceriotti, Michele ID - 9659 IS - 23 JF - The Journal of Chemical Physics SN - 0021-9606 TI - Communication: Computing the Tolman length for solid-liquid interfaces VL - 148 ER -