TY - CONF
AB - A drawing of a graph G is radial if the vertices of G are placed on concentric circles C1, . . . , Ck with common center c, and edges are drawn radially: every edge intersects every circle centered at c at most once. G is radial planar if it has a radial embedding, that is, a crossing- free radial drawing. If the vertices of G are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the assignment of vertices to circles corresponds to the given ordering or leveling. We show that a graph G is radial planar if G has a radial drawing in which every two edges cross an even number of times; the radial embedding has the same leveling as the radial drawing. In other words, we establish the weak variant of the Hanani-Tutte theorem for radial planarity. This generalizes a result by Pach and Tóth.
AU - Fulek, Radoslav
AU - Pelsmajer, Michael
AU - Schaefer, Marcus
ID - 1595
TI - Hanani-Tutte for radial planarity
VL - 9411
ER -
TY - CONF
AB - Let C={C1,...,Cn} denote a collection of translates of a regular convex k-gon in the plane with the stacking order. The collection C forms a visibility clique if for everyi < j the intersection Ci and (Ci ∩ Cj)\⋃i<l<jCl =∅.elements that are stacked between them, i.e., We show that if C forms a visibility clique its size is bounded from above by O(k4) thereby improving the upper bound of 22k from the aforementioned paper. We also obtain an upper bound of 22(k/2)+2 on the size of a visibility clique for homothetes of a convex (not necessarily regular) k-gon.
AU - Fulek, Radoslav
AU - Radoičić, Radoš
ID - 1596
TI - Vertical visibility among parallel polygons in three dimensions
VL - 9411
ER -
TY - JOUR
AB - We consider Markov decision processes (MDPs) with specifications given as Büchi (liveness) objectives, and examine the problem of computing the set of almost-sure winning vertices such that the objective can be ensured with probability 1 from these vertices. We study for the first time the average-case complexity of the classical algorithm for computing the set of almost-sure winning vertices for MDPs with Büchi objectives. Our contributions are as follows: First, we show that for MDPs with constant out-degree the expected number of iterations is at most logarithmic and the average-case running time is linear (as compared to the worst-case linear number of iterations and quadratic time complexity). Second, for the average-case analysis over all MDPs we show that the expected number of iterations is constant and the average-case running time is linear (again as compared to the worst-case linear number of iterations and quadratic time complexity). Finally we also show that when all MDPs are equally likely, the probability that the classical algorithm requires more than a constant number of iterations is exponentially small.
AU - Chatterjee, Krishnendu
AU - Joglekar, Manas
AU - Shah, Nisarg
ID - 1598
IS - 3
JF - Theoretical Computer Science
TI - Average case analysis of the classical algorithm for Markov decision processes with Büchi objectives
VL - 573
ER -
TY - CONF
AB - We propose a flexible exchange format for ω-automata, as typically used in formal verification, and implement support for it in a range of established tools. Our aim is to simplify the interaction of tools, helping the research community to build upon other people’s work. A key feature of the format is the use of very generic acceptance conditions, specified by Boolean combinations of acceptance primitives, rather than being limited to common cases such as Büchi, Streett, or Rabin. Such flexibility in the choice of acceptance conditions can be exploited in applications, for example in probabilistic model checking, and furthermore encourages the development of acceptance-agnostic tools for automata manipulations. The format allows acceptance conditions that are either state-based or transition-based, and also supports alternating automata.
AU - Babiak, Tomáš
AU - Blahoudek, František
AU - Duret Lutz, Alexandre
AU - Klein, Joachim
AU - Kretinsky, Jan
AU - Mueller, Daniel
AU - Parker, David
AU - Strejček, Jan
ID - 1601
TI - The Hanoi omega-automata format
VL - 9206
ER -
TY - JOUR
AB - Interprocedural analysis is at the heart of numerous applications in programming languages, such as alias analysis, constant propagation, etc. Recursive state machines (RSMs) are standard models for interprocedural analysis. We consider a general framework with RSMs where the transitions are labeled from a semiring, and path properties are algebraic with semiring operations. RSMs with algebraic path properties can model interprocedural dataflow analysis problems, the shortest path problem, the most probable path problem, etc. The traditional algorithms for interprocedural analysis focus on path properties where the starting point is fixed as the entry point of a specific method. In this work, we consider possible multiple queries as required in many applications such as in alias analysis. The study of multiple queries allows us to bring in a very important algorithmic distinction between the resource usage of the one-time preprocessing vs for each individual query. The second aspect that we consider is that the control flow graphs for most programs have constant treewidth. Our main contributions are simple and implementable algorithms that supportmultiple queries for algebraic path properties for RSMs that have constant treewidth. Our theoretical results show that our algorithms have small additional one-time preprocessing, but can answer subsequent queries significantly faster as compared to the current best-known solutions for several important problems, such as interprocedural reachability and shortest path. We provide a prototype implementation for interprocedural reachability and intraprocedural shortest path that gives a significant speed-up on several benchmarks.
AU - Chatterjee, Krishnendu
AU - Ibsen-Jensen, Rasmus
AU - Pavlogiannis, Andreas
AU - Goyal, Prateesh
ID - 1602
IS - 1
JF - ACM SIGPLAN Notices
TI - Faster algorithms for algebraic path properties in recursive state machines with constant treewidth
VL - 50
ER -
TY - CONF
AB - For deterministic systems, a counterexample to a property can simply be an error trace, whereas counterexamples in probabilistic systems are necessarily more complex. For instance, a set of erroneous traces with a sufficient cumulative probability mass can be used. Since these are too large objects to understand and manipulate, compact representations such as subchains have been considered. In the case of probabilistic systems with non-determinism, the situation is even more complex. While a subchain for a given strategy (or scheduler, resolving non-determinism) is a straightforward choice, we take a different approach. Instead, we focus on the strategy itself, and extract the most important decisions it makes, and present its succinct representation.
The key tools we employ to achieve this are (1) introducing a concept of importance of a state w.r.t. the strategy, and (2) learning using decision trees. There are three main consequent advantages of our approach. Firstly, it exploits the quantitative information on states, stressing the more important decisions. Secondly, it leads to a greater variability and degree of freedom in representing the strategies. Thirdly, the representation uses a self-explanatory data structure. In summary, our approach produces more succinct and more explainable strategies, as opposed to e.g. binary decision diagrams. Finally, our experimental results show that we can extract several rules describing the strategy even for very large systems that do not fit in memory, and based on the rules explain the erroneous behaviour.
AU - Brázdil, Tomáš
AU - Chatterjee, Krishnendu
AU - Chmelik, Martin
AU - Fellner, Andreas
AU - Kretinsky, Jan
ID - 1603
TI - Counterexample explanation by learning small strategies in Markov decision processes
VL - 9206
ER -
TY - CONF
AB - Multiaffine hybrid automata (MHA) represent a powerful formalism to model complex dynamical systems. This formalism is particularly suited for the representation of biological systems which often exhibit highly non-linear behavior. In this paper, we consider the problem of parameter identification for MHA. We present an abstraction of MHA based on linear hybrid automata, which can be analyzed by the SpaceEx model checker. This abstraction enables a precise handling of time-dependent properties. We demonstrate the potential of our approach on a model of a genetic regulatory network and a myocyte model.
AU - Bogomolov, Sergiy
AU - Schilling, Christian
AU - Bartocci, Ezio
AU - Batt, Grégory
AU - Kong, Hui
AU - Grosu, Radu
ID - 1605
TI - Abstraction-based parameter synthesis for multiaffine systems
VL - 9434
ER -
TY - CONF
AB - The synthesis problem asks for the automatic construction of a system from its specification. In the traditional setting, the system is “constructed from scratch” rather than composed from reusable components. However, this is rare in practice, and almost every non-trivial software system relies heavily on the use of libraries of reusable components. Recently, Lustig and Vardi introduced dataflow and controlflow synthesis from libraries of reusable components. They proved that dataflow synthesis is undecidable, while controlflow synthesis is decidable. The problem of controlflow synthesis from libraries of probabilistic components was considered by Nain, Lustig and Vardi, and was shown to be decidable for qualitative analysis (that asks that the specification be satisfied with probability 1). Our main contribution for controlflow synthesis from probabilistic components is to establish better complexity bounds for the qualitative analysis problem, and to show that the more general quantitative problem is undecidable. For the qualitative analysis, we show that the problem (i) is EXPTIME-complete when the specification is given as a deterministic parity word automaton, improving the previously known 2EXPTIME upper bound; and (ii) belongs to UP ∩ coUP and is parity-games hard, when the specification is given directly as a parity condition on the components, improving the previously known EXPTIME upper bound.
AU - Chatterjee, Krishnendu
AU - Doyen, Laurent
AU - Vardi, Moshe
ID - 1609
TI - The complexity of synthesis from probabilistic components
VL - 9135
ER -
TY - JOUR
AB - Biosensors for signaling molecules allow the study of physiological processes by bringing together the fields of protein engineering, fluorescence imaging, and cell biology. Construction of genetically encoded biosensors generally relies on the availability of a binding "core" that is both specific and stable, which can then be combined with fluorescent molecules to create a sensor. However, binding proteins with the desired properties are often not available in nature and substantial improvement to sensors can be required, particularly with regard to their durability. Ancestral protein reconstruction is a powerful protein-engineering tool able to generate highly stable and functional proteins. In this work, we sought to establish the utility of ancestral protein reconstruction to biosensor development, beginning with the construction of an l-arginine biosensor. l-arginine, as the immediate precursor to nitric oxide, is an important molecule in many physiological contexts including brain function. Using a combination of ancestral reconstruction and circular permutation, we constructed a Förster resonance energy transfer (FRET) biosensor for l-arginine (cpFLIPR). cpFLIPR displays high sensitivity and specificity, with a Kd of ∼14 μM and a maximal dynamic range of 35%. Importantly, cpFLIPR was highly robust, enabling accurate l-arginine measurement at physiological temperatures. We established that cpFLIPR is compatible with two-photon excitation fluorescence microscopy and report l-arginine concentrations in brain tissue.
AU - Whitfield, Jason
AU - Zhang, William
AU - Herde, Michel
AU - Clifton, Ben
AU - Radziejewski, Johanna
AU - Janovjak, Harald L
AU - Henneberger, Christian
AU - Jackson, Colin
ID - 1611
IS - 9
JF - Protein Science
TI - Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction
VL - 24
ER -
TY - JOUR
AB - GABAergic perisoma-inhibiting fast-spiking interneurons (PIIs) effectively control the activity of large neuron populations by their wide axonal arborizations. It is generally assumed that the output of one PII to its target cells is strong and rapid. Here, we show that, unexpectedly, both strength and time course of PII-mediated perisomatic inhibition change with distance between synaptically connected partners in the rodent hippocampus. Synaptic signals become weaker due to lower contact numbers and decay more slowly with distance, very likely resulting from changes in GABAA receptor subunit composition. When distance-dependent synaptic inhibition is introduced to a rhythmically active neuronal network model, randomly driven principal cell assemblies are strongly synchronized by the PIIs, leading to higher precision in principal cell spike times than in a network with uniform synaptic inhibition.
AU - Strüber, Michael
AU - Jonas, Peter M
AU - Bartos, Marlene
ID - 1614
IS - 4
JF - PNAS
TI - Strength and duration of perisomatic GABAergic inhibition depend on distance between synaptically connected cells
VL - 112
ER -
TY - JOUR
AB - Loss-of-function mutations in the synaptic adhesion protein Neuroligin-4 are among the most common genetic abnormalities associated with autism spectrum disorders, but little is known about the function of Neuroligin-4 and the consequences of its loss. We assessed synaptic and network characteristics in Neuroligin-4 knockout mice, focusing on the hippocampus as a model brain region with a critical role in cognition and memory, and found that Neuroligin-4 deletion causes subtle defects of the protein composition and function of GABAergic synapses in the hippocampal CA3 region. Interestingly, these subtle synaptic changes are accompanied by pronounced perturbations of γ-oscillatory network activity, which has been implicated in cognitive function and is altered in multiple psychiatric and neurodevelopmental disorders. Our data provide important insights into the mechanisms by which Neuroligin-4-dependent GABAergic synapses may contribute to autism phenotypes and indicate new strategies for therapeutic approaches.
AU - Hammer, Matthieu
AU - Krueger Burg, Dilja
AU - Tuffy, Liam
AU - Cooper, Benjamin
AU - Taschenberger, Holger
AU - Goswami, Sarit
AU - Ehrenreich, Hannelore
AU - Jonas, Peter M
AU - Varoqueaux, Frederique
AU - Rhee, Jeong
AU - Brose, Nils
ID - 1615
IS - 3
JF - Cell Reports
TI - Perturbed hippocampal synaptic inhibition and γ-oscillations in a neuroligin-4 knockout mouse model of autism
VL - 13
ER -
TY - JOUR
AB - CCL19 and CCL21 are chemokines involved in the trafficking of immune cells, particularly within the lymphatic system, through activation of CCR7. Concurrent expression of PSGL-1 and CCR7 in naive T-cells enhances recruitment of these cells to secondary lymphoid organs by CCL19 and CCL21. Here the solution structure of CCL19 is reported. It contains a canonical chemokine domain. Chemical shift mapping shows the N-termini of PSGL-1 and CCR7 have overlapping binding sites for CCL19 and binding is competitive. Implications for the mechanism of PSGL-1's enhancement of resting T-cell recruitment are discussed.
AU - Veldkamp, Christopher
AU - Kiermaier, Eva
AU - Gabel Eissens, Skylar
AU - Gillitzer, Miranda
AU - Lippner, David
AU - Disilvio, Frank
AU - Mueller, Casey
AU - Wantuch, Paeton
AU - Chaffee, Gary
AU - Famiglietti, Michael
AU - Zgoba, Danielle
AU - Bailey, Asha
AU - Bah, Yaya
AU - Engebretson, Samantha
AU - Graupner, David
AU - Lackner, Emily
AU - Larosa, Vincent
AU - Medeiros, Tysha
AU - Olson, Michael
AU - Phillips, Andrew
AU - Pyles, Harley
AU - Richard, Amanda
AU - Schoeller, Scott
AU - Touzeau, Boris
AU - Williams, Larry
AU - Sixt, Michael K
AU - Peterson, Francis
ID - 1618
IS - 27
JF - Biochemistry
TI - Solution structure of CCL19 and identification of overlapping CCR7 and PSGL-1 binding sites
VL - 54
ER -
TY - JOUR
AB - Background
Photosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible.
Results
We present a method for high-throughput, single-cell analysis and sorting of genetically engineered l-lactate-producing strains of Synechocystis sp. PCC6803. A microfluidic device is used to encapsulate single cells in picoliter droplets, assay the droplets for l-lactate production, and sort strains with high productivity. We demonstrate the separation of low- and high-producing reference strains, as well as enrichment of a more productive l-lactate-synthesizing population after UV-induced mutagenesis. The droplet platform also revealed population heterogeneity in photosynthetic growth and lactate production, as well as the presence of metabolically stalled cells.
Conclusions
The workflow will facilitate metabolic engineering and directed evolution studies and will be useful in studies of cyanobacteria biochemistry and physiology.
AU - Hammar, Petter
AU - Angermayr, Andreas
AU - Sjostrom, Staffan
AU - Van Der Meer, Josefin
AU - Hellingwerf, Klaas
AU - Hudson, Elton
AU - Joensson, Hakaan
ID - 1623
IS - 1
JF - Biotechnology for Biofuels
TI - Single-cell screening of photosynthetic growth and lactate production by cyanobacteria
VL - 8
ER -
TY - JOUR
AB - Population structure can facilitate evolution of cooperation. In a structured population, cooperators can form clusters which resist exploitation by defectors. Recently, it was observed that a shift update rule is an extremely strong amplifier of cooperation in a one dimensional spatial model. For the shift update rule, an individual is chosen for reproduction proportional to fecundity; the offspring is placed next to the parent; a random individual dies. Subsequently, the population is rearranged (shifted) until all individual cells are again evenly spaced out. For large population size and a one dimensional population structure, the shift update rule favors cooperation for any benefit-to-cost ratio greater than one. But every attempt to generalize shift updating to higher dimensions while maintaining its strong effect has failed. The reason is that in two dimensions the clusters are fragmented by the movements caused by rearranging the cells. Here we introduce the natural phenomenon of a repulsive force between cells of different types. After a birth and death event, the cells are being rearranged minimizing the overall energy expenditure. If the repulsive force is sufficiently high, shift becomes a strong promoter of cooperation in two dimensions.
AU - Pavlogiannis, Andreas
AU - Chatterjee, Krishnendu
AU - Adlam, Ben
AU - Nowak, Martin
ID - 1624
JF - Scientific Reports
TI - Cellular cooperation with shift updating and repulsion
VL - 5
ER -
TY - CONF
AB - We propose a method for fabricating deformable objects with spatially varying elasticity using 3D printing. Using a single, relatively stiff printer material, our method designs an assembly of smallscale microstructures that have the effect of a softer material at the object scale, with properties depending on the microstructure used in each part of the object. We build on work in the area of metamaterials, using numerical optimization to design tiled microstructures with desired properties, but with the key difference that our method designs families of related structures that can be interpolated to smoothly vary the material properties over a wide range. To create an object with spatially varying elastic properties, we tile the object's interior with microstructures drawn from these families, generating a different microstructure for each cell using an efficient algorithm to select compatible structures for neighboring cells. We show results computed for both 2D and 3D objects, validating several 2D and 3D printed structures using standard material tests as well as demonstrating various example applications.
AU - Schumacher, Christian
AU - Bickel, Bernd
AU - Rys, Jan
AU - Marschner, Steve
AU - Daraio, Chiara
AU - Gross, Markus
ID - 1628
IS - 4
TI - Microstructures to control elasticity in 3D printing
VL - 34
ER -
TY - CONF
AB - We present a method to learn and propagate shape placements in 2D polygonal scenes from a few examples provided by a user. The placement of a shape is modeled as an oriented bounding box. Simple geometric relationships between this bounding box and nearby scene polygons define a feature set for the placement. The feature sets of all example placements are then used to learn a probabilistic model over all possible placements and scenes. With this model, we can generate a new set of placements with similar geometric relationships in any given scene. We introduce extensions that enable propagation and generation of shapes in 3D scenes, as well as the application of a learned modeling session to large scenes without additional user interaction. These concepts allow us to generate complex scenes with thousands of objects with relatively little user interaction.
AU - Guerrero, Paul
AU - Jeschke, Stefan
AU - Wimmer, Michael
AU - Wonka, Peter
ID - 1630
IS - 4
TI - Learning shape placements by example
VL - 34
ER -
TY - CONF
AB - This paper presents a liquid simulation technique that enforces the incompressibility condition using a stream function solve instead of a pressure projection. Previous methods have used stream function techniques for the simulation of detailed single-phase flows, but a formulation for liquid simulation has proved elusive in part due to the free surface boundary conditions. In this paper, we introduce a stream function approach to liquid simulations with novel boundary conditions for free surfaces, solid obstacles, and solid-fluid coupling.
Although our approach increases the dimension of the linear system necessary to enforce incompressibility, it provides interesting and surprising benefits. First, the resulting flow is guaranteed to be divergence-free regardless of the accuracy of the solve. Second, our free-surface boundary conditions guarantee divergence-free motion even in the un-simulated air phase, which enables two-phase flow simulation by only computing a single phase. We implemented this method using a variant of FLIP simulation which only samples particles within a narrow band of the liquid surface, and we illustrate the effectiveness of our method for detailed two-phase flow simulations with complex boundaries, detailed bubble interactions, and two-way solid-fluid coupling.
AU - Ando, Ryoichi
AU - Thuerey, Nils
AU - Wojtan, Christopher J
ID - 1632
IS - 4
TI - A stream function solver for liquid simulations
VL - 34
ER -
TY - CONF
AB - We present a method for simulating brittle fracture under the assumptions of quasi-static linear elastic fracture mechanics (LEFM). Using the boundary element method (BEM) and Lagrangian crack-fronts, we produce highly detailed fracture surfaces. The computational cost of the BEM is alleviated by using a low-resolution mesh and interpolating the resulting stress intensity factors when propagating the high-resolution crack-front.
Our system produces physics-based fracture surfaces with high spatial and temporal resolution, taking spatial variation of material toughness and/or strength into account. It also allows for crack initiation to be handled separately from crack propagation, which is not only more reasonable from a physics perspective, but can also be used to control the simulation.
Separating the resolution of the crack-front from the resolution of the computational mesh increases the efficiency and therefore the amount of visual detail on the resulting fracture surfaces. The BEM also allows us to re-use previously computed blocks of the system matrix.
AU - Hahn, David
AU - Wojtan, Christopher J
ID - 1633
IS - 4
TI - High-resolution brittle fracture simulation with boundary elements
VL - 34
ER -
TY - CONF
AB - Simulating the delightful dynamics of soap films, bubbles, and foams has traditionally required the use of a fully three-dimensional many-phase Navier-Stokes solver, even though their visual appearance is completely dominated by the thin liquid surface. We depart from earlier work on soap bubbles and foams by noting that their dynamics are naturally described by a Lagrangian vortex sheet model in which circulation is the primary variable. This leads us to derive a novel circulation-preserving surface-only discretization of foam dynamics driven by surface tension on a non-manifold triangle mesh. We represent the surface using a mesh-based multimaterial surface tracker which supports complex bubble topology changes, and evolve the surface according to the ambient air flow induced by a scalar circulation field stored on the mesh. Surface tension forces give rise to a simple update rule for circulation, even at non-manifold Plateau borders, based on a discrete measure of signed scalar mean curvature. We further incorporate vertex constraints to enable the interaction of soap films with wires. The result is a method that is at once simple, robust, and efficient, yet able to capture an array of soap films behaviors including foam rearrangement, catenoid collapse, blowing bubbles, and double bubbles being pulled apart.
AU - Da, Fang
AU - Batty, Christopher
AU - Wojtan, Christopher J
AU - Grinspun, Eitan
ID - 1634
IS - 4
TI - Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams
VL - 34
ER -
TY - JOUR
AB - We calculate a Ricci curvature lower bound for some classical examples of random walks, namely, a chain on a slice of the n-dimensional discrete cube (the so-called Bernoulli-Laplace model) and the random transposition shuffle of the symmetric group of permutations on n letters.
AU - Erbar, Matthias
AU - Maas, Jan
AU - Tetali, Prasad
ID - 1635
IS - 4
JF - Annales de la faculté des sciences de Toulouse
TI - Discrete Ricci curvature bounds for Bernoulli-Laplace and random transposition models
VL - 24
ER -