TY - DATA AB - basic data for use in code for experimental data analysis for manuscript under revision: Dynamic pathogen detection and social feedback shape collective hygiene in ants Casillas-Pérez B, Boďová K, Grasse AV, Tkačik G, Cremer S AU - Cremer, Sylvia ID - 12945 KW - collective behavior KW - host-pathogen interactions KW - social immunity KW - epidemiology KW - social insects KW - probabilistic modeling TI - Data from: "Dynamic pathogen detection and social feedback shape collective hygiene in ants" ER - TY - THES AB - High-performance semiconductors rely upon precise control of heat and charge transport. This can be achieved by precisely engineering defects in polycrystalline solids. There are multiple approaches to preparing such polycrystalline semiconductors, and the transformation of solution-processed colloidal nanoparticles is appealing because colloidal nanoparticles combine low cost with structural and compositional tunability along with rich surface chemistry. However, the multiple processes from nanoparticle synthesis to the final bulk nanocomposites are very complex. They involve nanoparticle purification, post-synthetic modifications, and finally consolidation (thermal treatments and densification). All these properties dictate the final material’s composition and microstructure, ultimately affecting its functional properties. This thesis explores the synthesis, surface chemistry and consolidation of colloidal semiconductor nanoparticles into dense solids. In particular, the transformations that take place during these processes, and their effect on the material’s transport properties are evaluated. AU - Calcabrini, Mariano ID - 12885 SN - 2663-337X TI - Nanoparticle-based semiconductor solids: From synthesis to consolidation ER - TY - JOUR AB - Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet–Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz–Schur multipliers over group algebras and generalized depolarizing semigroups. AU - Wirth, Melchior AU - Zhang, Haonan ID - 12087 JF - Annales Henri Poincare SN - 1424-0637 TI - Curvature-dimension conditions for symmetric quantum Markov semigroups VL - 24 ER - TY - JOUR AB - In 1998 Burago and Kleiner and (independently) McMullen gave examples of separated nets in Euclidean space which are non-bilipschitz equivalent to the integer lattice. We study weaker notions of equivalence of separated nets and demonstrate that such notions also give rise to distinct equivalence classes. Put differently, we find occurrences of particularly strong divergence of separated nets from the integer lattice. Our approach generalises that of Burago and Kleiner and McMullen which takes place largely in a continuous setting. Existence of irregular separated nets is verified via the existence of non-realisable density functions ρ:[0,1]d→(0,∞). In the present work we obtain stronger types of non-realisable densities. AU - Dymond, Michael AU - Kaluza, Vojtech ID - 9652 JF - Israel Journal of Mathematics KW - Lipschitz KW - bilipschitz KW - bounded displacement KW - modulus of continuity KW - separated net KW - non-realisable density KW - Burago--Kleiner construction TI - Highly irregular separated nets VL - 253 ER - TY - JOUR AB - We study the large scale behavior of elliptic systems with stationary random coefficient that have only slowly decaying correlations. To this aim we analyze the so-called corrector equation, a degenerate elliptic equation posed in the probability space. In this contribution, we use a parabolic approach and optimally quantify the time decay of the semigroup. For the theoretical point of view, we prove an optimal decay estimate of the gradient and flux of the corrector when spatially averaged over a scale R larger than 1. For the numerical point of view, our results provide convenient tools for the analysis of various numerical methods. AU - Clozeau, Nicolas ID - 10173 JF - Stochastics and Partial Differential Equations: Analysis and Computations SN - 2194-0401 TI - Optimal decay of the parabolic semigroup in stochastic homogenization for correlated coefficient fields VL - 11 ER - TY - JOUR AB - Following E. Wigner’s original vision, we prove that sampling the eigenvalue gaps within the bulk spectrum of a fixed (deformed) Wigner matrix H yields the celebrated Wigner-Dyson-Mehta universal statistics with high probability. Similarly, we prove universality for a monoparametric family of deformed Wigner matrices H+xA with a deterministic Hermitian matrix A and a fixed Wigner matrix H, just using the randomness of a single scalar real random variable x. Both results constitute quenched versions of bulk universality that has so far only been proven in annealed sense with respect to the probability space of the matrix ensemble. AU - Cipolloni, Giorgio AU - Erdös, László AU - Schröder, Dominik J ID - 11741 JF - Probability Theory and Related Fields SN - 0178-8051 TI - Quenched universality for deformed Wigner matrices VL - 185 ER - TY - JOUR AB - High carrier mobility is critical to improving thermoelectric performance over a broad temperature range. However, traditional doping inevitably deteriorates carrier mobility. Herein, we develop a strategy for fine tuning of defects to improve carrier mobility. To begin, n-type PbTe is created by compensating for the intrinsic Pb vacancy in bare PbTe. Excess Pb2+ reduces vacancy scattering, resulting in a high carrier mobility of ∼3400 cm2 V–1 s–1. Then, excess Ag is introduced to compensate for the remaining intrinsic Pb vacancies. We find that excess Ag exhibits a dynamic doping process with increasing temperatures, increasing both the carrier concentration and carrier mobility throughout a wide temperature range; specifically, an ultrahigh carrier mobility ∼7300 cm2 V–1 s–1 is obtained for Pb1.01Te + 0.002Ag at 300 K. Moreover, the dynamic doping-induced high carrier concentration suppresses the bipolar thermal conductivity at high temperatures. The final step is using iodine to optimize the carrier concentration to ∼1019 cm–3. Ultimately, a maximum ZT value of ∼1.5 and a large average ZTave value of ∼1.0 at 300–773 K are obtained for Pb1.01Te0.998I0.002 + 0.002Ag. These findings demonstrate that fine tuning of defects with <0.5% impurities can remarkably enhance carrier mobility and improve thermoelectric performance. AU - Wang, Siqi AU - Chang, Cheng AU - Bai, Shulin AU - Qin, Bingchao AU - Zhu, Yingcai AU - Zhan, Shaoping AU - Zheng, Junqing AU - Tang, Shuwei AU - Zhao, Li Dong ID - 12331 IS - 2 JF - Chemistry of Materials SN - 0897-4756 TI - Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe VL - 35 ER - TY - JOUR AB - A simple drawing D(G) of a graph G is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge e in the complement of G can be inserted into D(G) if there exists a simple drawing of G+e extending D(G). As a result of Levi’s Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of G can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles A and a pseudosegment σ, it can be decided in polynomial time whether there exists a pseudocircle Φσ extending σ for which A∪{Φσ} is again an arrangement of pseudocircles. AU - Arroyo Guevara, Alan M AU - Klute, Fabian AU - Parada, Irene AU - Vogtenhuber, Birgit AU - Seidel, Raimund AU - Wiedera, Tilo ID - 11999 JF - Discrete and Computational Geometry SN - 0179-5376 TI - Inserting one edge into a simple drawing is hard VL - 69 ER - TY - JOUR AB - The design and implementation of efficient concurrent data structures has seen significant attention. However, most of this work has focused on concurrent data structures providing good worst-case guarantees, although, in real workloads, objects are often accessed at different rates. Efficient distribution-adaptive data structures, such as splay-trees, are known in the sequential case; however, they often are hard to translate efficiently to the concurrent case. We investigate distribution-adaptive concurrent data structures, and propose a new design called the splay-list. At a high level, the splay-list is similar to a standard skip-list, with the key distinction that the height of each element adapts dynamically to its access rate: popular elements “move up,” whereas rarely-accessed elements decrease in height. We show that the splay-list provides order-optimal amortized complexity bounds for a subset of operations, while being amenable to efficient concurrent implementation. Experiments show that the splay-list can leverage distribution-adaptivity for performance, and can outperform the only previously-known distribution-adaptive concurrent design in certain workloads. AU - Aksenov, Vitalii AU - Alistarh, Dan-Adrian AU - Drozdova, Alexandra AU - Mohtashami, Amirkeivan ID - 12330 JF - Distributed Computing SN - 0178-2770 TI - The splay-list: A distribution-adaptive concurrent skip-list VL - 36 ER - TY - JOUR AB - The term “haplotype block” is commonly used in the developing field of haplotype-based inference methods. We argue that the term should be defined based on the structure of the Ancestral Recombination Graph (ARG), which contains complete information on the ancestry of a sample. We use simulated examples to demonstrate key features of the relationship between haplotype blocks and ancestral structure, emphasizing the stochasticity of the processes that generate them. Even the simplest cases of neutrality or of a “hard” selective sweep produce a rich structure, often missed by commonly used statistics. We highlight a number of novel methods for inferring haplotype structure, based on the full ARG, or on a sequence of trees, and illustrate how they can be used to define haplotype blocks using an empirical data set. While the advent of new, computationally efficient methods makes it possible to apply these concepts broadly, they (and additional new methods) could benefit from adding features to explore haplotype blocks, as we define them. Understanding and applying the concept of the haplotype block will be essential to fully exploit long and linked-read sequencing technologies. AU - Shipilina, Daria AU - Pal, Arka AU - Stankowski, Sean AU - Chan, Yingguang Frank AU - Barton, Nicholas H ID - 12159 IS - 6 JF - Molecular Ecology KW - Genetics KW - Ecology KW - Evolution KW - Behavior and Systematics SN - 0962-1083 TI - On the origin and structure of haplotype blocks VL - 32 ER - TY - JOUR AB - Probing the dynamics of aromatic side chains provides important insights into the behavior of a protein because flips of aromatic rings in a protein’s hydrophobic core report on breathing motion involving a large part of the protein. Inherently invisible to crystallography, aromatic motions have been primarily studied by solution NMR. The question how packing of proteins in crystals affects ring flips has, thus, remained largely unexplored. Here we apply magic-angle spinning NMR, advanced phenylalanine 1H-13C/2H isotope labeling and MD simulation to a protein in three different crystal packing environments to shed light onto possible impact of packing on ring flips. The flips of the two Phe residues in ubiquitin, both surface exposed, appear remarkably conserved in the different crystal forms, even though the intermolecular packing is quite different: Phe4 flips on a ca. 10–20 ns time scale, and Phe45 are broadened in all crystals, presumably due to µs motion. Our findings suggest that intramolecular influences are more important for ring flips than intermolecular (packing) effects. AU - Gauto, Diego F. AU - Lebedenko, Olga O. AU - Becker, Lea Marie AU - Ayala, Isabel AU - Lichtenecker, Roman AU - Skrynnikov, Nikolai R. AU - Schanda, Paul ID - 12114 JF - Journal of Structural Biology: X KW - Structural Biology SN - 2590-1524 TI - Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD VL - 7 ER - TY - JOUR AB - Small GTPases play essential roles in the organization of eukaryotic cells. In recent years, it has become clear that their intracellular functions result from intricate biochemical networks of the GTPase and their regulators that dynamically bind to a membrane surface. Due to the inherent complexities of their interactions, however, revealing the underlying mechanisms of action is often difficult to achieve from in vivo studies. This review summarizes in vitro reconstitution approaches developed to obtain a better mechanistic understanding of how small GTPase activities are regulated in space and time. AU - Loose, Martin AU - Auer, Albert AU - Brognara, Gabriel AU - Budiman, Hanifatul R AU - Kowalski, Lukasz M AU - Matijevic, Ivana ID - 12163 IS - 6 JF - FEBS Letters KW - Cell Biology KW - Genetics KW - Molecular Biology KW - Biochemistry KW - Structural Biology KW - Biophysics SN - 0014-5793 TI - In vitro reconstitution of small GTPase regulation VL - 597 ER - TY - JOUR AB - A shared-memory counter is a widely-used and well-studied concurrent object. It supports two operations: An Inc operation that increases its value by 1 and a Read operation that returns its current value. In Jayanti et al (SIAM J Comput, 30(2), 2000), Jayanti, Tan and Toueg proved a linear lower bound on the worst-case step complexity of obstruction-free implementations, from read-write registers, of a large class of shared objects that includes counters. The lower bound leaves open the question of finding counter implementations with sub-linear amortized step complexity. In this work, we address this gap. We show that n-process, wait-free and linearizable counters can be implemented from read-write registers with O(log2n) amortized step complexity. This is the first counter algorithm from read-write registers that provides sub-linear amortized step complexity in executions of arbitrary length. Since a logarithmic lower bound on the amortized step complexity of obstruction-free counter implementations exists, our upper bound is within a logarithmic factor of the optimal. The worst-case step complexity of the construction remains linear, which is optimal. This is obtained thanks to a new max register construction with O(logn) amortized step complexity in executions of arbitrary length in which the value stored in the register does not grow too quickly. We then leverage an existing counter algorithm by Aspnes, Attiya and Censor-Hillel [1] in which we “plug” our max register implementation to show that it remains linearizable while achieving O(log2n) amortized step complexity. AU - Baig, Mirza Ahad AU - Hendler, Danny AU - Milani, Alessia AU - Travers, Corentin ID - 12164 JF - Distributed Computing KW - Computational Theory and Mathematics KW - Computer Networks and Communications KW - Hardware and Architecture KW - Theoretical Computer Science SN - 0178-2770 TI - Long-lived counters with polylogarithmic amortized step complexity VL - 36 ER - TY - JOUR AB - Introduction: The olfactory system in most mammals is divided into several subsystems based on the anatomical locations of the neuroreceptor cells involved and the receptor families that are expressed. In addition to the main olfactory system and the vomeronasal system, a range of olfactory subsystems converge onto the transition zone located between the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), which has been termed the olfactory limbus (OL). The OL contains specialized glomeruli that receive noncanonical sensory afferences and which interact with the MOB and AOB. Little is known regarding the olfactory subsystems of mammals other than laboratory rodents. Methods: We have focused on characterizing the OL in the red fox by performing general and specific histological stainings on serial sections, using both single and double immunohistochemical and lectin-histochemical labeling techniques. Results: As a result, we have been able to determine that the OL of the red fox (Vulpes vulpes) displays an uncommonly high degree of development and complexity. Discussion: This makes this species a novel mammalian model, the study of which could improve our understanding of the noncanonical pathways involved in the processing of chemosensory cues. AU - Ortiz-Leal, Irene AU - Torres, Mateo V. AU - Vargas Barroso, Victor M AU - Fidalgo, Luis Eusebio AU - López-Beceiro, Ana María AU - Larriva-Sahd, Jorge A. AU - Sánchez-Quinteiro, Pablo ID - 12515 JF - Frontiers in Neuroanatomy TI - The olfactory limbus of the red fox (Vulpes vulpes). New insights regarding a noncanonical olfactory bulb pathway VL - 16 ER - TY - JOUR AB - Regulation of chromatin states involves the dynamic interplay between different histone modifications to control gene expression. Recent advances have enabled mapping of histone marks in single cells, but most methods are constrained to profile only one histone mark per cell. Here, we present an integrated experimental and computational framework, scChIX-seq (single-cell chromatin immunocleavage and unmixing sequencing), to map several histone marks in single cells. scChIX-seq multiplexes two histone marks together in single cells, then computationally deconvolves the signal using training data from respective histone mark profiles. This framework learns the cell-type-specific correlation structure between histone marks, and therefore does not require a priori assumptions of their genomic distributions. Using scChIX-seq, we demonstrate multimodal analysis of histone marks in single cells across a range of mark combinations. Modeling dynamics of in vitro macrophage differentiation enables integrated analysis of chromatin velocity. Overall, scChIX-seq unlocks systematic interrogation of the interplay between histone modifications in single cells. AU - Yeung, Jake AU - Florescu, Maria AU - Zeller, Peter AU - De Barbanson, Buys Anton AU - Wellenstein, Max D. AU - Van Oudenaarden, Alexander ID - 12106 JF - Nature Biotechnology SN - 1087-0156 TI - scChIX-seq infers dynamic relationships between histone modifications in single cells VL - 41 ER - TY - JOUR AB - We consider a gas of n bosonic particles confined in a box [−ℓ/2,ℓ/2]3 with Neumann boundary conditions. We prove Bose–Einstein condensation in the Gross–Pitaevskii regime, with an optimal bound on the condensate depletion. Moreover, our lower bound for the ground state energy in a small box [−ℓ/2,ℓ/2]3 implies (via Neumann bracketing) a lower bound for the ground state energy of N bosons in a large box [−L/2,L/2]3 with density ρ=N/L3 in the thermodynamic limit. AU - Boccato, Chiara AU - Seiringer, Robert ID - 12183 JF - Annales Henri Poincare SN - 1424-0637 TI - The Bose Gas in a box with Neumann boundary conditions VL - 24 ER - TY - JOUR AB - Geometry is crucial in our efforts to comprehend the structures and dynamics of biomolecules. For example, volume, surface area, and integrated mean and Gaussian curvature of the union of balls representing a molecule are used to quantify its interactions with the water surrounding it in the morphometric implicit solvent models. The Alpha Shape theory provides an accurate and reliable method for computing these geometric measures. In this paper, we derive homogeneous formulas for the expressions of these measures and their derivatives with respect to the atomic coordinates, and we provide algorithms that implement them into a new software package, AlphaMol. The only variables in these formulas are the interatomic distances, making them insensitive to translations and rotations. AlphaMol includes a sequential algorithm and a parallel algorithm. In the parallel version, we partition the atoms of the molecule of interest into 3D rectangular blocks, using a kd-tree algorithm. We then apply the sequential algorithm of AlphaMol to each block, augmented by a buffer zone to account for atoms whose ball representations may partially cover the block. The current parallel version of AlphaMol leads to a 20-fold speed-up compared to an independent serial implementation when using 32 processors. For instance, it takes 31 s to compute the geometric measures and derivatives of each atom in a viral capsid with more than 26 million atoms on 32 Intel processors running at 2.7 GHz. The presence of the buffer zones, however, leads to redundant computations, which ultimately limit the impact of using multiple processors. AlphaMol is available as an OpenSource software. AU - Koehl, Patrice AU - Akopyan, Arseniy AU - Edelsbrunner, Herbert ID - 12544 IS - 3 JF - Journal of Chemical Information and Modeling SN - 1549-9596 TI - Computing the volume, surface area, mean, and Gaussian curvatures of molecules and their derivatives VL - 63 ER - TY - JOUR AB - Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers’ detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts. AU - Stock, Miriam AU - Milutinovic, Barbara AU - Hönigsberger, Michaela AU - Grasse, Anna V AU - Wiesenhofer, Florian AU - Kampleitner, Niklas AU - Narasimhan, Madhumitha AU - Schmitt, Thomas AU - Cremer, Sylvia ID - 12543 JF - Nature Ecology and Evolution TI - Pathogen evasion of social immunity VL - 7 ER - TY - JOUR AB - Differentiated X chromosomes are expected to have higher rates of adaptive divergence than autosomes, if new beneficial mutations are recessive (the “faster-X effect”), largely because these mutations are immediately exposed to selection in males. The evolution of X chromosomes after they stop recombining in males, but before they become hemizygous, has not been well explored theoretically. We use the diffusion approximation to infer substitution rates of beneficial and deleterious mutations under such a scenario. Our results show that selection is less efficient on diploid X loci than on autosomal and hemizygous X loci under a wide range of parameters. This “slower-X” effect is stronger for genes affecting primarily (or only) male fitness, and for sexually antagonistic genes. These unusual dynamics suggest that some of the peculiar features of X chromosomes, such as the differential accumulation of genes with sex-specific functions, may start arising earlier than previously appreciated. AU - Mrnjavac, Andrea AU - Khudiakova, Kseniia AU - Barton, Nicholas H AU - Vicoso, Beatriz ID - 12521 IS - 1 JF - Evolution Letters KW - Genetics KW - Ecology KW - Evolution KW - Behavior and Systematics SN - 2056-3744 TI - Slower-X: Reduced efficiency of selection in the early stages of X chromosome evolution VL - 7 ER - TY - JOUR AB - How to generate a brain of correct size and with appropriate cell-type diversity during development is a major question in Neuroscience. In the developing neocortex, radial glial progenitor (RGP) cells are the main neural stem cells that produce cortical excitatory projection neurons, glial cells, and establish the prospective postnatal stem cell niche in the lateral ventricles. RGPs follow a tightly orchestrated developmental program that when disrupted can result in severe cortical malformations such as microcephaly and megalencephaly. The precise cellular and molecular mechanisms instructing faithful RGP lineage progression are however not well understood. This review will summarize recent conceptual advances that contribute to our understanding of the general principles of RGP lineage progression. AU - Hippenmeyer, Simon ID - 12679 IS - 4 JF - Current Opinion in Neurobiology KW - General Neuroscience SN - 0959-4388 TI - Principles of neural stem cell lineage progression: Insights from developing cerebral cortex VL - 79 ER -