TY - JOUR
AB - Background: To understand information coding in single neurons, it is necessary to analyze subthreshold synaptic events, action potentials (APs), and their interrelation in different behavioral states. However, detecting excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) in behaving animals remains challenging, because of unfavorable signal-to-noise ratio, high frequency, fluctuating amplitude, and variable time course of synaptic events.
New method: We developed a method for synaptic event detection, termed MOD (Machine-learning Optimal-filtering Detection-procedure), which combines concepts of supervised machine learning and optimal Wiener filtering. Experts were asked to manually score short epochs of data. The algorithm was trained to obtain the optimal filter coefficients of a Wiener filter and the optimal detection threshold. Scored and unscored data were then processed with the optimal filter, and events were detected as peaks above threshold.
Results: We challenged MOD with EPSP traces in vivo in mice during spatial navigation and EPSC traces in vitro in slices under conditions of enhanced transmitter release. The area under the curve (AUC) of the receiver operating characteristics (ROC) curve was, on average, 0.894 for in vivo and 0.969 for in vitro data sets, indicating high detection accuracy and efficiency.
Comparison with existing methods: When benchmarked using a (1 − AUC)−1 metric, MOD outperformed previous methods (template-fit, deconvolution, and Bayesian methods) by an average factor of 3.13 for in vivo data sets, but showed comparable (template-fit, deconvolution) or higher (Bayesian) computational efficacy.
Conclusions: MOD may become an important new tool for large-scale, real-time analysis of synaptic activity.
AU - Zhang, Xiaomin
AU - Schlögl, Alois
AU - Vandael, David H
AU - Jonas, Peter M
ID - 9329
IS - 6
JF - Journal of Neuroscience Methods
SN - 01650270
TI - MOD: A novel machine-learning optimal-filtering method for accurate and efficient detection of subthreshold synaptic events in vivo
VL - 357
ER -
TY - JOUR
AB - In nerve cells the genes encoding for α2δ subunits of voltage-gated calcium channels have been linked to synaptic functions and neurological disease. Here we show that α2δ subunits are essential for the formation and organization of glutamatergic synapses. Using a cellular α2δ subunit triple-knockout/knockdown model, we demonstrate a failure in presynaptic differentiation evidenced by defective presynaptic calcium channel clustering and calcium influx, smaller presynaptic active zones, and a strongly reduced accumulation of presynaptic vesicle-associated proteins (synapsin and vGLUT). The presynaptic defect is associated with the downscaling of postsynaptic AMPA receptors and the postsynaptic density. The role of α2δ isoforms as synaptic organizers is highly redundant, as each individual α2δ isoform can rescue presynaptic calcium channel trafficking and expression of synaptic proteins. Moreover, α2δ-2 and α2δ-3 with mutated metal ion-dependent adhesion sites can fully rescue presynaptic synapsin expression but only partially calcium channel trafficking, suggesting that the regulatory role of α2δ subunits is independent from its role as a calcium channel subunit. Our findings influence the current view on excitatory synapse formation. First, our study suggests that postsynaptic differentiation is secondary to presynaptic differentiation. Second, the dependence of presynaptic differentiation on α2δ implicates α2δ subunits as potential nucleation points for the organization of synapses. Finally, our results suggest that α2δ subunits act as transsynaptic organizers of glutamatergic synapses, thereby aligning the synaptic active zone with the postsynaptic density.
AU - Schöpf, Clemens L.
AU - Ablinger, Cornelia
AU - Geisler, Stefanie M.
AU - Stanika, Ruslan I.
AU - Campiglio, Marta
AU - Kaufmann, Walter
AU - Nimmervoll, Benedikt
AU - Schlick, Bettina
AU - Brockhaus, Johannes
AU - Missler, Markus
AU - Shigemoto, Ryuichi
AU - Obermair, Gerald J.
ID - 9330
IS - 14
JF - PNAS
TI - Presynaptic α2δ subunits are key organizers of glutamatergic synapses
VL - 118
ER -
TY - JOUR
AB - Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL–RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL–RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner.
AU - Ötvös, Krisztina
AU - Miskolczi, Pál
AU - Marhavý, Peter
AU - Cruz-Ramírez, Alfredo
AU - Benková, Eva
AU - Robert, Stéphanie
AU - Bakó, László
ID - 9332
IS - 8
JF - International Journal of Molecular Sciences
SN - 16616596
TI - Pickle recruits retinoblastoma related 1 to control lateral root formation in arabidopsis
VL - 22
ER -
TY - JOUR
AB - We revise a previous result about the Fröhlich dynamics in the strong coupling limit obtained in Griesemer (Rev Math Phys 29(10):1750030, 2017). In the latter it was shown that the Fröhlich time evolution applied to the initial state φ0⊗ξα, where φ0 is the electron ground state of the Pekar energy functional and ξα the associated coherent state of the phonons, can be approximated by a global phase for times small compared to α2. In the present note we prove that a similar approximation holds for t=O(α2) if one includes a nontrivial effective dynamics for the phonons that is generated by an operator proportional to α−2 and quadratic in creation and annihilation operators. Our result implies that the electron ground state remains close to its initial state for times of order α2, while the phonon fluctuations around the coherent state ξα can be described by a time-dependent Bogoliubov transformation.
AU - Mitrouskas, David Johannes
ID - 9333
JF - Letters in Mathematical Physics
SN - 03779017
TI - A note on the Fröhlich dynamics in the strong coupling limit
VL - 111
ER -
TY - JOUR
AB - Quantum entanglement has been generated and verified in cold-atom experiments and used to make atom-interferometric measurements below the shot-noise limit. However, current state-of-the-art cold-atom devices exploit separable (i.e., unentangled) atomic states. This perspective piece asks the question: can entanglement usefully improve cold-atom sensors, in the sense that it gives new sensing capabilities unachievable with current state-of-the-art devices? We briefly review the state-of-the-art in precision cold-atom sensing, focusing on clocks and inertial sensors, identifying the potential benefits entanglement could bring to these devices, and the challenges that need to be overcome to realize these benefits. We survey demonstrated methods of generating metrologically useful entanglement in cold-atom systems, note their relative strengths and weaknesses, and assess their prospects for near-to-medium term quantum-enhanced cold-atom sensing.
AU - Szigeti, Stuart S.
AU - Hosten, Onur
AU - Haine, Simon A.
ID - 9331
IS - 14
JF - Applied Physics Letters
SN - 00036951
TI - Improving cold-atom sensors with quantum entanglement: Prospects and challenges
VL - 118
ER -
TY - JOUR
AB - Polaritons with directional in-plane propagation and ultralow losses in van der Waals (vdW) crystals promise unprecedented manipulation of light at the nanoscale. However, these polaritons present a crucial limitation: their directional propagation is intrinsically determined by the crystal structure of the host material, imposing forbidden directions of propagation. Here, we demonstrate that directional polaritons (in-plane hyperbolic phonon polaritons) in a vdW crystal (α-phase molybdenum trioxide) can be directed along forbidden directions by inducing an optical topological transition, which emerges when the slab is placed on a substrate with a given negative permittivity (4H–silicon carbide). By visualizing the transition in real space, we observe exotic polaritonic states between mutually orthogonal hyperbolic regimes, which unveil the topological origin of the transition: a gap opening in the dispersion. This work provides insights into optical topological transitions in vdW crystals, which introduce a route to direct light at the nanoscale.
AU - Duan, J.
AU - Álvarez-Pérez, G.
AU - Voronin, K. V.
AU - Prieto Gonzalez, Ivan
AU - Taboada-Gutiérrez, J.
AU - Volkov, V. S.
AU - Martín-Sánchez, J.
AU - Nikitin, A. Y.
AU - Alonso-González, P.
ID - 9334
IS - 14
JF - Science Advances
TI - Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition
VL - 7
ER -
TY - JOUR
AB - Various degenerate diffusion equations exhibit a waiting time phenomenon: depending on the “flatness” of the compactly supported initial datum at the boundary of the support, the support of the solution may not expand for a certain amount of time. We show that this phenomenon is captured by particular Lagrangian discretizations of the porous medium and the thin film equations, and we obtain sufficient criteria for the occurrence of waiting times that are consistent with the known ones for the original PDEs. For the spatially discrete solution, the waiting time phenomenon refers to a deviation of the edge of support from its original position by a quantity comparable to the mesh width, over a mesh-independent time interval. Our proof is based on estimates on the fluid velocity in Lagrangian coordinates. Combining weighted entropy estimates with an iteration technique à la Stampacchia leads to upper bounds on free boundary propagation. Numerical simulations show that the phenomenon is already clearly visible for relatively coarse discretizations.
AU - Fischer, Julian L
AU - Matthes, Daniel
ID - 9335
IS - 1
JF - SIAM Journal on Numerical Analysis
SN - 0036-1429
TI - The waiting time phenomenon in spatially discretized porous medium and thin film equations
VL - 59
ER -
TY - JOUR
AB - This paper provides an a priori error analysis of a localized orthogonal decomposition method for the numerical stochastic homogenization of a model random diffusion problem. If the uniformly elliptic and bounded random coefficient field of the model problem is stationary and satisfies a quantitative decorrelation assumption in the form of the spectral gap inequality, then the expected $L^2$ error of the method can be estimated, up to logarithmic factors, by $H+(\varepsilon/H)^{d/2}$, $\varepsilon$ being the small correlation length of the random coefficient and $H$ the width of the coarse finite element mesh that determines the spatial resolution. The proof bridges recent results of numerical homogenization and quantitative stochastic homogenization.
AU - Fischer, Julian L
AU - Gallistl, Dietmar
AU - Peterseim, Dietmar
ID - 9352
IS - 2
JF - SIAM Journal on Numerical Analysis
SN - 0036-1429
TI - A priori error analysis of a numerical stochastic homogenization method
VL - 59
ER -
TY - JOUR
AB - We consider the many-body quantum evolution of a factorized initial data, in the mean-field regime. We show that fluctuations around the limiting Hartree dynamics satisfy large deviation estimates that are consistent with central limit theorems that have been established in the last years.
AU - Kirkpatrick, Kay
AU - Rademacher, Simone Anna Elvira
AU - Schlein, Benjamin
ID - 9351
JF - Annales Henri Poincare
SN - 1424-0637
TI - A large deviation principle in many-body quantum dynamics
ER -
TY - JOUR
AB - We consider the stochastic quantization of a quartic double-well energy functional in the semiclassical regime and derive optimal asymptotics for the exponentially small splitting of the ground state energy. Our result provides an infinite-dimensional version of some sharp tunneling estimates known in finite dimensions for semiclassical Witten Laplacians in degree zero. From a stochastic point of view it proves that the L2 spectral gap of the stochastic one-dimensional Allen-Cahn equation in finite volume satisfies a Kramers-type formula in the limit of vanishing noise. We work with finite-dimensional lattice approximations and establish semiclassical estimates which are uniform in the dimension. Our key estimate shows that the constant separating the two exponentially small eigenvalues from the rest of the spectrum can be taken independently of the dimension.
AU - Brooks, Morris
AU - Di Gesù, Giacomo
ID - 9348
IS - 3
JF - Journal of Functional Analysis
SN - 00221236
TI - Sharp tunneling estimates for a double-well model in infinite dimension
VL - 281
ER -