TY - JOUR AB - Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader’s fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader’s dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader’s connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader’s fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident. AU - Tkadlec, Josef AU - Kaveh, Kamran AU - Chatterjee, Krishnendu AU - Nowak, Martin A. ID - 14657 IS - 208 JF - Journal of the Royal Society, Interface TI - Evolutionary dynamics of mutants that modify population structure VL - 20 ER - TY - JOUR AB - The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a “Janus” nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts “on demand”. AU - Hema, Kuntrapakam AU - Grommet, Angela B. AU - Białek, Michał J. AU - Wang, Jinhua AU - Schneider, Laura AU - Drechsler, Christoph AU - Yanshyna, Oksana AU - Diskin-Posner, Yael AU - Clever, Guido H. AU - Klajn, Rafal ID - 14664 IS - 45 JF - Journal of the American Chemical Society SN - 0002-7863 TI - Guest encapsulation alters the thermodynamic landscape of a coordination host VL - 145 ER - TY - JOUR AB - As a bottleneck in the direct synthesis of hydrogen peroxide, the development of an efficient palladium-based catalyst has garnered great attention. However, elusive active centers and reaction mechanism issues inhibit further optimization of its performance. In this work, advanced microkinetic modeling with the adsorbate–adsorbate interaction and nanoparticle size effect based on first-principles calculations is developed. A full mechanism uncovering the significance of adsorbate–adsorbate interaction is determined on Pd nanoparticles. We demonstrate unambiguously that Pd(100) with main coverage species of O2 and H is beneficial to H2O2 production, being consistent with experimental operando observation, while H2O forms on Pd(111) covered by O species and Pd(211) covered by O and OH species. Kinetic analyses further enable quantitative estimation of the influence of temperature, pressure, and particle size. Large-size Pd nanoparticles are found to achieve a high H2O2 reaction rate when the operating conditions are moderate temperature and higher oxygen partial pressure. We reveal that specific facets of the Pd nanoparticles are crucial factors for their selectivity and activity. Consistent with the experiment, the production of H2O2 is discovered to be more favorable on Pd nanoparticles containing Pd(100) facets. The ratio of H2/O2 induces substantial variations in the coverage of intermediates of O2 and H on Pd(100), resulting in a change in product selectivity. AU - Zhao, Jinyan AU - Yao, Zihao AU - Bunting, Rhys AU - Hu, P. AU - Wang, Jianguo ID - 14663 IS - 22 JF - ACS Catalysis TI - Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles VL - 13 ER - TY - JOUR AB - For large dimensional non-Hermitian random matrices X with real or complex independent, identically distributed, centered entries, we consider the fluctuations of f (X) as a matrix where f is an analytic function around the spectrum of X. We prove that for a generic bounded square matrix A, the quantity Tr f (X)A exhibits Gaussian fluctuations as the matrix size grows to infinity, which consists of two independent modes corresponding to the tracial and traceless parts of A. We find a new formula for the variance of the traceless part that involves the Frobenius norm of A and the L2-norm of f on the boundary of the limiting spectrum. AU - Erdös, László AU - Ji, Hong Chang ID - 14667 IS - 4 JF - Annales de l'institut Henri Poincare (B) Probability and Statistics SN - 0246-0203 TI - Functional CLT for non-Hermitian random matrices VL - 59 ER - TY - JOUR AB - We consider a class of polaron models, including the Fröhlich model, at zero total momentum, and show that at sufficiently weak coupling there are no excited eigenvalues below the essential spectrum. AU - Seiringer, Robert ID - 14662 IS - 3 JF - Journal of Spectral Theory SN - 1664-039X TI - Absence of excited eigenvalues for Fröhlich type polaron models at weak coupling VL - 13 ER - TY - JOUR AB - Sleep plays a key role in preserving brain function, keeping the brain network in a state that ensures optimal computational capabilities. Empirical evidence indicates that such a state is consistent with criticality, where scale-free neuronal avalanches emerge. However, the relationship between sleep, emergent avalanches, and criticality remains poorly understood. Here we fully characterize the critical behavior of avalanches during sleep, and study their relationship with the sleep macro- and micro-architecture, in particular the cyclic alternating pattern (CAP). We show that avalanche size and duration distributions exhibit robust power laws with exponents approximately equal to −3/2 e −2, respectively. Importantly, we find that sizes scale as a power law of the durations, and that all critical exponents for neuronal avalanches obey robust scaling relations, which are consistent with the mean-field directed percolation universality class. Our analysis demonstrates that avalanche dynamics depends on the position within the NREM-REM cycles, with the avalanche density increasing in the descending phases and decreasing in the ascending phases of sleep cycles. Moreover, we show that, within NREM sleep, avalanche occurrence correlates with CAP activation phases, particularly A1, which are the expression of slow wave sleep propensity and have been proposed to be beneficial for cognitive processes. The results suggest that neuronal avalanches, and thus tuning to criticality, actively contribute to sleep development and play a role in preserving network function. Such findings, alongside characterization of the universality class for avalanches, open new avenues to the investigation of functional role of criticality during sleep with potential clinical application.Significance statementWe fully characterize the critical behavior of neuronal avalanches during sleep, and show that avalanches follow precise scaling laws that are consistent with the mean-field directed percolation universality class. The analysis provides first evidence of a functional relationship between avalanche occurrence, slow-wave sleep dynamics, sleep stage transitions and occurrence of CAP phase A during NREM sleep. Because CAP is considered one of the major guardians of NREM sleep that allows the brain to dynamically react to external perturbation and contributes to the cognitive consolidation processes occurring in sleep, our observations suggest that neuronal avalanches at criticality are associated with flexible response to external inputs and to cognitive processes, a key assumption of the critical brain hypothesis. AU - Scarpetta, Silvia AU - Morrisi, Niccolò AU - Mutti, Carlotta AU - Azzi, Nicoletta AU - Trippi, Irene AU - Ciliento, Rosario AU - Apicella, Ilenia AU - Messuti, Giovanni AU - Angiolelli, Marianna AU - Lombardi, Fabrizio AU - Parrino, Liborio AU - Vaudano, Anna Elisabetta ID - 12487 IS - 10 JF - iScience TI - Criticality of neuronal avalanches in human sleep and their relationship with sleep macro- and micro-architecture VL - 26 ER - TY - JOUR AB - Background: Fighting disease while fighting rivals exposes males to constraints and tradeoffs during male-male competition. We here tested how both the stage and intensity of infection with the fungal pathogen Metarhizium robertsii interfered with fighting success in Cardiocondyla obscurior ant males. Males of this species have evolved long lifespans during which they can gain many matings with the young queens of the colony, if successful in male-male competition. Since male fights occur inside the colony, the outcome of male-male competition can further be biased by interference of the colony’s worker force. Results: We found that severe, but not yet mild, infection strongly impaired male fighting success. In late-stage infection, this could be attributed to worker aggression directed towards the infected rather than the healthy male and an already very high male morbidity even in the absence of fighting. Shortly after pathogen exposure, however, male mortality was particularly increased during combat. Since these males mounted a strong immune response, their reduced fighting success suggests a trade-off between immune investment and competitive ability already early in the infection. Even if the males themselves showed no difference in the number of attacks they raised against their healthy rivals across infection stages and levels, severely infected males were thus losing in male-male competition from an early stage of infection on. Conclusions: Males of the ant C. obscurior have evolved high immune investment, triggering an effective immune response very fast after fungal exposure. This allows them to cope with mild pathogen exposures without cost to their success in male-male competition, and hence to gain multiple mating opportunities with the emerging virgin queens of the colony. Under severe infection, however, they are weak fighters and rarely survive a combat already at early infection when raising an immune response, as well as at progressed infection, when they are morbid and preferentially targeted by worker aggression. Workers thereby remove males that pose a future disease threat by biasing male-male competition. Our study thus revealed a novel social immunity mechanism how social insect workers protect the colony against disease risk. AU - Metzler, Sina AU - Kirchner, Jessica AU - Grasse, Anna V AU - Cremer, Sylvia ID - 12696 JF - BMC Ecology and Evolution SN - 2730-7182 TI - Trade-offs between immunity and competitive ability in fighting ant males VL - 23 ER - TY - JOUR AB - Understanding the response of Himalayan glaciers to global warming is vital because of their role as a water source for the Asian subcontinent. However, great uncertainties still exist on the climate drivers of past and present glacier changes across scales. Here, we analyse continuous hourly climate station data from a glacierized elevation (Pyramid station, Mount Everest) since 1994 together with other ground observations and climate reanalysis. We show that a decrease in maximum air temperature and precipitation occurred during the last three decades at Pyramid in response to global warming. Reanalysis data suggest a broader occurrence of this effect in the glacierized areas of the Himalaya. We hypothesize that the counterintuitive cooling is caused by enhanced sensible heat exchange and the associated increase in glacier katabatic wind, which draws cool air downward from higher elevations. The stronger katabatic winds have also lowered the elevation of local wind convergence, thereby diminishing precipitation in glacial areas and negatively affecting glacier mass balance. This local cooling may have partially preserved glaciers from melting and could help protect the periglacial environment. AU - Salerno, Franco AU - Guyennon, Nicolas AU - Yang, Kun AU - Shaw, Thomas AU - Lin, Changgui AU - Colombo, Nicola AU - Romano, Emanuele AU - Gruber, Stephan AU - Bolch, Tobias AU - Alessandri, Andrea AU - Cristofanelli, Paolo AU - Putero, Davide AU - Diolaiuti, Guglielmina AU - Tartari, Gianni AU - Verza, Gianpietro AU - Thakuri, Sudeep AU - Balsamo, Gianpaolo AU - Miles, Evan S. AU - Pellicciotti, Francesca ID - 14659 JF - Nature Geoscience SN - 1752-0894 TI - Local cooling and drying induced by Himalayan glaciers under global warming VL - 16 ER - TY - JOUR AB - AMPA glutamate receptors (AMPARs) mediate excitatory neurotransmission throughout the brain. Their signalling is uniquely diversified by brain region-specific auxiliary subunits, providing an opportunity for the development of selective therapeutics. AMPARs associated with TARP γ8 are enriched in the hippocampus, and are targets of emerging anti-epileptic drugs. To understand their therapeutic activity, we determined cryo-EM structures of the GluA1/2-γ8 receptor associated with three potent, chemically diverse ligands. We find that despite sharing a lipid-exposed and water-accessible binding pocket, drug action is differentially affected by binding-site mutants. Together with patch-clamp recordings and MD simulations we also demonstrate that ligand-triggered reorganisation of the AMPAR-TARP interface contributes to modulation. Unexpectedly, one ligand (JNJ-61432059) acts bifunctionally, negatively affecting GluA1 but exerting positive modulatory action on GluA2-containing AMPARs, in a TARP stoichiometry-dependent manner. These results further illuminate the action of TARPs, demonstrate the sensitive balance between positive and negative modulatory action, and provide a mechanistic platform for development of both positive and negative selective AMPAR modulators. AU - Zhang, Danyang AU - Lape, Remigijus AU - Shaikh, Saher A. AU - Kohegyi, Bianka K. AU - Watson, Jake AU - Cais, Ondrej AU - Nakagawa, Terunaga AU - Greger, Ingo H. ID - 12786 JF - Nature Communications TI - Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics VL - 14 ER - TY - DATA AB - See Readme File for further information. AU - Cremer, Sylvia ID - 12693 TI - Source data for Metzler et al, 2023: Trade-offs between immunity and competitive ability in fighting ant males ER -