TY - DATA AB - basic data for use in code for experimental data analysis for manuscript under revision: Dynamic pathogen detection and social feedback shape collective hygiene in ants Casillas-Pérez B, Boďová K, Grasse AV, Tkačik G, Cremer S AU - Cremer, Sylvia ID - 12945 KW - collective behavior KW - host-pathogen interactions KW - social immunity KW - epidemiology KW - social insects KW - probabilistic modeling TI - Data from: "Dynamic pathogen detection and social feedback shape collective hygiene in ants" ER - TY - THES AB - High-performance semiconductors rely upon precise control of heat and charge transport. This can be achieved by precisely engineering defects in polycrystalline solids. There are multiple approaches to preparing such polycrystalline semiconductors, and the transformation of solution-processed colloidal nanoparticles is appealing because colloidal nanoparticles combine low cost with structural and compositional tunability along with rich surface chemistry. However, the multiple processes from nanoparticle synthesis to the final bulk nanocomposites are very complex. They involve nanoparticle purification, post-synthetic modifications, and finally consolidation (thermal treatments and densification). All these properties dictate the final material’s composition and microstructure, ultimately affecting its functional properties. This thesis explores the synthesis, surface chemistry and consolidation of colloidal semiconductor nanoparticles into dense solids. In particular, the transformations that take place during these processes, and their effect on the material’s transport properties are evaluated. AU - Calcabrini, Mariano ID - 12885 SN - 2663-337X TI - Nanoparticle-based semiconductor solids: From synthesis to consolidation ER - TY - JOUR AB - Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet–Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz–Schur multipliers over group algebras and generalized depolarizing semigroups. AU - Wirth, Melchior AU - Zhang, Haonan ID - 12087 JF - Annales Henri Poincare SN - 1424-0637 TI - Curvature-dimension conditions for symmetric quantum Markov semigroups VL - 24 ER - TY - JOUR AB - In 1998 Burago and Kleiner and (independently) McMullen gave examples of separated nets in Euclidean space which are non-bilipschitz equivalent to the integer lattice. We study weaker notions of equivalence of separated nets and demonstrate that such notions also give rise to distinct equivalence classes. Put differently, we find occurrences of particularly strong divergence of separated nets from the integer lattice. Our approach generalises that of Burago and Kleiner and McMullen which takes place largely in a continuous setting. Existence of irregular separated nets is verified via the existence of non-realisable density functions ρ:[0,1]d→(0,∞). In the present work we obtain stronger types of non-realisable densities. AU - Dymond, Michael AU - Kaluza, Vojtech ID - 9652 JF - Israel Journal of Mathematics KW - Lipschitz KW - bilipschitz KW - bounded displacement KW - modulus of continuity KW - separated net KW - non-realisable density KW - Burago--Kleiner construction TI - Highly irregular separated nets VL - 253 ER - TY - JOUR AB - We study the large scale behavior of elliptic systems with stationary random coefficient that have only slowly decaying correlations. To this aim we analyze the so-called corrector equation, a degenerate elliptic equation posed in the probability space. In this contribution, we use a parabolic approach and optimally quantify the time decay of the semigroup. For the theoretical point of view, we prove an optimal decay estimate of the gradient and flux of the corrector when spatially averaged over a scale R larger than 1. For the numerical point of view, our results provide convenient tools for the analysis of various numerical methods. AU - Clozeau, Nicolas ID - 10173 JF - Stochastics and Partial Differential Equations: Analysis and Computations SN - 2194-0401 TI - Optimal decay of the parabolic semigroup in stochastic homogenization for correlated coefficient fields VL - 11 ER - TY - JOUR AB - Following E. Wigner’s original vision, we prove that sampling the eigenvalue gaps within the bulk spectrum of a fixed (deformed) Wigner matrix H yields the celebrated Wigner-Dyson-Mehta universal statistics with high probability. Similarly, we prove universality for a monoparametric family of deformed Wigner matrices H+xA with a deterministic Hermitian matrix A and a fixed Wigner matrix H, just using the randomness of a single scalar real random variable x. Both results constitute quenched versions of bulk universality that has so far only been proven in annealed sense with respect to the probability space of the matrix ensemble. AU - Cipolloni, Giorgio AU - Erdös, László AU - Schröder, Dominik J ID - 11741 JF - Probability Theory and Related Fields SN - 0178-8051 TI - Quenched universality for deformed Wigner matrices VL - 185 ER - TY - JOUR AB - High carrier mobility is critical to improving thermoelectric performance over a broad temperature range. However, traditional doping inevitably deteriorates carrier mobility. Herein, we develop a strategy for fine tuning of defects to improve carrier mobility. To begin, n-type PbTe is created by compensating for the intrinsic Pb vacancy in bare PbTe. Excess Pb2+ reduces vacancy scattering, resulting in a high carrier mobility of ∼3400 cm2 V–1 s–1. Then, excess Ag is introduced to compensate for the remaining intrinsic Pb vacancies. We find that excess Ag exhibits a dynamic doping process with increasing temperatures, increasing both the carrier concentration and carrier mobility throughout a wide temperature range; specifically, an ultrahigh carrier mobility ∼7300 cm2 V–1 s–1 is obtained for Pb1.01Te + 0.002Ag at 300 K. Moreover, the dynamic doping-induced high carrier concentration suppresses the bipolar thermal conductivity at high temperatures. The final step is using iodine to optimize the carrier concentration to ∼1019 cm–3. Ultimately, a maximum ZT value of ∼1.5 and a large average ZTave value of ∼1.0 at 300–773 K are obtained for Pb1.01Te0.998I0.002 + 0.002Ag. These findings demonstrate that fine tuning of defects with <0.5% impurities can remarkably enhance carrier mobility and improve thermoelectric performance. AU - Wang, Siqi AU - Chang, Cheng AU - Bai, Shulin AU - Qin, Bingchao AU - Zhu, Yingcai AU - Zhan, Shaoping AU - Zheng, Junqing AU - Tang, Shuwei AU - Zhao, Li Dong ID - 12331 IS - 2 JF - Chemistry of Materials SN - 0897-4756 TI - Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe VL - 35 ER - TY - JOUR AB - A simple drawing D(G) of a graph G is one where each pair of edges share at most one point: either a common endpoint or a proper crossing. An edge e in the complement of G can be inserted into D(G) if there exists a simple drawing of G+e extending D(G). As a result of Levi’s Enlargement Lemma, if a drawing is rectilinear (pseudolinear), that is, the edges can be extended into an arrangement of lines (pseudolines), then any edge in the complement of G can be inserted. In contrast, we show that it is NP-complete to decide whether one edge can be inserted into a simple drawing. This remains true even if we assume that the drawing is pseudocircular, that is, the edges can be extended to an arrangement of pseudocircles. On the positive side, we show that, given an arrangement of pseudocircles A and a pseudosegment σ, it can be decided in polynomial time whether there exists a pseudocircle Φσ extending σ for which A∪{Φσ} is again an arrangement of pseudocircles. AU - Arroyo Guevara, Alan M AU - Klute, Fabian AU - Parada, Irene AU - Vogtenhuber, Birgit AU - Seidel, Raimund AU - Wiedera, Tilo ID - 11999 JF - Discrete and Computational Geometry SN - 0179-5376 TI - Inserting one edge into a simple drawing is hard VL - 69 ER - TY - JOUR AB - The design and implementation of efficient concurrent data structures has seen significant attention. However, most of this work has focused on concurrent data structures providing good worst-case guarantees, although, in real workloads, objects are often accessed at different rates. Efficient distribution-adaptive data structures, such as splay-trees, are known in the sequential case; however, they often are hard to translate efficiently to the concurrent case. We investigate distribution-adaptive concurrent data structures, and propose a new design called the splay-list. At a high level, the splay-list is similar to a standard skip-list, with the key distinction that the height of each element adapts dynamically to its access rate: popular elements “move up,” whereas rarely-accessed elements decrease in height. We show that the splay-list provides order-optimal amortized complexity bounds for a subset of operations, while being amenable to efficient concurrent implementation. Experiments show that the splay-list can leverage distribution-adaptivity for performance, and can outperform the only previously-known distribution-adaptive concurrent design in certain workloads. AU - Aksenov, Vitalii AU - Alistarh, Dan-Adrian AU - Drozdova, Alexandra AU - Mohtashami, Amirkeivan ID - 12330 JF - Distributed Computing SN - 0178-2770 TI - The splay-list: A distribution-adaptive concurrent skip-list VL - 36 ER - TY - JOUR AB - The term “haplotype block” is commonly used in the developing field of haplotype-based inference methods. We argue that the term should be defined based on the structure of the Ancestral Recombination Graph (ARG), which contains complete information on the ancestry of a sample. We use simulated examples to demonstrate key features of the relationship between haplotype blocks and ancestral structure, emphasizing the stochasticity of the processes that generate them. Even the simplest cases of neutrality or of a “hard” selective sweep produce a rich structure, often missed by commonly used statistics. We highlight a number of novel methods for inferring haplotype structure, based on the full ARG, or on a sequence of trees, and illustrate how they can be used to define haplotype blocks using an empirical data set. While the advent of new, computationally efficient methods makes it possible to apply these concepts broadly, they (and additional new methods) could benefit from adding features to explore haplotype blocks, as we define them. Understanding and applying the concept of the haplotype block will be essential to fully exploit long and linked-read sequencing technologies. AU - Shipilina, Daria AU - Pal, Arka AU - Stankowski, Sean AU - Chan, Yingguang Frank AU - Barton, Nicholas H ID - 12159 IS - 6 JF - Molecular Ecology KW - Genetics KW - Ecology KW - Evolution KW - Behavior and Systematics SN - 0962-1083 TI - On the origin and structure of haplotype blocks VL - 32 ER -