TY - JOUR
AB - Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial “growth laws,” which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems.
AU - Kavcic, Bor
AU - Tkačik, Gašper
AU - Bollenbach, Tobias
ID - 8997
JF - PLOS Computational Biology
KW - Modelling and Simulation
KW - Genetics
KW - Molecular Biology
KW - Antibiotics
KW - Drug interactions
SN - 1553-7358
TI - Minimal biophysical model of combined antibiotic action
VL - 17
ER -
TY - JOUR
AB - In many basic shear flows, such as pipe, Couette, and channel flow, turbulence does not
arise from an instability of the laminar state, and both dynamical states co-exist. With decreasing flow speed (i.e., decreasing Reynolds number) the fraction of fluid in laminar motion increases while turbulence recedes and eventually the entire flow relaminarizes. The first step towards understanding the nature of this transition is to determine if the phase change is of either first or second order. In the former case, the turbulent fraction would drop discontinuously to zero as the Reynolds number decreases while in the latter the process would be continuous. For Couette flow, the flow between two parallel plates, earlier studies suggest a discontinuous scenario. In the present study we realize a Couette flow between two concentric cylinders which allows studies to be carried out in large aspect ratios and for extensive observation times. The presented measurements show that the transition in this circular Couette geometry is continuous suggesting that former studies were limited by finite size effects. A further characterization of this transition, in particular its relation to the directed percolation universality class, requires even larger system sizes than presently available.
AU - Avila, Kerstin
AU - Hof, Björn
ID - 8999
IS - 1
JF - Entropy
TI - Second-order phase transition in counter-rotating taylor-couette flow experiment
VL - 23
ER -
TY - JOUR
AB - Studies on the experimental realization of two-dimensional anyons in terms of quasiparticles have been restricted, so far, to only anyons on the plane. It is known, however, that the geometry and topology of space can have significant effects on quantum statistics for particles moving on it. Here, we have undertaken the first step toward realizing the emerging fractional statistics for particles restricted to move on the sphere instead of on the plane. We show that such a model arises naturally in the context of quantum impurity problems. In particular, we demonstrate a setup in which the lowest-energy spectrum of two linear bosonic or fermionic molecules immersed in a quantum many-particle environment can coincide with the anyonic spectrum on the sphere. This paves the way toward the experimental realization of anyons on the sphere using molecular impurities. Furthermore, since a change in the alignment of the molecules corresponds to the exchange of the particles on the sphere, such a realization reveals a novel type of exclusion principle for molecular impurities, which could also be of use as a powerful technique to measure the statistics parameter. Finally, our approach opens up a simple numerical route to investigate the spectra of many anyons on the sphere. Accordingly, we present the spectrum of two anyons on the sphere in the presence of a Dirac monopole field.
AU - Brooks, Morris
AU - Lemeshko, Mikhail
AU - Lundholm, D.
AU - Yakaboylu, Enderalp
ID - 9005
IS - 1
JF - Physical Review Letters
SN - 00319007
TI - Molecular impurities as a realization of anyons on the two-sphere
VL - 126
ER -
TY - JOUR
AB - Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate‐dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.
AU - Ötvös, Krisztina
AU - Marconi, Marco
AU - Vega, Andrea
AU - O’Brien, Jose
AU - Johnson, Alexander J
AU - Abualia, Rashed
AU - Antonielli, Livio
AU - Montesinos López, Juan C
AU - Zhang, Yuzhou
AU - Tan, Shutang
AU - Cuesta, Candela
AU - Artner, Christina
AU - Bouguyon, Eleonore
AU - Gojon, Alain
AU - Friml, Jiří
AU - Gutiérrez, Rodrigo A.
AU - Wabnik, Krzysztof T
AU - Benková, Eva
ID - 9010
IS - 3
JF - EMBO Journal
SN - 02614189
TI - Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport
VL - 40
ER -
TY - JOUR
AB - We study dynamics and thermodynamics of ion transport in narrow, water-filled channels, considered as effective 1D Coulomb systems. The long range nature of the inter-ion interactions comes about due to the dielectric constants mismatch between the water and the surrounding medium, confining the electric filed to stay mostly within the water-filled channel. Statistical mechanics of such Coulomb systems is dominated by entropic effects which may be accurately accounted for by mapping onto an effective quantum mechanics. In presence of multivalent ions the corresponding quantum mechanics appears to be non-Hermitian. In this review we discuss a framework for semiclassical calculations for the effective non-Hermitian Hamiltonians. Non-Hermiticity elevates WKB action integrals from the real line to closed cycles on a complex Riemann surfaces where direct calculations are not attainable. We circumvent this issue by applying tools from algebraic topology, such as the Picard-Fuchs equation. We discuss how its solutions relate to the thermodynamics and correlation functions of multivalent solutions within narrow, water-filled channels.
AU - Gulden, Tobias
AU - Kamenev, Alex
ID - 9020
IS - 1
JF - Entropy
TI - Dynamics of ion channels via non-hermitian quantum mechanics
VL - 23
ER -
TY - THES
AB - In the first part of the thesis we consider Hermitian random matrices. Firstly, we consider sample covariance matrices XX∗ with X having independent identically distributed (i.i.d.) centred entries. We prove a Central Limit Theorem for differences of linear statistics of XX∗ and its minor after removing the first column of X. Secondly, we consider Wigner-type matrices and prove that the eigenvalue statistics near cusp singularities of the limiting density of states are universal and that they form a Pearcey process. Since the limiting eigenvalue distribution admits only square root (edge) and cubic root (cusp) singularities, this concludes the third and last remaining case of the Wigner-Dyson-Mehta universality conjecture. The main technical ingredients are an optimal local law at the cusp, and the proof of the fast relaxation to equilibrium of the Dyson Brownian motion in the cusp regime.
In the second part we consider non-Hermitian matrices X with centred i.i.d. entries. We normalise the entries of X to have variance N −1. It is well known that the empirical eigenvalue density converges to the uniform distribution on the unit disk (circular law). In the first project, we prove universality of the local eigenvalue statistics close to the edge of the spectrum. This is the non-Hermitian analogue of the TracyWidom universality at the Hermitian edge. Technically we analyse the evolution of the spectral distribution of X along the Ornstein-Uhlenbeck flow for very long time
(up to t = +∞). In the second project, we consider linear statistics of eigenvalues for macroscopic test functions f in the Sobolev space H2+ϵ and prove their convergence to the projection of the Gaussian Free Field on the unit disk. We prove this result for non-Hermitian matrices with real or complex entries. The main technical ingredients are: (i) local law for products of two resolvents at different spectral parameters, (ii) analysis of correlated Dyson Brownian motions.
In the third and final part we discuss the mathematically rigorous application of supersymmetric techniques (SUSY ) to give a lower tail estimate of the lowest singular value of X − z, with z ∈ C. More precisely, we use superbosonisation formula to give an integral representation of the resolvent of (X − z)(X − z)∗ which reduces to two and three contour integrals in the complex and real case, respectively. The rigorous analysis of these integrals is quite challenging since simple saddle point analysis cannot be applied (the main contribution comes from a non-trivial manifold). Our result
improves classical smoothing inequalities in the regime |z| ≈ 1; this result is essential to prove edge universality for i.i.d. non-Hermitian matrices.
AU - Cipolloni, Giorgio
ID - 9022
TI - Fluctuations in the spectrum of random matrices
ER -
TY - JOUR
AB - Layered materials in which individual atomic layers are bonded by weak van der Waals forces (vdW materials) constitute one of the most prominent platforms for materials research. Particularly, polar vdW crystals, such as hexagonal boron nitride (h-BN), alpha-molybdenum trioxide (α-MoO3) or alpha-vanadium pentoxide (α-V2O5), have received significant attention in nano-optics, since they support phonon polaritons (PhPs)―light coupled to lattice vibrations― with strong electromagnetic confinement and low optical losses. Recently, correlative far- and near-field studies of α-MoO3 have been demonstrated as an effective strategy to accurately extract the permittivity of this material. Here, we use this accurately characterized and low-loss polaritonic material to sense its local dielectric environment, namely silica (SiO2), one of the most widespread substrates in nanotechnology. By studying the propagation of PhPs on α-MoO3 flakes with different thicknesses laying on SiO2 substrates via near-field microscopy (s-SNOM), we extract locally the infrared permittivity of SiO2. Our work reveals PhPs nanoimaging as a versatile method for the quantitative characterization of the local optical properties of dielectric substrates, crucial for understanding and predicting the response of nanomaterials and for the future scalability of integrated nanophotonic devices.
AU - Aguilar-Merino, Patricia
AU - Álvarez-Pérez, Gonzalo
AU - Taboada-Gutiérrez, Javier
AU - Duan, Jiahua
AU - Prieto Gonzalez, Ivan
AU - Álvarez-Prado, Luis Manuel
AU - Nikitin, Alexey Y.
AU - Martín-Sánchez, Javier
AU - Alonso-González, Pablo
ID - 9038
IS - 1
JF - Nanomaterials
TI - Extracting the infrared permittivity of SiO2 substrates locally by near-field imaging of phonon polaritons in a van der Waals crystal
VL - 11
ER -
TY - JOUR
AU - Römhild, Roderich
AU - Andersson, Dan I.
ID - 9046
IS - 1
JF - PLoS Pathogens
SN - 15537366
TI - Mechanisms and therapeutic potential of collateral sensitivity to antibiotics
VL - 17
ER -
TY - JOUR
AB - This work analyzes the latency of the simplified successive cancellation (SSC) decoding scheme for polar codes proposed by Alamdar-Yazdi and Kschischang. It is shown that, unlike conventional successive cancellation decoding, where latency is linear in the block length, the latency of SSC decoding is sublinear. More specifically, the latency of SSC decoding is O(N1−1/μ) , where N is the block length and μ is the scaling exponent of the channel, which captures the speed of convergence of the rate to capacity. Numerical results demonstrate the tightness of the bound and show that most of the latency reduction arises from the parallel decoding of subcodes of rate 0 or 1.
AU - Mondelli, Marco
AU - Hashemi, Seyyed Ali
AU - Cioffi, John M.
AU - Goldsmith, Andrea
ID - 9047
IS - 1
JF - IEEE Transactions on Wireless Communications
SN - 15361276
TI - Sublinear latency for simplified successive cancellation decoding of polar codes
VL - 20
ER -
TY - JOUR
AB - The analogy between an equilibrium partition function and the return probability in many-body unitary dynamics has led to the concept of dynamical quantum phase transition (DQPT). DQPTs are defined by nonanalyticities in the return amplitude and are present in many models. In some cases, DQPTs can be related to equilibrium concepts, such as order parameters, yet their universal description is an open question. In this Letter, we provide first steps toward a classification of DQPTs by using a matrix product state description of unitary dynamics in the thermodynamic limit. This allows us to distinguish the two limiting cases of “precession” and “entanglement” DQPTs, which are illustrated using an analytical description in the quantum Ising model. While precession DQPTs are characterized by a large entanglement gap and are semiclassical in their nature, entanglement DQPTs occur near avoided crossings in the entanglement spectrum and can be distinguished by a complex pattern of nonlocal correlations. We demonstrate the existence of precession and entanglement DQPTs beyond Ising models, discuss observables that can distinguish them, and relate their interplay to complex DQPT phenomenology.
AU - De Nicola, Stefano
AU - Michailidis, Alexios
AU - Serbyn, Maksym
ID - 9048
IS - 4
JF - Physical Review Letters
KW - General Physics and Astronomy
SN - 0031-9007
TI - Entanglement view of dynamical quantum phase transitions
VL - 126
ER -