@article{4157,
abstract = {Integrin- and cadherin-mediated adhesion is central for cell and tissue morphogenesis, allowing cells and tissues to change shape without loosing integrity. Studies predominantly in cell culture showed that mechanosensation through adhesion structures is achieved by force-mediated modulation of their molecular composition. The specific molecular composition of adhesion sites in turn determines their signalling activity and dynamic reorganization. Here, we will review how adhesion sites respond to mecanical stimuli, and how spatially and temporally regulated signalling from different adhesion sites controls cell migration and tissue morphogenesis.},
author = {Papusheva, Ekaterina and Heisenberg, Carl-Philipp J},
journal = {EMBO Journal},
number = {16},
pages = {2753 -- 2768},
publisher = {Wiley-Blackwell},
title = {{Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis}},
doi = {10.1038/emboj.2010.182},
volume = {29},
year = {2010},
}
@inproceedings{4378,
abstract = {Techniques such as verification condition generation, predicate abstraction, and expressive type systems reduce software verification to proving formulas in expressive logics. Programs and their specifications often make use of data structures such as sets, multisets, algebraic data types, or graphs. Consequently, formulas generated from verification also involve such data structures. To automate the proofs of such formulas we propose a logic (a “calculus”) of such data structures. We build the calculus by starting from decidable logics of individual data structures, and connecting them through functions and sets, in ways that go beyond the frameworks such as Nelson-Oppen. The result are new decidable logics that can simultaneously specify properties of different kinds of data structures and overcome the limitations of the individual logics. Several of our decidable logics include abstraction functions that map a data structure into its more abstract view (a tree into a multiset, a multiset into a set), into a numerical quantity (the size or the height), or into the truth value of a candidate data structure invariant (sortedness, or the heap property). For algebraic data types, we identify an asymptotic many-to-one condition on the abstraction function that guarantees the existence of a decision procedure. In addition to the combination based on abstraction functions, we can combine multiple data structure theories if they all reduce to the same data structure logic. As an instance of this approach, we describe a decidable logic whose formulas are propositional combinations of formulas in: weak monadic second-order logic of two successors, two-variable logic with counting, multiset algebra with Presburger arithmetic, the Bernays-Schönfinkel-Ramsey class of first-order logic, and the logic of algebraic data types with the set content function. The subformulas in this combination can share common variables that refer to sets of objects along with the common set algebra operations. Such sound and complete combination is possible because the relations on sets definable in the component logics are all expressible in Boolean Algebra with Presburger Arithmetic. Presburger arithmetic and its new extensions play an important role in our decidability results. In several cases, when we combine logics that belong to NP, we can prove the satisfiability for the combined logic is still in NP.},
author = {Kuncak, Viktor and Piskac, Ruzica and Suter, Philippe and Wies, Thomas},
editor = {Barthe, Gilles and Hermenegildo, Manuel},
location = {Madrid, Spain},
pages = {26 -- 44},
publisher = {Springer},
title = {{Building a calculus of data structures}},
doi = {10.1007/978-3-642-11319-2_6},
volume = {5944},
year = {2010},
}
@inproceedings{4380,
abstract = {Cloud computing is an emerging paradigm aimed to offer users pay-per-use computing resources, while leaving the burden of managing the computing infrastructure to the cloud provider. We present a new programming and pricing model that gives the cloud user the flexibility of trading execution speed and price on a per-job basis. We discuss the scheduling and resource management challenges for the cloud provider that arise in the implementation of this model. We argue that techniques from real-time and embedded software can be useful in this context.},
author = {Henzinger, Thomas A and Tomar, Anmol and Singh, Vasu and Wies, Thomas and Zufferey, Damien},
location = {Arizona, USA},
pages = {1 -- 8},
publisher = {ACM},
title = {{A marketplace for cloud resources}},
doi = {10.1145/1879021.1879022},
year = {2010},
}
@inproceedings{488,
abstract = {Streaming string transducers [1] define (partial) functions from input strings to output strings. A streaming string transducer makes a single pass through the input string and uses a finite set of variables that range over strings from the output alphabet. At every step, the transducer processes an input symbol, and updates all the variables in parallel using assignments whose right-hand-sides are concatenations of output symbols and variables with the restriction that a variable can be used at most once in a right-hand-side expression. It has been shown that streaming string transducers operating on strings over infinite data domains are of interest in algorithmic verification of list-processing programs, as they lead to PSPACE decision procedures for checking pre/post conditions and for checking semantic equivalence, for a well-defined class of heap-manipulating programs. In order to understand the theoretical expressiveness of streaming transducers, we focus on streaming transducers processing strings over finite alphabets, given the existence of a robust and well-studied class of "regular" transductions for this case. Such regular transductions can be defined either by two-way deterministic finite-state transducers, or using a logical MSO-based characterization. Our main result is that the expressiveness of streaming string transducers coincides exactly with this class of regular transductions. },
author = {Alur, Rajeev and Cerny, Pavol},
location = {Chennai, India},
pages = {1 -- 12},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Expressiveness of streaming string transducers}},
doi = {10.4230/LIPIcs.FSTTCS.2010.1},
volume = {8},
year = {2010},
}
@misc{5390,
abstract = {The class of ω regular languages provide a robust specification language in verification. Every ω-regular condition can be decomposed into a safety part and a liveness part. The liveness part ensures that something good happens “eventually.” Two main strengths of the classical, infinite-limit formulation of liveness are robustness (independence from the granularity of transitions) and simplicity (abstraction of complicated time bounds). However, the classical liveness formulation suffers from the drawback that the time until something good happens may be unbounded. A stronger formulation of liveness, so-called finitary liveness, overcomes this drawback, while still retaining robustness and simplicity. Finitary liveness requires that there exists an unknown, fixed bound b such that something good happens within b transitions. In this work we consider the finitary parity and Streett (fairness) conditions. We present the topological, automata-theoretic and logical characterization of finitary languages defined by finitary parity and Streett conditions. We (a) show that the finitary parity and Streett languages are Σ2-complete; (b) present a complete characterization of the expressive power of various classes of automata with finitary and infinitary conditions (in particular we show that non-deterministic finitary parity and Streett automata cannot be determinized to deterministic finitary parity or Streett automata); and (c) show that the languages defined by non-deterministic finitary parity automata exactly characterize the star-free fragment of ωB-regular languages.},
author = {Chatterjee, Krishnendu and Fijalkow, Nathanaël},
issn = {2664-1690},
pages = {21},
publisher = {IST Austria},
title = {{Topological, automata-theoretic and logical characterization of finitary languages}},
doi = {10.15479/AT:IST-2010-0002},
year = {2010},
}
@inproceedings{3793,
abstract = {Recent progress in per-pixel object class labeling of natural images can be attributed to the use of multiple types of image features and sound statistical learning approaches. Within the latter, Conditional Random Fields (CRF) are prominently used for their ability to represent interactions between random variables. Despite their popularity in computer vision, parameter learning for CRFs has remained difficult, popular approaches being cross-validation and piecewise training.
In this work, we propose a simple yet expressive tree-structured CRF based on a recent hierarchical image segmentation method. Our model combines and weights multiple image features within a hierarchical representation and allows simple and efficient globally-optimal learning of ≈ 105 parameters. The tractability of our model allows us to pose and answer some of the open questions regarding parameter learning applying to CRF-based approaches. The key findings for learning CRF models are, from the obvious to the surprising, i) multiple image features always help, ii) the limiting dimension with respect to current models is the amount of training data, iii) piecewise training is competitive, iv) current methods for max-margin training fail for models with many parameters.
},
author = {Nowozin, Sebastian and Gehler, Peter and Lampert, Christoph},
location = {Heraklion, Crete, Greece},
pages = {98 -- 111},
publisher = {Springer},
title = {{On parameter learning in CRF-based approaches to object class image segmentation}},
doi = {10.1007/978-3-642-15567-3_8},
volume = {6316},
year = {2010},
}
@article{1041,
abstract = {We demonstrate efficient transfer of ultracold molecules into a deeply bound rovibrational level of the singlet ground state potential in the presence of an optical lattice. The overall molecule creation efficiency is 25%, and the transfer efficiency to the rovibrational level |v = 73, J = 2) is above 80%. We find that the molecules in |v = 73, J = 2) are trapped in the optical lattice, and that the lifetime in the lattice is limited by optical excitation by the lattice light. The molecule trapping time for a lattice depth of 15 atomic recoil energies is about 20 ms. We determine the trapping frequency by the lattice phase and amplitude modulation technique. It will now be possible to transfer the molecules to the rovibrational ground state |v = 0, J = 0) in the presence of the optical lattice.},
author = {Danzl, Johannes G and Mark, Manfred J and Haller, Elmar and Gustavsson, Mattias K and Hart, Russell A and Liem, Andreas and Zellmer, Holger and Nägerl, Hanns C},
journal = {New Journal of Physics},
publisher = {IOP Publishing Ltd.},
title = {{Deeply bound ultracold molecules in an optical lattice}},
doi = {10.1088/1367-2630/11/5/055036},
volume = {11},
year = {2009},
}
@article{1767,
abstract = {We present spectroscopic measurements of the Autler-Townes doublet and the sidebands of the Mollow triplet in a driven superconducting qubit. The ground to first excited state transition of the qubit is strongly pumped while the resulting dressed qubit spectrum is probed with a weak tone. The corresponding transitions are detected using dispersive readout of the qubit coupled off resonantly to a microwave transmission line resonator. The observed frequencies of the Autler-Townes and Mollow spectral lines are in good agreement with a dispersive Jaynes-Cummings model taking into account higher excited qubit states and dispersive level shifts due to off-resonant drives.},
author = {Baur, Matthias P and Filipp, Stefan and Bianchetti, R and Johannes Fink and Göppl, M and Steffen, L. Kraig and Leek, Peter J and Blais, Alexandre and Wallraff, Andreas},
journal = {Physical Review Letters},
number = {24},
publisher = {American Physical Society},
title = {{Measurement of autler-townes and mollow transitions in a strongly driven superconducting qubit}},
doi = {10.1103/PhysRevLett.102.243602},
volume = {102},
year = {2009},
}
@article{1825,
abstract = {Many membrane channels and receptors exhibit adaptive, or desensitized, response to a strong sustained input stimulus. A key mechanism that underlies this response is the slow, activity-dependent removal of responding molecules to a pool which is unavailable to respond immediately to the input. This mechanism is implemented in different ways in various biological systems and has traditionally been studied separately for each. Here we highlight the common aspects of this principle, shared by many biological systems, and suggest a unifying theoretical framework. We study theoretically a class of models which describes the general mechanism and allows us to distinguish its universal from system-specific features. We show that under general conditions, regardless of the details of kinetics, molecule availability encodes an averaging over past activity and feeds back multiplicatively on the system output. The kinetics of recovery from unavailability determines the effective memory kernel inside the feedback branch, giving rise to a variety of system-specific forms of adaptive response—precise or input-dependent, exponential or power-law—as special cases of the same model. },
author = {Tamar Friedlander and Brenner, Naama},
journal = {PNAS},
number = {52},
pages = {22558 -- 22563},
publisher = {National Academy of Sciences},
title = {{Adaptive response by state-dependent inactivation}},
doi = {10.1073/pnas.0902146106 },
volume = {106},
year = {2009},
}
@article{2119,
abstract = {Let (E, H, μ) be an abstract Wiener space and let DV : = V D, where D denotes the Malliavin derivative and V is a closed and densely defined operator from H into another Hilbert space under(H, {combining low line}). Given a bounded operator B on under(H, {combining low line}), coercive on the range over(R (V), -), we consider the operators A : = V* B V in H and under(A, {combining low line}) : = V V* B in under(H, {combining low line}), as well as the realisations of the operators L : = DV* B DV and under(L, {combining low line}) : = DV DV* B in Lp (E, μ) and Lp (E, μ ; under(H, {combining low line})) respectively, where 1 < p < ∞. Our main result asserts that the following four assertions are equivalent: (1)D (sqrt(L)) = D (DV) with {norm of matrix} sqrt(L) f {norm of matrix}p {minus tilde} {norm of matrix} DV f {norm of matrix}p for f ∈ D (sqrt(L));(2)under(L, {combining low line}) admits a bounded H∞-functional calculus on over(R (DV), -);(3)D (sqrt(A)) = D (V) with {norm of matrix} sqrt(A) h {norm of matrix} {minus tilde} {norm of matrix} V h {norm of matrix} for h ∈ D (sqrt(A));(4)under(A, {combining low line}) admits a bounded H∞-functional calculus on over(R (V), -). Moreover, if these conditions are satisfied, then D (L) = D (DV2) ∩ D (DA). The equivalence (1)-(4) is a non-symmetric generalisation of the classical Meyer inequalities of Malliavin calculus (where under(H, {combining low line}) = H, V = I, B = frac(1, 2) I). A one-sided version of (1)-(4), giving Lp-boundedness of the Riesz transform DV / sqrt(L) in terms of a square function estimate, is also obtained. As an application let -A generate an analytic C0-contraction semigroup on a Hilbert space H and let -L be the Lp-realisation of the generator of its second quantisation. Our results imply that two-sided bounds for the Riesz transform of L are equivalent with the Kato square root property for A. The boundedness of the Riesz transform is used to obtain an Lp-domain characterisation for the operator L.},
author = {Jan Maas and van Neerven, Jan M},
journal = {Journal of Functional Analysis},
number = {8},
pages = {2410 -- 2475},
publisher = {Academic Press},
title = {{Boundedness of Riesz transforms for elliptic operators on abstract Wiener spaces}},
doi = {10.1016/j.jfa.2009.07.001},
volume = {257},
year = {2009},
}
@article{2385,
abstract = {We consider an ultracold rotating Bose gas in a harmonic trap close to the critical angular velocity, so that the system can be considered to be confined to the lowest Landau level. With this assumption we prove that the Gross-Pitaevskii energy functional accurately describes the ground-state energy of the corresponding N -body Hamiltonian with contact interaction provided the total angular momentum L is much less than N2. While the Gross-Pitaevskii energy is always an obvious variational upper bound to the ground-state energy, a more refined analysis is needed to establish it as an exact lower bound. We also discuss the question of Bose-Einstein condensation in the parameter range considered. Coherent states together with inequalities in spaces of analytic functions are the main technical tools.},
author = {Lieb, Élliott H and Robert Seiringer and Yngvason, Jakob},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {6},
publisher = {American Physical Society},
title = {{Yrast line of a rapidly rotating Bose gas: Gross-Pitaevskii regime}},
doi = {10.1103/PhysRevA.79.063626},
volume = {79},
year = {2009},
}
@article{3061,
abstract = {The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies.},
author = {Křeček, Pavel and Skůpa, Petr and Libus, Jiří and Naramoto, Satoshi and Tejos, Ricardo and Friml, Jirí and Zažímalová, Eva},
journal = {Genome Biology},
number = {12},
publisher = {BioMed Central},
title = {{The PIN-FORMED (PIN) protein family of auxin transporters}},
doi = {10.1186/gb-2009-10-12-249},
volume = {10},
year = {2009},
}
@unpublished{3732,
abstract = {Ising models with pairwise interactions are the least structured, or maximum-entropy, probability distributions that exactly reproduce measured pairwise correlations between spins. Here we use this equivalence to construct Ising models that describe the correlated spiking activity of populations of 40 neurons in the salamander retina responding to natural movies. We show that pairwise interactions between neurons account for observed higher-order correlations, and that for groups of 10 or more neurons pairwise interactions can no longer be regarded as small perturbations in an independent system. We then construct network ensembles that generalize the network instances observed in the experiment, and study their thermodynamic behavior and coding capacity. Based on this construction, we can also create synthetic networks of 120 neurons, and find that with increasing size the networks operate closer to a critical point and start exhibiting collective behaviors reminiscent of spin glasses. We examine closely two such behaviors that could be relevant for neural code: tuning of the network to the critical point to maximize the ability to encode diverse stimuli, and using the metastable states of the Ising Hamiltonian as neural code words.},
author = {Gasper Tkacik and Schneidman, Elad and Berry, Michael J and Bialek, William S},
booktitle = {ArXiv},
publisher = {ArXiv},
title = {{Spin glass models for a network of real neurons}},
volume = {q-bio.NC},
year = {2009},
}
@article{3775,
abstract = {There is a close analogy between statistical thermodynamics and the evolution of allele frequencies under mutation, selection and random drift. Wright's formula for the stationary distribution of allele frequencies is analogous to the Boltzmann distribution in statistical physics. Population size, 2N, plays the role of the inverse temperature, 1/kT, and determines the magnitude of random fluctuations. Log mean fitness, View the MathML source, tends to increase under selection, and is analogous to a (negative) energy; a potential function, U, increases under mutation in a similar way. An entropy, SH, can be defined which measures the deviation from the distribution of allele frequencies expected under random drift alone; the sum View the MathML source gives a free fitness that increases as the population evolves towards its stationary distribution. Usually, we observe the distribution of a few quantitative traits that depend on the frequencies of very many alleles. The mean and variance of such traits are analogous to observable quantities in statistical thermodynamics. Thus, we can define an entropy, SΩ, which measures the volume of allele frequency space that is consistent with the observed trait distribution. The stationary distribution of the traits is View the MathML source; this applies with arbitrary epistasis and dominance. The entropies SΩ, SH are distinct, but converge when there are so many alleles that traits fluctuate close to their expectations. Populations tend to evolve towards states that can be realised in many ways (i.e., large SΩ), which may lead to a substantial drop below the adaptive peak; we illustrate this point with a simple model of genetic redundancy. This analogy with statistical thermodynamics brings together previous ideas in a general framework, and justifies a maximum entropy approximation to the dynamics of quantitative traits.},
author = {Barton, Nicholas H and Coe, Jason},
journal = {Journal of Theoretical Biology},
number = {2},
pages = {317 -- 324},
publisher = {Elsevier},
title = {{On the application of statistical physics to evolutionary biology}},
doi = {10.1016/j.jtbi.2009.03.019},
volume = {259},
year = {2009},
}
@inproceedings{3871,
abstract = {Nondeterministic weighted automata are finite automata with numerical weights oil transitions. They define quantitative languages 1, that assign to each word v; a real number L(w). The value of ail infinite word w is computed as the maximal value of all runs over w, and the value of a run as the supremum, limsup liminf, limit average, or discounted sum of the transition weights. We introduce probabilistic weighted antomata, in which the transitions are chosen in a randomized (rather than nondeterministic) fashion. Under almost-sure semantics (resp. positive semantics), the value of a word v) is the largest real v such that the runs over w have value at least v with probability I (resp. positive probability). We study the classical questions of automata theory for probabilistic weighted automata: emptiness and universality, expressiveness, and closure under various operations oil languages. For quantitative languages, emptiness university axe defined as whether the value of some (resp. every) word exceeds a given threshold. We prove some, of these questions to he decidable, and others undecidable. Regarding expressive power, we show that probabilities allow its to define a wide variety of new classes of quantitative languages except for discounted-sum automata, where probabilistic choice is no more expressive than nondeterminism. Finally we live ail almost complete picture of the closure of various classes of probabilistic weighted automata for the following, provide, is operations oil quantitative languages: maximum, sum. and numerical complement.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
location = {Bologna, Italy},
pages = {244 -- 258},
publisher = {Springer},
title = {{Probabilistic weighted automata}},
doi = {10.1007/978-3-642-04081-8_17},
volume = {5710},
year = {2009},
}
@article{3946,
abstract = {We compare anti-parasite defences at the level of multicellular organisms and insect societies, and find that selection by parasites at these two organisational levels is often very similar and has created a number of parallel evolutionary solutions in the host's immune response. The defence mechanisms of both individuals and insect colonies start with border defences to prevent parasite intake and are followed by soma defences that prevent the establishment and spread of the parasite between the body's cells or the social insect workers. Lastly, germ line defences are employed to inhibit infection of the reproductive tissue of organisms or the reproductive individuals in colonies. We further find sophisticated self/non-self-recognition systems operating at both levels, which appear to be vital in maintaining the integrity of the body or colony as a reproductive entity. We then expand on the regulation of immune responses and end with a contemplation of how evolution may shape the different immune components, both within and between levels. The aim of this review is to highlight common evolutionary principles acting in disease defence at the level of both individual organisms and societies, thereby linking the fields of physiological and ecological immunology.},
author = {Cremer, Sylvia and Sixt, Michael K},
journal = {Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences},
number = {1513},
pages = {129 -- 142},
publisher = {Royal Society, The},
title = {{Analogies in the evolution of individual and social immunity}},
doi = {10.1098/rstb.2008.0166},
volume = {364},
year = {2009},
}
@article{4242,
abstract = {Felsenstein distinguished two ways by which selection can directly strengthen isolation. First, a modifier that strengthens prezygotic isolation can be favored everywhere. This fits with the traditional view of reinforcement as an adaptation to reduce deleterious hybridization by strengthening assortative mating. Second, selection can favor association between different incompatibilities, despite recombination. We generalize this “two allele” model to follow associations among any number of incompatibilities, which may include both assortment and hybrid inviability. Our key argument is that this process, of coupling between incompatibilities, may be quite different from the usual view of reinforcement: strong isolation can evolve through the coupling of any kind of incompatibility, whether prezygotic or postzygotic. Single locus incompatibilities become coupled because associations between them increase the variance in compatibility, which in turn increases mean fitness if there is positive epistasis. Multiple incompatibilities, each maintained by epistasis, can become coupled in the same way. In contrast, a single-locus incompatibility can become coupled with loci that reduce the viability of haploid hybrids because this reduces harmful recombination. We obtain simple approximations for the limits of tight linkage, and strong assortment, and show how assortment alleles can invade through associations with other components of reproductive isolation.},
author = {Barton, Nicholas H and De Cara, Maria},
journal = {Evolution; International Journal of Organic Evolution},
number = {5},
pages = {1171 -- 1190},
publisher = {Wiley},
title = {{The evolution of strong reproductive isolation}},
doi = {10.1111/j.1558-5646.2009.00622.x},
volume = {63},
year = {2009},
}
@inproceedings{4545,
abstract = {A stochastic game is a two-player game played oil a graph, where in each state the successor is chosen either by One of the players, or according to a probability distribution. We Survey Stochastic games with limsup and liminf objectives. A real-valued re-ward is assigned to each state, and the value of all infinite path is the limsup (resp. liminf) of all rewards along the path. The value of a stochastic game is the maximal expected value of an infinite path that call he achieved by resolving the decisions of the first player. We present the complexity of computing values of Stochastic games and their subclasses, and the complexity, of optimal strategies in such games. },
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
location = {Rhodos, Greece},
pages = {1 -- 15},
publisher = {Springer},
title = {{A survey of stochastic games with limsup and liminf objectives}},
doi = {10.1007/978-3-642-02930-1_1},
volume = {5556},
year = {2009},
}
@inproceedings{4569,
abstract = {Most specification languages express only qualitative constraints. However, among two implementations that satisfy a given specification, one may be preferred to another. For example, if a specification asks that every request is followed by a response, one may prefer an implementation that generates responses quickly but does not generate unnecessary responses. We use quantitative properties to measure the “goodness” of an implementation. Using games with corresponding quantitative objectives, we can synthesize “optimal” implementations, which are preferred among the set of possible implementations that satisfy a given specification.
In particular, we show how automata with lexicographic mean-payoff conditions can be used to express many interesting quantitative properties for reactive systems. In this framework, the synthesis of optimal implementations requires the solution of lexicographic mean-payoff games (for safety requirements), and the solution of games with both lexicographic mean-payoff and parity objectives (for liveness requirements). We present algorithms for solving both kinds of novel graph games.},
author = {Bloem, Roderick and Chatterjee, Krishnendu and Henzinger, Thomas A and Jobstmann, Barbara},
location = {Grenoble, France},
pages = {140 -- 156},
publisher = {Springer},
title = {{Better quality in synthesis through quantitative objectives}},
doi = {10.1007/978-3-642-02658-4_14},
volume = {5643},
year = {2009},
}
@article{1768,
abstract = {Quantum state tomography is an important tool in quantum information science for complete characterization of multiqubit states and their correlations. Here we report a method to perform a joint simultaneous readout of two superconducting qubits dispersively coupled to the same mode of a microwave transmission line resonator. The nonlinear dependence of the resonator transmission on the qubit state dependent cavity frequency allows us to extract the full two-qubit correlations without the need for single-shot readout of individual qubits. We employ standard tomographic techniques to reconstruct the density matrix of two-qubit quantum states.},
author = {Filipp, Stefan and Maurer, Patrick and Leek, Peter J and Baur, Matthias P and Bianchetti, R and Johannes Fink and Göppl, M and Steffen, L. Kraig and Gambetta, Jay M and Blais, Alexandre and Wallraff, Andreas},
journal = {Physical Review Letters},
number = {20},
publisher = {American Physical Society},
title = {{Two-qubit state tomography using a joint dispersive readout}},
doi = {10.1103/PhysRevLett.102.200402},
volume = {102},
year = {2009},
}