@inproceedings{640, abstract = {Data-independent Memory Hard Functions (iMHFS) are finding a growing number of applications in security; especially in the domain of password hashing. An important property of a concrete iMHF is specified by fixing a directed acyclic graph (DAG) Gn on n nodes. The quality of that iMHF is then captured by the following two pebbling complexities of Gn: – The parallel cumulative pebbling complexity Π∥cc(Gn) must be as high as possible (to ensure that the amortized cost of computing the function on dedicated hardware is dominated by the cost of memory). – The sequential space-time pebbling complexity Πst(Gn) should be as close as possible to Π∥cc(Gn) (to ensure that using many cores in parallel and amortizing over many instances does not give much of an advantage). In this paper we construct a family of DAGs with best possible parameters in an asymptotic sense, i.e., where Π∥cc(Gn) = Ω(n2/ log(n)) (which matches a known upper bound) and Πst(Gn) is within a constant factor of Π∥cc(Gn). Our analysis relies on a new connection between the pebbling complexity of a DAG and its depth-robustness (DR) – a well studied combinatorial property. We show that high DR is sufficient for high Π∥cc. Alwen and Blocki (CRYPTO’16) showed that high DR is necessary and so, together, these results fully characterize DAGs with high Π∥cc in terms of DR. Complementing these results, we provide new upper and lower bounds on the Π∥cc of several important candidate iMHFs from the literature. We give the first lower bounds on the memory hardness of the Catena and Balloon Hashing functions in a parallel model of computation and we give the first lower bounds of any kind for (a version) of Argon2i. Finally we describe a new class of pebbling attacks improving on those of Alwen and Blocki (CRYPTO’16). By instantiating these attacks we upperbound the Π∥cc of the Password Hashing Competition winner Argon2i and one of the Balloon Hashing functions by O (n1.71). We also show an upper bound of O(n1.625) for the Catena functions and the two remaining Balloon Hashing functions.}, author = {Alwen, Joel F and Blocki, Jeremiah and Pietrzak, Krzysztof Z}, editor = {Coron, Jean-Sébastien and Buus Nielsen, Jesper}, isbn = {978-331956616-0}, location = {Paris, France}, pages = {3 -- 32}, publisher = {Springer}, title = {{Depth-robust graphs and their cumulative memory complexity}}, doi = {10.1007/978-3-319-56617-7_1}, volume = {10212}, year = {2017}, } @misc{6426, abstract = {Synchronous programs are easy to specify because the side effects of an operation are finished by the time the invocation of the operation returns to the caller. Asynchronous programs, on the other hand, are difficult to specify because there are side effects due to pending computation scheduled as a result of the invocation of an operation. They are also difficult to verify because of the large number of possible interleavings of concurrent asynchronous computation threads. We show that specifications and correctness proofs for asynchronous programs can be structured by introducing the fiction, for proof purposes, that intermediate, non-quiescent states of asynchronous operations can be ignored. Then, the task of specification becomes relatively simple and the task of verification can be naturally decomposed into smaller sub-tasks. The sub-tasks iteratively summarize, guided by the structure of an asynchronous program, the atomic effect of non-atomic operations and the synchronous effect of asynchronous operations. This structuring of specifications and proofs corresponds to the introduction of multiple layers of stepwise refinement for asynchronous programs. We present the first proof rule, called synchronization, to reduce asynchronous invocations on a lower layer to synchronous invocations on a higher layer. We implemented our proof method in CIVL and evaluated it on a collection of benchmark programs.}, author = {Henzinger, Thomas A and Kragl, Bernhard and Qadeer, Shaz}, issn = {2664-1690}, pages = {28}, publisher = {IST Austria}, title = {{Synchronizing the asynchronous}}, doi = {10.15479/AT:IST-2018-853-v2-2}, year = {2017}, } @article{642, abstract = {Cauchy problems with SPDEs on the whole space are localized to Cauchy problems on a ball of radius R. This localization reduces various kinds of spatial approximation schemes to finite dimensional problems. The error is shown to be exponentially small. As an application, a numerical scheme is presented which combines the localization and the space and time discretization, and thus is fully implementable.}, author = {Gerencser, Mate and Gyöngy, István}, issn = {00255718}, journal = {Mathematics of Computation}, number = {307}, pages = {2373 -- 2397}, publisher = {American Mathematical Society}, title = {{Localization errors in solving stochastic partial differential equations in the whole space}}, doi = {10.1090/mcom/3201}, volume = {86}, year = {2017}, } @inproceedings{645, abstract = {Markov decision processes (MDPs) are standard models for probabilistic systems with non-deterministic behaviours. Long-run average rewards provide a mathematically elegant formalism for expressing long term performance. Value iteration (VI) is one of the simplest and most efficient algorithmic approaches to MDPs with other properties, such as reachability objectives. Unfortunately, a naive extension of VI does not work for MDPs with long-run average rewards, as there is no known stopping criterion. In this work our contributions are threefold. (1) We refute a conjecture related to stopping criteria for MDPs with long-run average rewards. (2) We present two practical algorithms for MDPs with long-run average rewards based on VI. First, we show that a combination of applying VI locally for each maximal end-component (MEC) and VI for reachability objectives can provide approximation guarantees. Second, extending the above approach with a simulation-guided on-demand variant of VI, we present an anytime algorithm that is able to deal with very large models. (3) Finally, we present experimental results showing that our methods significantly outperform the standard approaches on several benchmarks.}, author = {Ashok, Pranav and Chatterjee, Krishnendu and Daca, Przemyslaw and Kretinsky, Jan and Meggendorfer, Tobias}, editor = {Majumdar, Rupak and Kunčak, Viktor}, isbn = {978-331963386-2}, location = {Heidelberg, Germany}, pages = {201 -- 221}, publisher = {Springer}, title = {{Value iteration for long run average reward in markov decision processes}}, doi = {10.1007/978-3-319-63387-9_10}, volume = {10426}, year = {2017}, } @article{644, abstract = {An instance of the valued constraint satisfaction problem (VCSP) is given by a finite set of variables, a finite domain of labels, and a sum of functions, each function depending on a subset of the variables. Each function can take finite values specifying costs of assignments of labels to its variables or the infinite value, which indicates an infeasible assignment. The goal is to find an assignment of labels to the variables that minimizes the sum. We study, assuming that P 6= NP, how the complexity of this very general problem depends on the set of functions allowed in the instances, the so-called constraint language. The case when all allowed functions take values in f0;1g corresponds to ordinary CSPs, where one deals only with the feasibility issue, and there is no optimization. This case is the subject of the algebraic CSP dichotomy conjecture predicting for which constraint languages CSPs are tractable (i.e., solvable in polynomial time) and for which they are NP-hard. The case when all allowed functions take only finite values corresponds to a finitevalued CSP, where the feasibility aspect is trivial and one deals only with the optimization issue. The complexity of finite-valued CSPs was fully classified by Thapper and Živný. An algebraic necessary condition for tractability of a general-valued CSP with a fixed constraint language was recently given by Kozik and Ochremiak. As our main result, we prove that if a constraint language satisfies this algebraic necessary condition, and the feasibility CSP (i.e., the problem of deciding whether a given instance has a feasible solution) corresponding to the VCSP with this language is tractable, then the VCSP is tractable. The algorithm is a simple combination of the assumed algorithm for the feasibility CSP and the standard LP relaxation. As a corollary, we obtain that a dichotomy for ordinary CSPs would imply a dichotomy for general-valued CSPs.}, author = {Kolmogorov, Vladimir and Krokhin, Andrei and Rolinek, Michal}, journal = {SIAM Journal on Computing}, number = {3}, pages = {1087 -- 1110}, publisher = {SIAM}, title = {{The complexity of general-valued CSPs}}, doi = {10.1137/16M1091836}, volume = {46}, year = {2017}, } @inproceedings{646, abstract = {We present a novel convex relaxation and a corresponding inference algorithm for the non-binary discrete tomography problem, that is, reconstructing discrete-valued images from few linear measurements. In contrast to state of the art approaches that split the problem into a continuous reconstruction problem for the linear measurement constraints and a discrete labeling problem to enforce discrete-valued reconstructions, we propose a joint formulation that addresses both problems simultaneously, resulting in a tighter convex relaxation. For this purpose a constrained graphical model is set up and evaluated using a novel relaxation optimized by dual decomposition. We evaluate our approach experimentally and show superior solutions both mathematically (tighter relaxation) and experimentally in comparison to previously proposed relaxations.}, author = {Kuske, Jan and Swoboda, Paul and Petra, Stefanie}, editor = {Lauze, François and Dong, Yiqiu and Bjorholm Dahl, Anders}, isbn = {978-331958770-7}, location = {Kolding, Denmark}, pages = {235 -- 246}, publisher = {Springer}, title = {{A novel convex relaxation for non binary discrete tomography}}, doi = {10.1007/978-3-319-58771-4_19}, volume = {10302}, year = {2017}, } @inproceedings{648, abstract = {Pseudoentropy has found a lot of important applications to cryptography and complexity theory. In this paper we focus on the foundational problem that has not been investigated so far, namely by how much pseudoentropy (the amount seen by computationally bounded attackers) differs from its information-theoretic counterpart (seen by unbounded observers), given certain limits on attacker’s computational power? We provide the following answer for HILL pseudoentropy, which exhibits a threshold behavior around the size exponential in the entropy amount:– If the attacker size (s) and advantage () satisfy s (formula presented) where k is the claimed amount of pseudoentropy, then the pseudoentropy boils down to the information-theoretic smooth entropy. – If s (formula presented) then pseudoentropy could be arbitrarily bigger than the information-theoretic smooth entropy. Besides answering the posted question, we show an elegant application of our result to the complexity theory, namely that it implies the clas-sical result on the existence of functions hard to approximate (due to Pippenger). In our approach we utilize non-constructive techniques: the duality of linear programming and the probabilistic method.}, author = {Skórski, Maciej}, editor = {Jäger, Gerhard and Steila, Silvia}, isbn = {978-331955910-0}, location = {Bern, Switzerland}, pages = {600 -- 613}, publisher = {Springer}, title = {{On the complexity of breaking pseudoentropy}}, doi = {10.1007/978-3-319-55911-7_43}, volume = {10185}, year = {2017}, } @inproceedings{650, abstract = {In this work we present a short and unified proof for the Strong and Weak Regularity Lemma, based on the cryptographic tech-nique called low-complexity approximations. In short, both problems reduce to a task of finding constructively an approximation for a certain target function under a class of distinguishers (test functions), where dis-tinguishers are combinations of simple rectangle-indicators. In our case these approximations can be learned by a simple iterative procedure, which yields a unified and simple proof, achieving for any graph with density d and any approximation parameter the partition size. The novelty in our proof is: (a) a simple approach which yields both strong and weaker variant, and (b) improvements when d = o(1). At an abstract level, our proof can be seen a refinement and simplification of the “analytic” proof given by Lovasz and Szegedy.}, author = {Skórski, Maciej}, editor = {Jäger, Gerhard and Steila, Silvia}, issn = {03029743}, location = {Bern, Switzerland}, pages = {586 -- 599}, publisher = {Springer}, title = {{A cryptographic view of regularity lemmas: Simpler unified proofs and refined bounds}}, doi = {10.1007/978-3-319-55911-7_42}, volume = {10185}, year = {2017}, } @inproceedings{6519, abstract = {Graph games with omega-regular winning conditions provide a mathematical framework to analyze a wide range of problems in the analysis of reactive systems and programs (such as the synthesis of reactive systems, program repair, and the verification of branching time properties). Parity conditions are canonical forms to specify omega-regular winning conditions. Graph games with parity conditions are equivalent to mu-calculus model checking, and thus a very important algorithmic problem. Symbolic algorithms are of great significance because they provide scalable algorithms for the analysis of large finite-state systems, as well as algorithms for the analysis of infinite-state systems with finite quotient. A set-based symbolic algorithm uses the basic set operations and the one-step predecessor operators. We consider graph games with n vertices and parity conditions with c priorities (equivalently, a mu-calculus formula with c alternations of least and greatest fixed points). While many explicit algorithms exist for graph games with parity conditions, for set-based symbolic algorithms there are only two algorithms (notice that we use space to refer to the number of sets stored by a symbolic algorithm): (a) the basic algorithm that requires O(n^c) symbolic operations and linear space; and (b) an improved algorithm that requires O(n^{c/2+1}) symbolic operations but also O(n^{c/2+1}) space (i.e., exponential space). In this work we present two set-based symbolic algorithms for parity games: (a) our first algorithm requires O(n^{c/2+1}) symbolic operations and only requires linear space; and (b) developing on our first algorithm, we present an algorithm that requires O(n^{c/3+1}) symbolic operations and only linear space. We also present the first linear space set-based symbolic algorithm for parity games that requires at most a sub-exponential number of symbolic operations. }, author = {Chatterjee, Krishnendu and Dvorák, Wolfgang and Henzinger, Monika H and Loitzenbauer, Veronika}, location = {Stockholm, Sweden}, publisher = {Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik}, title = {{Improved set-based symbolic algorithms for parity games}}, doi = {10.4230/LIPICS.CSL.2017.18}, volume = {82}, year = {2017}, } @inproceedings{6517, abstract = {A (possibly degenerate) drawing of a graph G in the plane is approximable by an embedding if it can be turned into an embedding by an arbitrarily small perturbation. We show that testing, whether a drawing of a planar graph G in the plane is approximable by an embedding, can be carried out in polynomial time, if a desired embedding of G belongs to a fixed isotopy class, i.e., the rotation system (or equivalently the faces) of the embedding of G and the choice of outer face are fixed. In other words, we show that c-planarity with embedded pipes is tractable for graphs with fixed embeddings. To the best of our knowledge an analogous result was previously known essentially only when G is a cycle.}, author = {Fulek, Radoslav}, location = {Phuket, Thailand}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Embedding graphs into embedded graphs}}, doi = {10.4230/LIPICS.ISAAC.2017.34}, volume = {92}, year = {2017}, } @article{653, abstract = {The extent of heterogeneity among driver gene mutations present in naturally occurring metastases - that is, treatment-naive metastatic disease - is largely unknown. To address this issue, we carried out 60× whole-genome sequencing of 26 metastases from four patients with pancreatic cancer. We found that identical mutations in known driver genes were present in every metastatic lesion for each patient studied. Passenger gene mutations, which do not have known or predicted functional consequences, accounted for all intratumoral heterogeneity. Even with respect to these passenger mutations, our analysis suggests that the genetic similarity among the founding cells of metastases was higher than that expected for any two cells randomly taken from a normal tissue. The uniformity of known driver gene mutations among metastases in the same patient has critical and encouraging implications for the success of future targeted therapies in advanced-stage disease.}, author = {Makohon Moore, Alvin and Zhang, Ming and Reiter, Johannes and Božić, Ivana and Allen, Benjamin and Kundu, Deepanjan and Chatterjee, Krishnendu and Wong, Fay and Jiao, Yuchen and Kohutek, Zachary and Hong, Jungeui and Attiyeh, Marc and Javier, Breanna and Wood, Laura and Hruban, Ralph and Nowak, Martin and Papadopoulos, Nickolas and Kinzler, Kenneth and Vogelstein, Bert and Iacobuzio Donahue, Christine}, issn = {10614036}, journal = {Nature Genetics}, number = {3}, pages = {358 -- 366}, publisher = {Nature Publishing Group}, title = {{Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer}}, doi = {10.1038/ng.3764}, volume = {49}, year = {2017}, } @inproceedings{6527, abstract = {A memory-hard function (MHF) ƒn with parameter n can be computed in sequential time and space n. Simultaneously, a high amortized parallel area-time complexity (aAT) is incurred per evaluation. In practice, MHFs are used to limit the rate at which an adversary (using a custom computational device) can evaluate a security sensitive function that still occasionally needs to be evaluated by honest users (using an off-the-shelf general purpose device). The most prevalent examples of such sensitive functions are Key Derivation Functions (KDFs) and password hashing algorithms where rate limits help mitigate off-line dictionary attacks. As the honest users' inputs to these functions are often (low-entropy) passwords special attention is given to a class of side-channel resistant MHFs called iMHFs. Essentially all iMHFs can be viewed as some mode of operation (making n calls to some round function) given by a directed acyclic graph (DAG) with very low indegree. Recently, a combinatorial property of a DAG has been identified (called "depth-robustness") which results in good provable security for an iMHF based on that DAG. Depth-robust DAGs have also proven useful in other cryptographic applications. Unfortunately, up till now, all known very depth-robust DAGs are impractically complicated and little is known about their exact (i.e. non-asymptotic) depth-robustness both in theory and in practice. In this work we build and analyze (both formally and empirically) several exceedingly simple and efficient to navigate practical DAGs for use in iMHFs and other applications. For each DAG we: *Prove that their depth-robustness is asymptotically maximal. *Prove bounds of at least 3 orders of magnitude better on their exact depth-robustness compared to known bounds for other practical iMHF. *Implement and empirically evaluate their depth-robustness and aAT against a variety of state-of-the art (and several new) depth-reduction and low aAT attacks. We find that, against all attacks, the new DAGs perform significantly better in practice than Argon2i, the most widely deployed iMHF in practice. Along the way we also improve the best known empirical attacks on the aAT of Argon2i by implementing and testing several heuristic versions of a (hitherto purely theoretical) depth-reduction attack. Finally, we demonstrate practicality of our constructions by modifying the Argon2i code base to use one of the new high aAT DAGs. Experimental benchmarks on a standard off-the-shelf CPU show that the new modifications do not adversely affect the impressive throughput of Argon2i (despite seemingly enjoying significantly higher aAT). }, author = {Alwen, Joel F and Blocki, Jeremiah and Harsha, Ben}, booktitle = {Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security}, isbn = {9781450349468}, location = {Dallas, TX, USA}, pages = {1001--1017}, publisher = {ACM Press}, title = {{Practical graphs for optimal side-channel resistant memory-hard functions}}, doi = {10.1145/3133956.3134031}, year = {2017}, } @article{654, abstract = {In November 2016, developmental biologists, synthetic biologists and engineers gathered in Paris for a meeting called ‘Engineering the embryo’. The participants shared an interest in exploring how synthetic systems can reveal new principles of embryonic development, and how the in vitro manipulation and modeling of development using stem cells can be used to integrate ideas and expertise from physics, developmental biology and tissue engineering. As we review here, the conference pinpointed some of the challenges arising at the intersection of these fields, along with great enthusiasm for finding new approaches and collaborations.}, author = {Kicheva, Anna and Rivron, Nicolas}, issn = {09501991}, journal = {Development}, number = {5}, pages = {733 -- 736}, publisher = {Company of Biologists}, title = {{Creating to understand – developmental biology meets engineering in Paris}}, doi = {10.1242/dev.144915}, volume = {144}, year = {2017}, } @inproceedings{6526, abstract = {This paper studies the complexity of estimating Rényi divergences of discrete distributions: p observed from samples and the baseline distribution q known a priori. Extending the results of Acharya et al. (SODA'15) on estimating Rényi entropy, we present improved estimation techniques together with upper and lower bounds on the sample complexity. We show that, contrarily to estimating Rényi entropy where a sublinear (in the alphabet size) number of samples suffices, the sample complexity is heavily dependent on events occurring unlikely in q, and is unbounded in general (no matter what an estimation technique is used). For any divergence of integer order bigger than 1, we provide upper and lower bounds on the number of samples dependent on probabilities of p and q (the lower bounds hold for non-integer orders as well). We conclude that the worst-case sample complexity is polynomial in the alphabet size if and only if the probabilities of q are non-negligible. This gives theoretical insights into heuristics used in the applied literature to handle numerical instability, which occurs for small probabilities of q. Our result shows that they should be handled with care not only because of numerical issues, but also because of a blow up in the sample complexity.}, author = {Skórski, Maciej}, booktitle = {2017 IEEE International Symposium on Information Theory (ISIT)}, isbn = {9781509040964}, location = {Aachen, Germany}, publisher = {IEEE}, title = {{On the complexity of estimating Rènyi divergences}}, doi = {10.1109/isit.2017.8006529}, year = {2017}, } @article{655, abstract = {The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ~1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.}, author = {Renault, Thibaud and Abraham, Anthony and Bergmiller, Tobias and Paradis, Guillaume and Rainville, Simon and Charpentier, Emmanuelle and Guet, Calin C and Tu, Yuhai and Namba, Keiichi and Keener, James and Minamino, Tohru and Erhardt, Marc}, issn = {2050084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Bacterial flagella grow through an injection diffusion mechanism}}, doi = {10.7554/eLife.23136}, volume = {6}, year = {2017}, } @article{657, abstract = {Plant organs are typically organized into three main tissue layers. The middle ground tissue layer comprises the majority of the plant body and serves a wide range of functions, including photosynthesis, selective nutrient uptake and storage, and gravity sensing. Ground tissue patterning and maintenance in Arabidopsis are controlled by a well-established gene network revolving around the key regulator SHORT-ROOT (SHR). In contrast, it is completely unknown how ground tissue identity is first specified from totipotent precursor cells in the embryo. The plant signaling molecule auxin, acting through AUXIN RESPONSE FACTOR (ARF) transcription factors, is critical for embryo patterning. The auxin effector ARF5/MONOPTEROS (MP) acts both cell-autonomously and noncell-autonomously to control embryonic vascular tissue formation and root initiation, respectively. Here we show that auxin response and ARF activity cell-autonomously control the asymmetric division of the first ground tissue cells. By identifying embryonic target genes, we show that MP transcriptionally initiates the ground tissue lineage and acts upstream of the regulatory network that controls ground tissue patterning and maintenance. Strikingly, whereas the SHR network depends on MP, this MP function is, at least in part, SHR independent. Our study therefore identifies auxin response as a regulator of ground tissue specification in the embryonic root, and reveals that ground tissue initiation and maintenance use different regulators and mechanisms. Moreover, our data provide a framework for the simultaneous formation of multiple cell types by the same transcriptional regulator.}, author = {Möller, Barbara and Ten Hove, Colette and Xiang, Daoquan and Williams, Nerys and López, Lorena and Yoshida, Saiko and Smit, Margot and Datla, Raju and Weijers, Dolf}, issn = {00278424}, journal = {PNAS}, number = {12}, pages = {E2533 -- E2539}, publisher = {National Academy of Sciences}, title = {{Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo}}, doi = {10.1073/pnas.1616493114}, volume = {114}, year = {2017}, } @article{658, abstract = {With the accelerated development of robot technologies, control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of specific objectives for the task at hand. While very successful in many applications, self-organized control schemes seem to be favored in large complex systems with unknown dynamics or which are difficult to model. Reasons are the expected scalability, robustness, and resilience of self-organizing systems. The paper presents a self-learning neurocontroller based on extrinsic differential plasticity introduced recently, applying it to an anthropomorphic musculoskeletal robot arm with attached objects of unknown physical dynamics. The central finding of the paper is the following effect: by the mere feedback through the internal dynamics of the object, the robot is learning to relate each of the objects with a very specific sensorimotor pattern. Specifically, an attached pendulum pilots the arm into a circular motion, a half-filled bottle produces axis oriented shaking behavior, a wheel is getting rotated, and wiping patterns emerge automatically in a table-plus-brush setting. By these object-specific dynamical patterns, the robot may be said to recognize the object's identity, or in other words, it discovers dynamical affordances of objects. Furthermore, when including hand coordinates obtained from a camera, a dedicated hand-eye coordination self-organizes spontaneously. These phenomena are discussed from a specific dynamical system perspective. Central is the dedicated working regime at the border to instability with its potentially infinite reservoir of (limit cycle) attractors "waiting" to be excited. Besides converging toward one of these attractors, variate behavior is also arising from a self-induced attractor morphing driven by the learning rule. We claim that experimental investigations with this anthropomorphic, self-learning robot not only generate interesting and potentially useful behaviors, but may also help to better understand what subjective human muscle feelings are, how they can be rooted in sensorimotor patterns, and how these concepts may feed back on robotics.}, author = {Der, Ralf and Martius, Georg S}, issn = {16625218}, journal = {Frontiers in Neurorobotics}, number = {MAR}, publisher = {Frontiers Research Foundation}, title = {{Self organized behavior generation for musculoskeletal robots}}, doi = {10.3389/fnbot.2017.00008}, volume = {11}, year = {2017}, } @article{659, abstract = {Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching.}, author = {Kage, Frieda and Winterhoff, Moritz and Dimchev, Vanessa and Müller, Jan and Thalheim, Tobias and Freise, Anika and Brühmann, Stefan and Kollasser, Jana and Block, Jennifer and Dimchev, Georgi A and Geyer, Matthias and Schnittler, Hams and Brakebusch, Cord and Stradal, Theresia and Carlier, Marie and Sixt, Michael K and Käs, Josef and Faix, Jan and Rottner, Klemens}, issn = {20411723}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{FMNL formins boost lamellipodial force generation}}, doi = {10.1038/ncomms14832}, volume = {8}, year = {2017}, } @article{660, abstract = {Growing microtubules are protected from depolymerization by the presence of a GTP or GDP/Pi cap. End-binding proteins of the EB1 family bind to the stabilizing cap, allowing monitoring of its size in real time. The cap size has been shown to correlate with instantaneous microtubule stability. Here we have quantitatively characterized the properties of cap size fluctuations during steadystate growth and have developed a theory predicting their timescale and amplitude from the kinetics of microtubule growth and cap maturation. In contrast to growth speed fluctuations, cap size fluctuations show a characteristic timescale, which is defined by the lifetime of the cap sites. Growth fluctuations affect the amplitude of cap size fluctuations; however, cap size does not affect growth speed, indicating that microtubules are far from instability during most of their time of growth. Our theory provides the basis for a quantitative understanding of microtubule stability fluctuations during steady-state growth.}, author = {Rickman, Jamie and Düllberg, Christian F and Cade, Nicholas and Griffin, Lewis and Surrey, Thomas}, issn = {00278424}, journal = {PNAS}, number = {13}, pages = {3427 -- 3432}, publisher = {National Academy of Sciences}, title = {{Steady state EB cap size fluctuations are determined by stochastic microtubule growth and maturation}}, doi = {10.1073/pnas.1620274114}, volume = {114}, year = {2017}, } @article{662, abstract = {We report a direct-numerical-simulation study of the Taylor-Couette flow in the quasi-Keplerian regime at shear Reynolds numbers up to (105). Quasi-Keplerian rotating flow has been investigated for decades as a simplified model system to study the origin of turbulence in accretion disks that is not fully understood. The flow in this study is axially periodic and thus the experimental end-wall effects on the stability of the flow are avoided. Using optimal linear perturbations as initial conditions, our simulations find no sustained turbulence: the strong initial perturbations distort the velocity profile and trigger turbulence that eventually decays.}, author = {Shi, Liang and Hof, Björn and Rampp, Markus and Avila, Marc}, issn = {10706631}, journal = {Physics of Fluids}, number = {4}, publisher = {American Institute of Physics}, title = {{Hydrodynamic turbulence in quasi Keplerian rotating flows}}, doi = {10.1063/1.4981525}, volume = {29}, year = {2017}, } @inproceedings{663, abstract = {In this paper, we propose an approach to automatically compute invariant clusters for nonlinear semialgebraic hybrid systems. An invariant cluster for an ordinary differential equation (ODE) is a multivariate polynomial invariant g(u→, x→) = 0, parametric in u→, which can yield an infinite number of concrete invariants by assigning different values to u→ so that every trajectory of the system can be overapproximated precisely by the intersection of a group of concrete invariants. For semialgebraic systems, which involve ODEs with multivariate polynomial right-hand sides, given a template multivariate polynomial g(u→, x→), an invariant cluster can be obtained by first computing the remainder of the Lie derivative of g(u→, x→) divided by g(u→, x→) and then solving the system of polynomial equations obtained from the coefficients of the remainder. Based on invariant clusters and sum-of-squares (SOS) programming, we present a new method for the safety verification of hybrid systems. Experiments on nonlinear benchmark systems from biology and control theory show that our approach is efficient. }, author = {Kong, Hui and Bogomolov, Sergiy and Schilling, Christian and Jiang, Yu and Henzinger, Thomas A}, booktitle = {Proceedings of the 20th International Conference on Hybrid Systems}, isbn = {978-145034590-3}, location = {Pittsburgh, PA, United States}, pages = {163 -- 172}, publisher = {ACM}, title = {{Safety verification of nonlinear hybrid systems based on invariant clusters}}, doi = {10.1145/3049797.3049814}, year = {2017}, } @article{668, abstract = {Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading.}, author = {Horsthemke, Markus and Bachg, Anne and Groll, Katharina and Moyzio, Sven and Müther, Barbara and Hemkemeyer, Sandra and Wedlich Söldner, Roland and Sixt, Michael K and Tacke, Sebastian and Bähler, Martin and Hanley, Peter}, issn = {00219258}, journal = {Journal of Biological Chemistry}, number = {17}, pages = {7258 -- 7273}, publisher = {American Society for Biochemistry and Molecular Biology}, title = {{Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion}}, doi = {10.1074/jbc.M116.766923}, volume = {292}, year = {2017}, } @article{669, abstract = {The exocyst, a eukaryotic tethering complex, coregulates targeted exocytosis as an effector of small GTPases in polarized cell growth. In land plants, several exocyst subunits are encoded by double or triple paralogs, culminating in tens of EXO70 paralogs. Out of 23 Arabidopsis thaliana EXO70 isoforms, we analyzed seven isoforms expressed in pollen. Genetic and microscopic analyses of single mutants in EXO70A2, EXO70C1, EXO70C2, EXO70F1, EXO70H3, EXO70H5, and EXO70H6 genes revealed that only a loss-of-function EXO70C2 allele resulted in a significant male-specific transmission defect (segregation 40%:51%:9%) due to aberrant pollen tube growth. Mutant pollen tubes grown in vitro exhibited an enhanced growth rate and a decreased thickness of the tip cell wall, causing tip bursts. However, exo70C2 pollen tubes could frequently recover and restart their speedy elongation, resulting in a repetitive stop-and-go growth dynamics. A pollenspecific depletion of the closest paralog, EXO70C1, using artificial microRNA in the exo70C2 mutant background, resulted in a complete pollen-specific transmission defect, suggesting redundant functions of EXO70C1 and EXO70C2. Both EXO70C1 and EXO70C2, GFP tagged and expressed under the control of their native promoters, localized in the cytoplasm of pollen grains, pollen tubes, and also root trichoblast cells. The expression of EXO70C2-GFP complemented the aberrant growth of exo70C2 pollen tubes. The absent EXO70C2 interactions with core exocyst subunits in the yeast two-hybrid assay, cytoplasmic localization, and genetic effect suggest an unconventional EXO70 function possibly as a regulator of exocytosis outside the exocyst complex. In conclusion, EXO70C2 is a novel factor contributing to the regulation of optimal tip growth of Arabidopsis pollen tubes. }, author = {Synek, Lukáš and Vukašinović, Nemanja and Kulich, Ivan and Hála, Michal and Aldorfová, Klára and Fendrych, Matyas and Žárský, Viktor}, issn = {00320889}, journal = {Plant Physiology}, number = {1}, pages = {223 -- 240}, publisher = {American Society of Plant Biologists}, title = {{EXO70C2 is a key regulatory factor for optimal tip growth of pollen}}, doi = {10.1104/pp.16.01282}, volume = {174}, year = {2017}, } @inproceedings{6679, abstract = {Polar codes represent one of the major recent breakthroughs in coding theory and, because of their attractive features, they have been selected for the incoming 5G standard. As such, a lot of attention has been devoted to the development of decoding algorithms with good error performance and efficient hardware implementation. One of the leading candidates in this regard is represented by successive-cancellation list (SCL) decoding. However, its hardware implementation requires a large amount of memory. Recently, a partitioned SCL (PSCL) decoder has been proposed to significantly reduce the memory consumption [1]. In this paper, we examine the paradigm of PSCL decoding from both theoretical and practical standpoints: (i) by changing the construction of the code, we are able to improve the performance at no additional computational, latency or memory cost, (ii) we present an optimal scheme to allocate cyclic redundancy checks (CRCs), and (iii) we provide an upper bound on the list size that allows MAP performance.}, author = {Hashemi, Seyyed Ali and Mondelli, Marco and Hassani, Hamed and Urbanke, Ruediger and Gross, Warren}, booktitle = {2017 IEEE Global Communications Conference}, location = {Singapore, Singapore}, pages = {1--7}, publisher = {IEEE}, title = {{Partitioned list decoding of polar codes: Analysis and improvement of finite length performance}}, doi = {10.1109/glocom.2017.8254940}, year = {2017}, } @article{671, abstract = {Humans routinely use conditionally cooperative strategies when interacting in repeated social dilemmas. They are more likely to cooperate if others cooperated before, and are ready to retaliate if others defected. To capture the emergence of reciprocity, most previous models consider subjects who can only choose from a restricted set of representative strategies, or who react to the outcome of the very last round only. As players memorize more rounds, the dimension of the strategy space increases exponentially. This increasing computational complexity renders simulations for individuals with higher cognitive abilities infeasible, especially if multiplayer interactions are taken into account. Here, we take an axiomatic approach instead. We propose several properties that a robust cooperative strategy for a repeated multiplayer dilemma should have. These properties naturally lead to a unique class of cooperative strategies, which contains the classical Win-Stay Lose-Shift rule as a special case. A comprehensive numerical analysis for the prisoner's dilemma and for the public goods game suggests that strategies of this class readily evolve across various memory-n spaces. Our results reveal that successful strategies depend not only on how cooperative others were in the past but also on the respective context of cooperation.}, author = {Hilbe, Christian and Martinez, Vaquero and Chatterjee, Krishnendu and Nowak, Martin}, issn = {00278424}, journal = {PNAS}, number = {18}, pages = {4715 -- 4720}, publisher = {National Academy of Sciences}, title = {{Memory-n strategies of direct reciprocity}}, doi = {10.1073/pnas.1621239114}, volume = {114}, year = {2017}, } @article{670, abstract = {We propose an efficient method to model paper tearing in the context of interactive modeling. The method uses geometrical information to automatically detect potential starting points of tears. We further introduce a new hybrid geometrical and physical-based method to compute the trajectory of tears while procedurally synthesizing high resolution details of the tearing path using a texture based approach. The results obtained are compared with real paper and with previous studies on the expected geometric paths of paper that tears.}, author = {Schreck, Camille and Rohmer, Damien and Hahmann, Stefanie}, issn = {01677055}, journal = {Computer Graphics Forum}, number = {2}, pages = {95 -- 106}, publisher = {Wiley}, title = {{Interactive paper tearing}}, doi = {10.1111/cgf.13110}, volume = {36}, year = {2017}, } @article{672, abstract = {Trafficking cells frequently transmigrate through epithelial and endothelial monolayers. How monolayers cooperate with the penetrating cells to support their transit is poorly understood. We studied dendritic cell (DC) entry into lymphatic capillaries as a model system for transendothelial migration. We find that the chemokine CCL21, which is the decisive guidance cue for intravasation, mainly localizes in the trans-Golgi network and intracellular vesicles of lymphatic endothelial cells. Upon DC transmigration, these Golgi deposits disperse and CCL21 becomes extracellularly enriched at the sites of endothelial cell-cell junctions. When we reconstitute the transmigration process in vitro, we find that secretion of CCL21-positive vesicles is triggered by a DC contact-induced calcium signal, and selective calcium chelation in lymphatic endothelium attenuates transmigration. Altogether, our data demonstrate a chemokine-mediated feedback between DCs and lymphatic endothelium, which facilitates transendothelial migration.}, author = {Vaahtomeri, Kari and Brown, Markus and Hauschild, Robert and De Vries, Ingrid and Leithner, Alexander F and Mehling, Matthias and Kaufmann, Walter and Sixt, Michael K}, issn = {22111247}, journal = {Cell Reports}, number = {5}, pages = {902 -- 909}, publisher = {Cell Press}, title = {{Locally triggered release of the chemokine CCL21 promotes dendritic cell transmigration across lymphatic endothelia}}, doi = {10.1016/j.celrep.2017.04.027}, volume = {19}, year = {2017}, } @inproceedings{6729, abstract = {Consider the problem of constructing a polar code of block length N for the transmission over a given channel W. Typically this requires to compute the reliability of all the N synthetic channels and then to include those that are sufficiently reliable. However, we know from [1], [2] that there is a partial order among the synthetic channels. Hence, it is natural to ask whether we can exploit it to reduce the computational burden of the construction problem. We show that, if we take advantage of the partial order [1], [2], we can construct a polar code by computing the reliability of roughly N/ log 3/2 N synthetic channels. Such a set of synthetic channels is universal, in the sense that it allows one to construct polar codes for any W, and it can be identified by solving a maximum matching problem on a bipartite graph. Our proof technique consists in reducing the construction problem to the problem of computing the maximum cardinality of an antichain for a suitable partially ordered set. As such, this method is general and it can be used to further improve the complexity of the construction problem in case a new partial order on the synthetic channels of polar codes is discovered.}, author = {Mondelli, Marco and Hassani, S. Hamed and Urbanke, Rudiger}, booktitle = {2017 IEEE International Symposium on Information Theory }, isbn = {9781509040964}, issn = {2157-8117}, location = {Aachen, Germany}, pages = {1853--1857}, publisher = {IEEE}, title = {{Construction of polar codes with sublinear complexity}}, doi = {10.1109/isit.2017.8006850}, year = {2017}, } @article{6730, abstract = {We introduce a new approach to proving that a sequence of deterministic linear codes achieves capacity on an erasure channel under maximum a posteriori decoding. Rather than relying on the precise structure of the codes, our method exploits code symmetry. In particular, the technique applies to any sequence of linear codes where the blocklengths are strictly increasing, the code rates converge, and the permutation group of each code is doubly transitive. In other words, we show that symmetry alone implies near-optimal performance. An important consequence of this result is that a sequence of Reed-Muller codes with increasing block length and converging rate achieves capacity. This possibility has been suggested previously in the literature but it has only been proven for cases where the limiting code rate is 0 or 1. Moreover, these results extend naturally to all affine-invariant codes and, thus, to extended primitive narrow-sense BCH codes. This also resolves, in the affirmative, the existence question for capacity-achieving sequences of binary cyclic codes. The primary tools used in the proof are the sharp threshold property for symmetric monotone Boolean functions and the area theorem for extrinsic information transfer functions.}, author = {Kudekar, Shrinivas and Kumar, Santhosh and Mondelli, Marco and Pfister, Henry D. and Sasoglu, Eren and Urbanke, Ridiger L.}, issn = {1557-9654}, journal = {IEEE Transactions on Information Theory}, number = {7}, pages = {4298--4316}, publisher = {IEEE}, title = {{Reed–Muller codes achieve capacity on erasure channels}}, doi = {10.1109/tit.2017.2673829}, volume = {63}, year = {2017}, } @inproceedings{6731, abstract = {We present a rate-compatible polar coding scheme that achieves the capacity of any family of channels. Our solution generalizes the previous results [1], [2] that provide capacity-achieving rate-compatible polar codes for a degraded family of channels. The motivation for our extension comes from the fact that in many practical scenarios, e.g., MIMO systems and non-Gaussian interference, the channels cannot be ordered by degradation. The main technical contribution of this paper consists in removing the degradation condition. To do so, we exploit the ideas coming from the construction of universal polar codes. Our scheme possesses the usual attractive features of polar codes: low complexity code construction, encoding, and decoding; super-polynomial scaling of the error probability with the block length; and absence of error floors. On the negative side, the scaling of the gap to capacity with the block length is slower than in standard polar codes, and we prove an upper bound on the scaling exponent.}, author = {Mondelli, Marco and Hassani, Hamed and Maric, Ivana and Hui, Dennis and Hong, Song-Nam}, booktitle = {2017 IEEE Wireless Communications and Networking Conference Workshops }, isbn = {9781509059089}, location = {San Francisco, CA, USA}, publisher = {IEEE}, title = {{Capacity-achieving rate-compatible polar codes for general channels}}, doi = {10.1109/wcncw.2017.7919107}, year = {2017}, } @article{677, abstract = {The INO80 complex (INO80-C) is an evolutionarily conserved nucleosome remodeler that acts in transcription, replication, and genome stability. It is required for resistance against genotoxic agents and is involved in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). However, the causes of the HR defect in INO80-C mutant cells are controversial. Here, we unite previous findings using a system to study HR with high spatial resolution in budding yeast. We find that INO80-C has at least two distinct functions during HR—DNA end resection and presynaptic filament formation. Importantly, the second function is linked to the histone variant H2A.Z. In the absence of H2A.Z, presynaptic filament formation and HR are restored in INO80-C-deficient mutants, suggesting that presynaptic filament formation is the crucial INO80-C function during HR.}, author = {Lademann, Claudio and Renkawitz, Jörg and Pfander, Boris and Jentsch, Stefan}, issn = {22111247}, journal = {Cell Reports}, number = {7}, pages = {1294 -- 1303}, publisher = {Cell Press}, title = {{The INO80 complex removes H2A.Z to promote presynaptic filament formation during homologous recombination}}, doi = {10.1016/j.celrep.2017.04.051}, volume = {19}, year = {2017}, } @article{681, abstract = {Two-player games on graphs provide the theoretical framework for many important problems such as reactive synthesis. While the traditional study of two-player zero-sum games has been extended to multi-player games with several notions of equilibria, they are decidable only for perfect-information games, whereas several applications require imperfect-information. In this paper we propose a new notion of equilibria, called doomsday equilibria, which is a strategy profile where all players satisfy their own objective, and if any coalition of players deviates and violates even one of the players' objective, then the objective of every player is violated. We present algorithms and complexity results for deciding the existence of doomsday equilibria for various classes of ω-regular objectives, both for imperfect-information games, and for perfect-information games. We provide optimal complexity bounds for imperfect-information games, and in most cases for perfect-information games.}, author = {Chatterjee, Krishnendu and Doyen, Laurent and Filiot, Emmanuel and Raskin, Jean}, issn = {08905401}, journal = {Information and Computation}, pages = {296 -- 315}, publisher = {Elsevier}, title = {{Doomsday equilibria for omega-regular games}}, doi = {10.1016/j.ic.2016.10.012}, volume = {254}, year = {2017}, } @inproceedings{6841, abstract = {In classical machine learning, regression is treated as a black box process of identifying a suitable function from a hypothesis set without attempting to gain insight into the mechanism connecting inputs and outputs. In the natural sciences, however, finding an interpretable function for a phenomenon is the prime goal as it allows to understand and generalize results. This paper proposes a novel type of function learning network, called equation learner (EQL), that can learn analytical expressions and is able to extrapolate to unseen domains. It is implemented as an end-to-end differentiable feed-forward network and allows for efficient gradient based training. Due to sparsity regularization concise interpretable expressions can be obtained. Often the true underlying source expression is identified.}, author = {Martius, Georg S and Lampert, Christoph}, booktitle = {5th International Conference on Learning Representations, ICLR 2017 - Workshop Track Proceedings}, location = {Toulon, France}, publisher = {International Conference on Learning Representations}, title = {{Extrapolation and learning equations}}, year = {2017}, } @article{684, abstract = {We generalize winning conditions in two-player games by adding a structural acceptance condition called obligations. Obligations are orthogonal to the linear winning conditions that define whether a play is winning. Obligations are a declaration that player 0 can achieve a certain value from a configuration. If the obligation is met, the value of that configuration for player 0 is 1. We define the value in such games and show that obligation games are determined. For Markov chains with Borel objectives and obligations, and finite turn-based stochastic parity games with obligations we give an alternative and simpler characterization of the value function. Based on this simpler definition we show that the decision problem of winning finite turn-based stochastic parity games with obligations is in NP∩co-NP. We also show that obligation games provide a game framework for reasoning about p-automata. © 2017 The Association for Symbolic Logic.}, author = {Chatterjee, Krishnendu and Piterman, Nir}, issn = {1943-5886}, journal = {Journal of Symbolic Logic}, number = {2}, pages = {420 -- 452}, publisher = {Cambridge University Press}, title = {{Obligation blackwell games and p-automata}}, doi = {10.1017/jsl.2016.71}, volume = {82}, year = {2017}, } @article{685, abstract = {By applying methods and principles from the physical sciences to biological problems, D'Arcy Thompson's On Growth and Form demonstrated how mathematical reasoning reveals elegant, simple explanations for seemingly complex processes. This has had a profound influence on subsequent generations of developmental biologists. We discuss how this influence can be traced through twentieth century morphologists, embryologists and theoreticians to current research that explores the molecular and cellular mechanisms of tissue growth and patterning, including our own studies of the vertebrate neural tube.}, author = {Briscoe, James and Kicheva, Anna}, issn = {09254773}, journal = {Mechanisms of Development}, pages = {26 -- 31}, publisher = {Elsevier}, title = {{The physics of development 100 years after D'Arcy Thompson's “on growth and form”}}, doi = {10.1016/j.mod.2017.03.005}, volume = {145}, year = {2017}, } @inproceedings{688, abstract = {We show that the framework of topological data analysis can be extended from metrics to general Bregman divergences, widening the scope of possible applications. Examples are the Kullback - Leibler divergence, which is commonly used for comparing text and images, and the Itakura - Saito divergence, popular for speech and sound. In particular, we prove that appropriately generalized čech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized čech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory. }, author = {Edelsbrunner, Herbert and Wagner, Hubert}, issn = {18688969}, location = {Brisbane, Australia}, pages = {391--3916}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Topological data analysis with Bregman divergences}}, doi = {10.4230/LIPIcs.SoCG.2017.39}, volume = {77}, year = {2017}, } @article{687, abstract = {Pursuing the similarity between the Kontsevich-Soibelman construction of the cohomological Hall algebra (CoHA) of BPS states and Lusztig's construction of canonical bases for quantum enveloping algebras, and the similarity between the integrality conjecture for motivic Donaldson-Thomas invariants and the PBW theorem for quantum enveloping algebras, we build a coproduct on the CoHA associated to a quiver with potential. We also prove a cohomological dimensional reduction theorem, further linking a special class of CoHAs with Yangians, and explaining how to connect the study of character varieties with the study of CoHAs.}, author = {Davison, Ben}, issn = {00335606}, journal = {Quarterly Journal of Mathematics}, number = {2}, pages = {635 -- 703}, publisher = {Oxford University Press}, title = {{The critical CoHA of a quiver with potential}}, doi = {10.1093/qmath/haw053}, volume = {68}, year = {2017}, } @article{693, abstract = {Many central synapses contain a single presynaptic active zone and a single postsynaptic density. Vesicular release statistics at such “simple synapses” indicate that they contain a small complement of docking sites where vesicles repetitively dock and fuse. In this work, we investigate functional and morphological aspects of docking sites at simple synapses made between cerebellar parallel fibers and molecular layer interneurons. Using immunogold labeling of SDS-treated freeze-fracture replicas, we find that Cav2.1 channels form several clusters per active zone with about nine channels per cluster. The mean value and range of intersynaptic variation are similar for Cav2.1 cluster numbers and for functional estimates of docking-site numbers obtained from the maximum numbers of released vesicles per action potential. Both numbers grow in relation with synaptic size and decrease by a similar extent with age between 2 wk and 4 wk postnatal. Thus, the mean docking-site numbers were 3.15 at 2 wk (range: 1–10) and 2.03 at 4 wk (range: 1–4), whereas the mean numbers of Cav2.1 clusters were 2.84 at 2 wk (range: 1–8) and 2.37 at 4 wk (range: 1–5). These changes were accompanied by decreases of miniature current amplitude (from 93 pA to 56 pA), active-zone surface area (from 0.0427 μm2 to 0.0234 μm2), and initial success rate (from 0.609 to 0.353), indicating a tightening of synaptic transmission with development. Altogether, these results suggest a close correspondence between the number of functionally defined vesicular docking sites and that of clusters of voltage-gated calcium channels. }, author = {Miki, Takafumi and Kaufmann, Walter and Malagon, Gerardo and Gomez, Laura and Tabuchi, Katsuhiko and Watanabe, Masahiko and Shigemoto, Ryuichi and Marty, Alain}, issn = {00278424}, journal = {PNAS}, number = {26}, pages = {E5246 -- E5255}, publisher = {National Academy of Sciences}, title = {{Numbers of presynaptic Ca2+ channel clusters match those of functionally defined vesicular docking sites in single central synapses}}, doi = {10.1073/pnas.1704470114}, volume = {114}, year = {2017}, } @article{694, abstract = {A change regarding the extent of adhesion - hereafter referred to as adhesion plasticity - between adhesive and less-adhesive states of mammalian cells is important for their behavior. To investigate adhesion plasticity, we have selected a stable isogenic subpopulation of human MDA-MB-468 breast carcinoma cells growing in suspension. These suspension cells are unable to re-adhere to various matrices or to contract three-dimensional collagen lattices. By using transcriptome analysis, we identified the focal adhesion protein tensin3 (Tns3) as a determinant of adhesion plasticity. Tns3 is strongly reduced at mRNA and protein levels in suspension cells. Furthermore, by transiently challenging breast cancer cells to grow under non-adherent conditions markedly reduces Tns3 protein expression, which is regained upon re-adhesion. Stable knockdown of Tns3 in parental MDA-MB-468 cells results in defective adhesion, spreading and migration. Tns3-knockdown cells display impaired structure and dynamics of focal adhesion complexes as determined by immunostaining. Restoration of Tns3 protein expression in suspension cells partially rescues adhesion and focal contact composition. Our work identifies Tns3 as a crucial focal adhesion component regulated by, and functionally contributing to, the switch between adhesive and non-adhesive states in MDA-MB-468 cancer cells.}, author = {Veß, Astrid and Blache, Ulrich and Leitner, Laura and Kurz, Angela and Ehrenpfordt, Anja and Sixt, Michael K and Posern, Guido}, issn = {00219533}, journal = {Journal of Cell Science}, number = {13}, pages = {2172 -- 2184}, publisher = {Company of Biologists}, title = {{A dual phenotype of MDA MB 468 cancer cells reveals mutual regulation of tensin3 and adhesion plasticity}}, doi = {10.1242/jcs.200899}, volume = {130}, year = {2017}, } @inproceedings{697, abstract = {De, Trevisan and Tulsiani [CRYPTO 2010] show that every distribution over n-bit strings which has constant statistical distance to uniform (e.g., the output of a pseudorandom generator mapping n-1 to n bit strings), can be distinguished from the uniform distribution with advantage epsilon by a circuit of size O( 2^n epsilon^2). We generalize this result, showing that a distribution which has less than k bits of min-entropy, can be distinguished from any distribution with k bits of delta-smooth min-entropy with advantage epsilon by a circuit of size O(2^k epsilon^2/delta^2). As a special case, this implies that any distribution with support at most 2^k (e.g., the output of a pseudoentropy generator mapping k to n bit strings) can be distinguished from any given distribution with min-entropy k+1 with advantage epsilon by a circuit of size O(2^k epsilon^2). Our result thus shows that pseudoentropy distributions face basically the same non-uniform attacks as pseudorandom distributions. }, author = {Pietrzak, Krzysztof Z and Skórski, Maciej}, issn = {18688969}, location = {Warsaw, Poland}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Non uniform attacks against pseudoentropy}}, doi = {10.4230/LIPIcs.ICALP.2017.39}, volume = {80}, year = {2017}, } @article{698, abstract = {Extracellular matrix signals from the microenvironment regulate gene expression patterns and cell behavior. Using a combination of experiments and geometric models, we demonstrate correlations between cell geometry, three-dimensional (3D) organization of chromosome territories, and gene expression. Fluorescence in situ hybridization experiments showed that micropatterned fibroblasts cultured on anisotropic versus isotropic substrates resulted in repositioning of specific chromosomes, which contained genes that were differentially regulated by cell geometries. Experiments combined with ellipsoid packing models revealed that the mechanosensitivity of chromosomes was correlated with their orientation in the nucleus. Transcription inhibition experiments suggested that the intermingling degree was more sensitive to global changes in transcription than to chromosome radial positioning and its orientations. These results suggested that cell geometry modulated 3D chromosome arrangement, and their neighborhoods correlated with gene expression patterns in a predictable manner. This is central to understanding geometric control of genetic programs involved in cellular homeostasis and the associated diseases. }, author = {Wang, Yejun and Nagarajan, Mallika and Uhler, Caroline and Shivashankar, Gv}, issn = {10591524}, journal = {Molecular Biology of the Cell}, number = {14}, pages = {1997 -- 2009}, publisher = {American Society for Cell Biology}, title = {{Orientation and repositioning of chromosomes correlate with cell geometry dependent gene expression}}, doi = {10.1091/mbc.E16-12-0825}, volume = {28}, year = {2017}, } @article{699, abstract = {In antagonistic symbioses, such as host–parasite interactions, one population’s success is the other’s loss. In mutualistic symbioses, such as division of labor, both parties can gain, but they might have different preferences over the possible mutualistic arrangements. The rates of evolution of the two populations in a symbiosis are important determinants of which population will be more successful: Faster evolution is thought to be favored in antagonistic symbioses (the “Red Queen effect”), but disfavored in certain mutualistic symbioses (the “Red King effect”). However, it remains unclear which biological parameters drive these effects. Here, we analyze the effects of the various determinants of evolutionary rate: generation time, mutation rate, population size, and the intensity of natural selection. Our main results hold for the case where mutation is infrequent. Slower evolution causes a long-term advantage in an important class of mutualistic interactions. Surprisingly, less intense selection is the strongest driver of this Red King effect, whereas relative mutation rates and generation times have little effect. In antagonistic interactions, faster evolution by any means is beneficial. Our results provide insight into the demographic evolution of symbionts. }, author = {Veller, Carl and Hayward, Laura and Nowak, Martin and Hilbe, Christian}, issn = {00278424}, journal = {PNAS}, number = {27}, pages = {E5396 -- E5405}, publisher = {National Academy of Sciences}, title = {{The red queen and king in finite populations}}, doi = {10.1073/pnas.1702020114}, volume = {114}, year = {2017}, } @article{700, abstract = {Microtubules provide the mechanical force required for chromosome separation during mitosis. However, little is known about the dynamic (high-frequency) mechanical properties of microtubules. Here, we theoretically propose to control the vibrations of a doubly clamped microtubule by tip electrodes and to detect its motion via the optomechanical coupling between the vibrational modes of the microtubule and an optical cavity. In the presence of a red-detuned strong pump laser, this coupling leads to optomechanical-induced transparency of an optical probe field, which can be detected with state-of-the art technology. The center frequency and line width of the transparency peak give the resonance frequency and damping rate of the microtubule, respectively, while the height of the peak reveals information about the microtubule-cavity field coupling. Our method opens the new possibilities to gain information about the physical properties of microtubules, which will enhance our capability to design physical cancer treatment protocols as alternatives to chemotherapeutic drugs.}, author = {Barzanjeh, Shabir and Salari, Vahid and Tuszynski, Jack and Cifra, Michal and Simon, Christoph}, issn = {24700045}, journal = { Physical Review E Statistical Nonlinear and Soft Matter Physics }, number = {1}, publisher = {American Institute of Physics}, title = {{Optomechanical proposal for monitoring microtubule mechanical vibrations}}, doi = {10.1103/PhysRevE.96.012404}, volume = {96}, year = {2017}, } @article{701, abstract = {A d-dimensional simplex S is called a k-reptile (or a k-reptile simplex) if it can be tiled by k simplices with disjoint interiors that are all mutually congruent and similar to S. For d = 2, triangular k-reptiles exist for all k of the form a^2, 3a^2 or a^2+b^2 and they have been completely characterized by Snover, Waiveris, and Williams. On the other hand, the only k-reptile simplices that are known for d ≥ 3, have k = m^d, where m is a positive integer. We substantially simplify the proof by Matoušek and the second author that for d = 3, k-reptile tetrahedra can exist only for k = m^3. We then prove a weaker analogue of this result for d = 4 by showing that four-dimensional k-reptile simplices can exist only for k = m^2.}, author = {Kynčl, Jan and Patakova, Zuzana}, issn = {10778926}, journal = {The Electronic Journal of Combinatorics}, number = {3}, pages = {1--44}, publisher = {International Press}, title = {{On the nonexistence of k reptile simplices in ℝ^3 and ℝ^4}}, volume = {24}, year = {2017}, } @article{7064, abstract = {The complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small component of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.}, author = {Modic, Kimberly A and Ramshaw, B. J. and Betts, J. B. and Breznay, Nicholas P. and Analytis, James G. and McDonald, Ross D. and Shekhter, Arkady}, issn = {2041-1723}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, title = {{Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates}}, doi = {10.1038/s41467-017-00264-6}, volume = {8}, year = {2017}, } @article{7067, abstract = {Broken fourfold rotational (C4) symmetry is observed in the experimental properties of several classes of unconventional superconductors. It has been proposed that this symmetry breaking is important for superconducting pairing in these materials, but in the high-Tc cuprates this broken symmetry has never been observed on the Fermi surface. Here we report a pronounced anisotropy in the angle dependence of the interlayer magnetoresistance of the underdoped high transition temperature (high-Tc) superconductor YBa2Cu3O6.58, directly revealing broken C4 symmetry on the Fermi surface. Moreover, we demonstrate that this Fermi surface has C2 symmetry of the type produced by a uniaxial or anisotropic density-wave phase. This establishes the central role of C4 symmetry breaking in the Fermi surface reconstruction of YBa2Cu3O6+δ , and suggests a striking degree of universality among unconventional superconductors.}, author = {Ramshaw, B. J. and Harrison, N. and Sebastian, S. E. and Ghannadzadeh, S. and Modic, Kimberly A and Bonn, D. A. and Hardy, W. N. and Liang, Ruixing and Goddard, P. A.}, issn = {2397-4648}, journal = {npj Quantum Materials}, number = {1}, publisher = {Springer Nature}, title = {{Broken rotational symmetry on the Fermi surface of a high-Tc superconductor}}, doi = {10.1038/s41535-017-0013-z}, volume = {2}, year = {2017}, } @article{7066, abstract = {The excitonic insulator phase has long been predicted to form in proximity to a band gap opening in the underlying band structure. The character of the pairing is conjectured to crossover from weak (BCS-like) to strong coupling (BEC-like) as the underlying band structure is tuned from the metallic to the insulating side of the gap opening. Here we report the high-magnetic field phase diagram of graphite to exhibit just such a crossover. By way of comprehensive angle-resolved magnetoresistance measurements, we demonstrate that the underlying band gap opening occurs inside the magnetic field-induced phase, paving the way for a systematic study of the BCS-BEC-like crossover by means of conventional condensed matter probes.}, author = {Zhu, Z. and McDonald, R. D. and Shekhter, A. and Ramshaw, B. J. and Modic, Kimberly A and Balakirev, F. F. and Harrison, N.}, issn = {2045-2322}, journal = {Scientific Reports}, publisher = {Springer Nature}, title = {{Magnetic field tuning of an excitonic insulator between the weak and strong coupling regimes in quantum limit graphite}}, doi = {10.1038/s41598-017-01693-5}, volume = {7}, year = {2017}, } @article{707, abstract = {We answer a question of M. Gromov on the waist of the unit ball.}, author = {Akopyan, Arseniy and Karasev, Roman}, issn = {00246093}, journal = {Bulletin of the London Mathematical Society}, number = {4}, pages = {690 -- 693}, publisher = {Wiley-Blackwell}, title = {{A tight estimate for the waist of the ball }}, doi = {10.1112/blms.12062}, volume = {49}, year = {2017}, } @article{708, abstract = {In the developing and adult brain, oligodendrocyte precursor cells (OPCs) are influenced by neuronal activity: they are involved in synaptic signaling with neurons, and their proliferation and differentiation into myelinating glia can be altered by transient changes in neuronal firing. An important question that has been unanswered is whether OPCs can discriminate different patterns of neuronal activity and respond to them in a distinct way. Here, we demonstrate in brain slices that the pattern of neuronal activity determines the functional changes triggered at synapses between axons and OPCs. Furthermore, we show that stimulation of the corpus callosum at different frequencies in vivo affects proliferation and differentiation of OPCs in a dissimilar way. Our findings suggest that neurons do not influence OPCs in “all-or-none” fashion but use their firing pattern to tune the response and behavior of these nonneuronal cells.}, author = {Nagy, Balint and Hovhannisyan, Anahit and Barzan, Ruxandra and Chen, Ting and Kukley, Maria}, issn = {15449173}, journal = {PLoS Biology}, number = {8}, publisher = {Public Library of Science}, title = {{Different patterns of neuronal activity trigger distinct responses of oligodendrocyte precursor cells in the corpus callosum}}, doi = {10.1371/journal.pbio.2001993}, volume = {15}, year = {2017}, } @inproceedings{710, abstract = {We revisit the problem of estimating entropy of discrete distributions from independent samples, studied recently by Acharya, Orlitsky, Suresh and Tyagi (SODA 2015), improving their upper and lower bounds on the necessary sample size n. For estimating Renyi entropy of order alpha, up to constant accuracy and error probability, we show the following * Upper bounds n = O(1) 2^{(1-1/alpha)H_alpha} for integer alpha>1, as the worst case over distributions with Renyi entropy equal to H_alpha. * Lower bounds n = Omega(1) K^{1-1/alpha} for any real alpha>1, with the constant being an inverse polynomial of the accuracy, as the worst case over all distributions on K elements. Our upper bounds essentially replace the alphabet size by a factor exponential in the entropy, which offers improvements especially in low or medium entropy regimes (interesting for example in anomaly detection). As for the lower bounds, our proof explicitly shows how the complexity depends on both alphabet and accuracy, partially solving the open problem posted in previous works. The argument for upper bounds derives a clean identity for the variance of falling-power sum of a multinomial distribution. Our approach for lower bounds utilizes convex optimization to find a distribution with possibly worse estimation performance, and may be of independent interest as a tool to work with Le Cam’s two point method. }, author = {Obremski, Maciej and Skórski, Maciej}, issn = {18688969}, location = {Berkeley, USA}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Renyi entropy estimation revisited}}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2017.20}, volume = {81}, year = {2017}, }