@inproceedings{2979,
abstract = {Zero-knowledge proofs of knowledge (ZK-PoK) are important building blocks for numerous cryptographic applications. Although ZK-PoK have a high potential impact, their real world deployment is typically hindered by their significant complexity compared to other (non-interactive) crypto primitives. Moreover, their design and implementation are time-consuming and error-prone.
We contribute to overcoming these challenges as follows: We present a comprehensive specification language and a compiler for ZK-PoK protocols based on Σ-protocols. The compiler allows the fully automatic translation of an abstract description of a proof goal into an executable implementation. Moreover, the compiler overcomes various restrictions of previous approaches, e.g., it supports the important class of exponentiation homomorphisms with hidden-order co-domain, needed for privacy-preserving applications such as DAA. Finally, our compiler is certifying, in the sense that it automatically produces a formal proof of the soundness of the compiled protocol for a large class of protocols using the Isabelle/HOL theorem prover.
},
author = {Almeida, José Bacelar and Bangerter, Endre and Barbosa, Manuel and Stephan Krenn and Sadeghi, Ahmad-Reza and Schneider, Thomas},
editor = {Gritzalis, Dimitris and Preneel, Bart and Theoharidou, Marianthi},
pages = {151 -- 167},
publisher = {Springer},
title = {{A Certifying Compiler for Zero-Knowledge Proofs of Knowledge Based on Sigma-Protocols}},
doi = {10.1007/978-3-642-15497-3},
volume = {6345},
year = {2010},
}
@article{1752,
abstract = {The epitaxial growth of germanium on silicon leads to the self-assembly of SiGe nanocrystals by a process that allows the size, composition and position of the nanocrystals to be controlled. This level of control, combined with an inherent compatibility with silicon technology, could prove useful in nanoelectronic applications. Here, we report the confinement of holes in quantum-dot devices made by directly contacting individual SiGe nanocrystals with aluminium electrodes, and the production of hybrid superconductor- semiconductor devices, such as resonant supercurrent transistors, when the quantum dot is strongly coupled to the electrodes. Charge transport measurements on weakly coupled quantum dots reveal discrete energy spectra, with the confined hole states displaying anisotropic gyromagnetic factors and strong spin-orbit coupling with pronounced dependences on gate voltage and magnetic field.},
author = {Georgios Katsaros and Spathis, Panayotis N and Stoffel, Mathieu and Fournel, Frank and Mongillo, Massimo and Bouchiat, Vincent and Lefloch, François and Rastelli, Armando and Schmidt, Oliver G and De Franceschi, Silvano},
journal = {Nature Nanotechnology},
number = {6},
pages = {458 -- 464},
publisher = {Nature Publishing Group},
title = {{Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon}},
doi = {10.1038/nnano.2010.84},
volume = {5},
year = {2010},
}
@article{1753,
abstract = {We investigate electronic transport in n-i-n GaN nanowires with and without AlN double barriers. The nanowires are grown by catalyst-free, plasma-assisted molecular beam epitaxy enabling abrupt GaN/AlN interfaces as well as longitudinal n-type doping modulation. At low temperature, transport in n-i-n GaN nanowires is dominated by the Coulomb blockade effect. Carriers are confined in the undoped middle region, forming single or multiple islands with a characteristic length of ∼100 nm. The incorporation of two AlN tunnel barriers causes confinement to occur within the GaN dot in between. In the case of a 6 nm thick dot and 2 nm thick barriers, we observe characteristic signatures of Coulomb-blockaded transport in single quantum dots with discrete energy states. For thinner dots and barriers, Coulomb-blockade effects do not play a significant role while the onset of resonant tunneling via the confined quantum levels is accompanied by a negative differential resistance surviving up to ∼150 K.},
author = {Songmuang, Rudeeson and Georgios Katsaros and Monroy, Eva and Spathis, Panayotis N and Bougerol, Catherine and Mongillo, Massimo and De Franceschi, Silvano},
journal = {Nano Letters},
number = {9},
pages = {3545 -- 3550},
publisher = {American Chemical Society},
title = {{Quantum transport in GaN/AlN double-barrier heterostructure nanowires}},
doi = {10.1021/nl1017578},
volume = {10},
year = {2010},
}
@article{1773,
abstract = {The quantum properties of electromagnetic, mechanical or other harmonic oscillators can be revealed by investigating their strong coherent coupling to a single quantum two level system in an approach known as cavity quantum electrodynamics (QED). At temperatures much lower than the characteristic energy level spacing the observation of vacuum Rabi oscillations or mode splittings with one or a few quanta asserts the quantum nature of the oscillator. Here, we study how the classical response of a cavity QED system emerges from the quantum one when its thermal occupation-or effective temperature-is raised gradually over 5 orders of magnitude. In this way we explore in detail the continuous quantum-to-classical crossover and demonstrate how to extract effective cavity field temperatures from both spectroscopic and time-resolved vacuum Rabi measurements.},
author = {Johannes Fink and Steffen, L. Kraig and Studer, Peter and Bishop, Lev S and Baur, Matthias P and Bianchetti, R and Bozyigit, Deniz and Lang, C and Filipp, Stefan and Leek, Peter J and Wallraff, Andreas},
journal = {Physical Review Letters},
number = {16},
publisher = {American Physical Society},
title = {{Quantum-to-classical transition in cavity quantum electrodynamics}},
doi = {10.1103/PhysRevLett.105.163601},
volume = {105},
year = {2010},
}
@article{1774,
abstract = {A number of superconducting qubits, such as the transmon or the phase qubit, have an energy level structure with small anharmonicity. This allows for convenient access of higher excited states with similar frequencies. However, special care has to be taken to avoid unwanted higher-level populations when using short control pulses. Here we demonstrate the preparation of arbitrary three level superposition states using optimal control techniques in a transmon. Performing dispersive readout, we extract the populations of all three levels of the qutrit and study the coherence of its excited states. Finally we demonstrate full quantum state tomography of the prepared qutrit states and evaluate the fidelities of a set of states, finding on average 95%.},
author = {Bianchetti, R and Filipp, Stefan and Baur, Matthias P and Johannes Fink and Lang, C and Steffen, L. Kraig and Boissonneault, Maxime and Blais, Alexandre and Wallraff, Andreas},
journal = {Physical Review Letters},
number = {22},
publisher = {American Physical Society},
title = {{Control and tomography of a three level superconducting artificial atom}},
doi = {10.1103/PhysRevLett.105.223601},
volume = {105},
year = {2010},
}
@article{2095,
abstract = {This paper describes a passive stereo system for capturing the 3D geometry of a face in a single-shot under standard light sources. The system is low-cost and easy to deploy. Results are submillimeter accurate and commensurate with those from state-ofthe-art systems based on active lighting, and the models meet the quality requirements of a demanding domain like the movie industry. Recovered models are shown for captures from both high-end cameras in a studio setting and from a consumer binocular-stereo camera, demonstrating scalability across a spectrum of camera deployments, and showing the potential for 3D face modeling to move beyond the professional arena and into the emerging consumer market in stereoscopic photography. Our primary technical contribution is a modification of standard stereo refinement methods to capture pore-scale geometry, using a qualitative approach that produces visually realistic results. The second technical contribution is a calibration method suited to face capture systems. The systemic contribution includes multiple demonstrations of system robustness and quality. These include capture in a studio setup, capture off a consumer binocular-stereo camera, scanning of faces of varying gender and ethnicity and age, capture of highly-transient facial expression, and scanning a physical mask to provide ground-truth validation.},
author = {Beeler, Thabo and Bernd Bickel and Beardsley, Paul A and Sumner, Bob and Groß, Markus S},
journal = {ACM Transactions on Graphics},
number = {4},
publisher = {ACM},
title = {{High-quality single-shot capture of facial geometry}},
doi = {10.1145/1778765.1778777},
volume = {29},
year = {2010},
}
@article{2124,
abstract = {We develop a theory of Malliavin calculus for Banach space-valued random variables. Using radonifying operators instead of symmetric tensor products we extend the Wiener-Itô isometry to Banach spaces. In the white noise case we obtain two sided Lp-estimates for multiple stochastic integrals in arbitrary Banach spaces. It is shown that the Malliavin derivative is bounded on vector-valued Wiener-Itô chaoses. Our main tools are decoupling inequalities for vector-valued random variables. In the opposite direction we use Meyer's inequalities to give a new proof of a decoupling result for Gaussian chaoses in UMD Banach spaces.},
author = {Jan Maas},
journal = {Journal of Mathematical Analysis and Applications},
number = {2},
pages = {383 -- 398},
publisher = {Academic Press},
title = {{Malliavin calculus and decoupling inequalities in Banach spaces}},
doi = {10.1016/j.jmaa.2009.08.041},
volume = {363},
year = {2010},
}
@article{2194,
abstract = {We develop an analytic model of vector correlations in rotationally inelastic atom-diatom collisions and test it against the much examined Ar-NO (X2Π) system. Based on the Fraunhofer scattering of matter waves, the model furnishes complex scattering amplitudes needed to evaluate the polarization moments characterizing the quantum stereodynamics. The analytic polarization moments are found to be in an excellent agreement with experimental results and with close-coupling calculations available at thermal energies. The model reveals that the stereodynamics is governed by diffraction from the repulsive core of the Ar-NO potential, which can be characterized by a single Legendre moment.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Physical Chemistry Chemical Physics},
number = {5},
pages = {1038 -- 1041},
publisher = {Royal Society of Chemistry},
title = {{An analytic model of the stereodynamics of rotationally inelastic molecular collisions}},
doi = {10.1039/B920899B },
volume = {12},
year = {2010},
}
@article{2195,
abstract = {Following upon our recent work on vector correlations in the Ar-NO collisions [Lemeshko and Friedrich, Phys. Chem. Chem. Phys. 12, 1038 (2010)], we compare model results with close-coupling calculations for a range of channels and collision energies for the He-NO system. The striking agreement between the model and exact polarization moments indicates that the stereodynamics of rotationally inelastic atom-molecule collisions at thermal energies is governed by diffraction of matter waves from a two-dimensional repulsive core of the atom-molecule potential. Furthermore, the model polarization moments characterizing the He-NO, He- O2, He-OH, and He-CaH stereodynamics are found to coalesce into a single, distinctive pattern, which can serve as a "fingerprint" to identify diffraction-driven stereodynamics in future work. },
author = {Mikhail Lemeshko and Jambrina, Pablo G and De Miranda, Marcelo P and Friedrich, Břetislav},
journal = {Journal of Chemical Physics},
number = {16},
publisher = {American Institute of Physics},
title = {{Communications: When diffraction rules the stereodynamics of rotationally inelastic collisions}},
doi = {10.1063/1.3386530},
volume = {132},
year = {2010},
}
@article{2196,
abstract = {We evaluate the shifts imparted to vibrational and rotational levels of a linear molecule by a nonresonant laser field at intensities of up to 10 12 W/cm2. Both types of shift are found to be either positive or negative, depending on the initial rotational state acted upon by the field. An adiabatic field-molecule interaction imparts a rotational energy shift which is negative and exceeds the concomitant positive vibrational shift by a few orders of magnitude. The rovibrational states are thus pushed downward in such a field. A nonresonant pulsed laser field that interacts nonadiabatically with the molecule is found to impart rotational and vibrational shifts of the same order of magnitude. The nonadiabatic energy transfer occurs most readily at a pulse duration which amounts to about a tenth of the molecule's rotational period and vanishes when the sudden regime is attained for shorter pulses. We applied our treatment to the much-studied 87Rb2 molecule in the last bound vibrational levels of its lowest singlet and triplet electronic states. Our calculations indicate that 15 and 1.5 ns laser pulses of an intensity in excess of 5 × 109 W/cm2 are capable of dissociating the molecule due to the vibrational shift. Lesser shifts can be used to fine-tune the rovibrational levels and thereby affect collisional resonances by the nonresonant light. The energy shifts due to laser intensities of 109 W/cm2 may be discernible spectroscopically, with a 10 MHz resolution.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Journal of Physical Chemistry A},
number = {36},
pages = {9848 -- 9854},
publisher = {American Chemical Society},
title = {{Fine-tuning molecular energy levels by nonresonant laser pulses}},
doi = {10.1021/jp1032299},
volume = {114},
year = {2010},
}
@article{2197,
abstract = {We present an analytic model of the refractive index for matter waves propagating through atomic or molecular gases. The model, which combines the Wentzel-Kramers-Brillouin (WKB) treatment of the long-range attraction with the Fraunhofer model treatment of the short-range repulsion, furnishes a refractive index in compelling agreement with recent experiments of Jacquey [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.240405 98, 240405 (2007)] on Li atom matter waves passing through dilute noble gases. We show that the diffractive contribution, which arises from scattering by a two-dimensional "hard core" of the potential, is essential for obtaining a correct imaginary part of the refractive index.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {2},
publisher = {American Physical Society},
title = {{Multiple scattering of matter waves: An analytic model of the refractive index for atomic and molecular gases}},
doi = {10.1103/PhysRevA.82.022711},
volume = {82},
year = {2010},
}
@inproceedings{488,
abstract = {Streaming string transducers [1] define (partial) functions from input strings to output strings. A streaming string transducer makes a single pass through the input string and uses a finite set of variables that range over strings from the output alphabet. At every step, the transducer processes an input symbol, and updates all the variables in parallel using assignments whose right-hand-sides are concatenations of output symbols and variables with the restriction that a variable can be used at most once in a right-hand-side expression. It has been shown that streaming string transducers operating on strings over infinite data domains are of interest in algorithmic verification of list-processing programs, as they lead to PSPACE decision procedures for checking pre/post conditions and for checking semantic equivalence, for a well-defined class of heap-manipulating programs. In order to understand the theoretical expressiveness of streaming transducers, we focus on streaming transducers processing strings over finite alphabets, given the existence of a robust and well-studied class of "regular" transductions for this case. Such regular transductions can be defined either by two-way deterministic finite-state transducers, or using a logical MSO-based characterization. Our main result is that the expressiveness of streaming string transducers coincides exactly with this class of regular transductions. },
author = {Alur, Rajeev and Cerny, Pavol},
location = {Chennai, India},
pages = {1 -- 12},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Expressiveness of streaming string transducers}},
doi = {10.4230/LIPIcs.FSTTCS.2010.1},
volume = {8},
year = {2010},
}
@inproceedings{489,
abstract = {Graph games of infinite length are a natural model for open reactive processes: one player represents the controller, trying to ensure a given specification, and the other represents a hostile environment. The evolution of the system depends on the decisions of both players, supplemented by chance. In this work, we focus on the notion of randomised strategy. More specifically, we show that three natural definitions may lead to very different results: in the most general cases, an almost-surely winning situation may become almost-surely losing if the player is only allowed to use a weaker notion of strategy. In more reasonable settings, translations exist, but they require infinite memory, even in simple cases. Finally, some traditional problems becomes undecidable for the strongest type of strategies.},
author = {Cristau, Julien and David, Claire and Horn, Florian},
booktitle = {Proceedings of GandALF 2010},
location = {Minori, Amalfi Coast, Italy},
pages = {30 -- 39},
publisher = {Open Publishing Association},
title = {{How do we remember the past in randomised strategies? }},
doi = {10.4204/EPTCS.25.7},
volume = {25},
year = {2010},
}
@misc{5388,
abstract = {We present an algorithmic method for the synthesis of concurrent programs that are optimal with respect to quantitative performance measures. The input consists of a sequential sketch, that is, a program that does not contain synchronization constructs, and of a parametric performance model that assigns costs to actions such as locking, context switching, and idling. The quantitative synthesis problem is to automatically introduce synchronization constructs into the sequential sketch so that both correctness is guaranteed and worst-case (or average-case) performance is optimized. Correctness is formalized as race freedom or linearizability.
We show that for worst-case performance, the problem can be modeled
as a 2-player graph game with quantitative (limit-average) objectives, and
for average-case performance, as a 2 1/2 -player graph game (with probabilistic transitions). In both cases, the optimal correct program is derived from an optimal strategy in the corresponding quantitative game. We prove that the respective game problems are computationally expensive (NP-complete), and present several techniques that overcome the theoretical difficulty in cases of concurrent programs of practical interest.
We have implemented a prototype tool and used it for the automatic syn- thesis of programs that access a concurrent list. For certain parameter val- ues, our method automatically synthesizes various classical synchronization schemes for implementing a concurrent list, such as fine-grained locking or a lazy algorithm. For other parameter values, a new, hybrid synchronization style is synthesized, which uses both the lazy approach and coarse-grained locks (instead of standard fine-grained locks). The trade-off occurs because while fine-grained locking tends to decrease the cost that is due to waiting for locks, it increases cache size requirements.},
author = {Chatterjee, Krishnendu and Cerny, Pavol and Henzinger, Thomas A and Radhakrishna, Arjun and Singh, Rohit},
issn = {2664-1690},
pages = {17},
publisher = {IST Austria},
title = {{Quantitative synthesis for concurrent programs}},
doi = {10.15479/AT:IST-2010-0004},
year = {2010},
}
@misc{5389,
abstract = {Boolean notions of correctness are formalized by preorders on systems. Quantitative measures of correctness can be formalized by real-valued distance functions between systems, where the distance between implementation and specification provides a measure of “fit” or “desirability.” We extend the simulation preorder to the quantitative setting, by making each player of a simulation game pay a certain price for her choices. We use the resulting games with quantitative objectives to define three different simulation distances. The correctness distance measures how much the specification must be changed in order to be satisfied by the implementation. The coverage distance measures how much the im- plementation restricts the degrees of freedom offered by the specification. The robustness distance measures how much a system can deviate from the implementation description without violating the specification. We consider these distances for safety as well as liveness specifications. The distances can be computed in polynomial time for safety specifications, and for liveness specifications given by weak fairness constraints. We show that the distance functions satisfy the triangle inequality, that the distance between two systems does not increase under parallel composition with a third system, and that the distance between two systems can be bounded from above and below by distances between abstractions of the two systems. These properties suggest that our simulation distances provide an appropriate basis for a quantitative theory of discrete systems. We also demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.},
author = {Cerny, Pavol and Henzinger, Thomas A and Radhakrishna, Arjun},
issn = {2664-1690},
pages = {24},
publisher = {IST Austria},
title = {{Simulation distances}},
doi = {10.15479/AT:IST-2010-0003},
year = {2010},
}
@misc{5390,
abstract = {The class of ω regular languages provide a robust specification language in verification. Every ω-regular condition can be decomposed into a safety part and a liveness part. The liveness part ensures that something good happens “eventually.” Two main strengths of the classical, infinite-limit formulation of liveness are robustness (independence from the granularity of transitions) and simplicity (abstraction of complicated time bounds). However, the classical liveness formulation suffers from the drawback that the time until something good happens may be unbounded. A stronger formulation of liveness, so-called finitary liveness, overcomes this drawback, while still retaining robustness and simplicity. Finitary liveness requires that there exists an unknown, fixed bound b such that something good happens within b transitions. In this work we consider the finitary parity and Streett (fairness) conditions. We present the topological, automata-theoretic and logical characterization of finitary languages defined by finitary parity and Streett conditions. We (a) show that the finitary parity and Streett languages are Σ2-complete; (b) present a complete characterization of the expressive power of various classes of automata with finitary and infinitary conditions (in particular we show that non-deterministic finitary parity and Streett automata cannot be determinized to deterministic finitary parity or Streett automata); and (c) show that the languages defined by non-deterministic finitary parity automata exactly characterize the star-free fragment of ωB-regular languages.},
author = {Chatterjee, Krishnendu and Fijalkow, Nathanaël},
issn = {2664-1690},
pages = {21},
publisher = {IST Austria},
title = {{Topological, automata-theoretic and logical characterization of finitary languages}},
doi = {10.15479/AT:IST-2010-0002},
year = {2010},
}
@misc{5391,
abstract = {Concurrent data structures with fine-grained synchronization are notoriously difficult to implement correctly. The difficulty of reasoning about these implementations does not stem from the number of variables or the program size, but rather from the large number of possible interleavings. These implementations are therefore prime candidates for model checking. We introduce an algorithm for verifying linearizability of singly-linked heap-based concurrent data structures. We consider a model consisting of an unbounded heap where each node consists an element from an unbounded data domain, with a restricted set of operations for testing and updating pointers and data elements. Our main result is that linearizability is decidable for programs that invoke a fixed number of methods, possibly in parallel. This decidable fragment covers many of the common implementation techniques — fine-grained locking, lazy synchronization, and lock-free synchronization. We also show how the technique can be used to verify optimistic implementations with the help of programmer annotations. We developed a verification tool CoLT and evaluated it on a representative sample of Java implementations of the concurrent set data structure. The tool verified linearizability of a number of implementations, found a known error in a lock-free imple- mentation and proved that the corrected version is linearizable.},
author = {Cerny, Pavol and Radhakrishna, Arjun and Zufferey, Damien and Chaudhuri, Swarat and Alur, Rajeev},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{Model checking of linearizability of concurrent list implementations}},
doi = {10.15479/AT:IST-2010-0001},
year = {2010},
}
@article{598,
abstract = {It is not well understood how the human Mediator complex, transcription factor IIH and RNA polymerase II (Pol II) work together with activators to initiate transcription. Activator binding alters Mediator structure, yet the functional consequences of such structural shifts remain unknown. The p53 C terminus and its activation domain interact with different Mediator subunits, and we find that each interaction differentially affects Mediator structure; strikingly, distinct p53-Mediator structures differentially affect Pol II activity. Only the p53 activation domain induces the formation of a large pocket domain at the Mediator-Pol II interaction site, and this correlates with activation of stalled Pol II to a productively elongating state. Moreover, we define a Mediator requirement for TFIIH-dependent Pol II C-terminal domain phosphorylation and identify substantial differences in Pol II C-terminal domain processing that correspond to distinct p53-Mediator structural states. Our results define a fundamental mechanism by which p53 activates transcription and suggest that Mediator structural shifts trigger activation of stalled Pol II complexes.},
author = {Meyer, Krista and Lin, Shih and Bernecky, Carrie A and Gao, Yuefeng and Taatjes, Dylan},
journal = {Nature Structural and Molecular Biology},
number = {6},
pages = {753 -- 760},
publisher = {Nature Publishing Group},
title = {{P53 activates transcription by directing structural shifts in Mediator}},
doi = {10.1038/nsmb.1816},
volume = {17},
year = {2010},
}
@article{6142,
abstract = {Defining the mutational landscape when individuals of a species grow separately and diverge over many generations can provide insights into trait evolution. A specific example of this involves studying changes associated with domestication where different lines of the same wild stock have been cultivated independently in different standard environments. Whole genome sequence comparison of such lines permits estimation of mutation rates, inference of genes' ancestral states and ancestry of existing strains, and correction of sequencing errors in genome databases. Here we study domestication of the C. elegans Bristol strain as a model, and report the genome sequence of LSJ1 (Bristol), a sibling of the standard C. elegans reference wild type N2 (Bristol). The LSJ1 and N2 lines were cultivated separately from shortly after the Bristol strain was isolated until methods to freeze C. elegans were developed. We find that during this time the two strains have accumulated 1208 genetic differences. We describe phenotypic variation between N2 and LSJ1 in the rate at which embryos develop, the rate of production of eggs, the maturity of eggs at laying, and feeding behavior, all the result of post-isolation changes. We infer the ancestral alleles in the original Bristol isolate and highlight 2038 likely sequencing errors in the original N2 reference genome sequence. Many of these changes modify genome annotation. Our study provides a starting point to further investigate genotype-phenotype association and offers insights into the process of selection as a result of laboratory domestication.},
author = {Weber, Katherine P. and De, Subhajyoti and Kozarewa, Iwanka and Turner, Daniel J. and Babu, M. Madan and de Bono, Mario},
issn = {1932-6203},
journal = {PLoS ONE},
number = {11},
publisher = {Public Library of Science},
title = {{Whole genome sequencing highlights genetic changes associated with laboratory domestication of C. elegans}},
doi = {10.1371/journal.pone.0013922},
volume = {5},
year = {2010},
}
@article{6320,
abstract = {We study the average order of the divisor function, as it ranges over the values of binary quartic forms that are reducible over ℚ.},
author = {Bretèche, Régis de la and Browning, Timothy D},
journal = {Crelles Journal},
number = {646},
pages = {1--44},
publisher = {Walter de Gruyter GmbH},
title = {{Le problème des diviseurs pour des formes binaires de degré 4}},
doi = {10.1515/crelle.2010.064},
volume = {2010},
year = {2010},
}
@article{7078,
abstract = {We report resonant ultrasound spectroscopy (RUS), dilatometry/magnetostriction, magnetotransport, magnetization, specific-heat, and 119Sn Mössbauer spectroscopy measurements on SnTe and Sn0.995Cr0.005Te. Hall measurements at T=77 K indicate that our Bridgman-grown single crystals have a p-type carrier concentration of 3.4×1019 cm−3 and that our Cr-doped crystals have an n-type concentration of 5.8×1022 cm−3. Although our SnTe crystals are diamagnetic over the temperature range 2≤T≤1100 K, the Cr-doped crystals are room-temperature ferromagnets with a Curie temperature of 294 K. For each sample type, three-terminal capacitive dilatometry measurements detect a subtle 0.5 μm distortion at Tc≈85 K. Whereas our RUS measurements on SnTe show elastic hardening near the structural transition, pointing to co-elastic behavior, similar measurements on Sn0.995Cr0.005Te show a pronounced softening, pointing to ferroelastic behavior. Effective Debye temperature, θD, values of SnTe obtained from 119Sn Mössbauer studies show a hardening of phonons in the range 60–115 K (θD=162 K) as compared with the 100–300 K range (θD=150 K). In addition, a precursor softening extending over approximately 100 K anticipates this collapse at the critical temperature and quantitative analysis over three decades of its reduced modulus finds ΔC44/C44=A|(T−T0)/T0|−κ with κ=0.50±0.02, a value indicating a three-dimensional softening of phonon branches at a temperature T0∼75 K, considerably below Tc. We suggest that the differences in these two types of elastic behaviors lie in the absence of elastic domain-wall motion in the one case and their nucleation in the other.},
author = {Salje, E. K. H. and Safarik, D. J. and Modic, Kimberly A and Gubernatis, J. E. and Cooley, J. C. and Taylor, R. D. and Mihaila, B. and Saxena, A. and Lookman, T. and Smith, J. L. and Fisher, R. A. and Pasternak, M. and Opeil, C. P. and Siegrist, T. and Littlewood, P. B. and Lashley, J. C.},
issn = {1098-0121},
journal = {Physical Review B},
number = {18},
publisher = {APS},
title = {{Tin telluride: A weakly co-elastic metal}},
doi = {10.1103/physrevb.82.184112},
volume = {82},
year = {2010},
}
@article{1465,
abstract = {We prove a generating function formula for the Betti numbers of Nakajima quiver varieties. We prove that it is a q-deformation of the Weyl-Kac character formula. In particular this implies that the constant term of the polynomial counting the number of absolutely indecomposable representations of a quiver equals the multiplicity of a certain weight in the corresponding Kac-Moody algebra, which was conjectured by Kac in 1982.},
author = {Tamas Hausel},
journal = {Inventiones Mathematicae},
number = {1},
pages = {21 -- 37},
publisher = {Springer},
title = {{Kac's conjecture from Nakajima quiver varieties}},
doi = {10.1007/s00222-010-0241-3},
volume = {181},
year = {2010},
}
@article{1466,
abstract = {In Hausel et al. (2008) [10] we presented a conjecture generalizing the Cauchy formula for Macdonald polynomial. This conjecture encodes the mixed Hodge polynomials of the character varieties of representations of the fundamental group of a punctured Riemann surface of genus g. We proved several results which support this conjecture. Here we announce new results which are consequences of those in Hausel et al. (2008) [10].},
author = {Tamas Hausel and Letellier, Emmanuel and Rodríguez Villegas, Fernando},
journal = {Comptes Rendus Mathematique},
number = {3-4},
pages = {131 -- 135},
publisher = {Elsevier},
title = {{Topology of character varieties and representations of quivers}},
doi = {10.1016/j.crma.2010.01.025},
volume = {348},
year = {2010},
}
@inbook{1468,
abstract = {This chapter surveys the motivations, related results, and progress made towards the following problem, raised by Hitchin in 1995: What is the space of L2 harmonic forms on the moduli space of Higgs bundles on a Riemann surface?},
author = {Tamas Hausel},
booktitle = {The Many Facets of Geometry: A Tribute to Nigel Hitchin},
publisher = {Oxford University Press},
title = {{S-Duality in HyperkäHler Hodge Theory}},
doi = {10.1093/acprof:oso/9780199534920.003.0016},
year = {2010},
}
@article{1044,
abstract = {Control over all internal and external degrees of freedom of molecules at the level of single quantum states will enable a series of fundamental studies in physics and chemistry1,2. In particular, samples of ground-state molecules at ultralow temperatures and high number densities will facilitate new quantum-gas studies3 and future applications in quantum information science4. However, high phase-space densities for molecular samples are not readily attainable because efficient cooling techniques such as laser cooling are lacking. Here we produce an ultracold and dense sample of molecules in a single hyperfine level of the rovibronic ground state with each molecule individually trapped in the motional ground state of an optical lattice well. Starting from a zero-temperature atomic Mott-insulator state with optimized double-site occupancy6, weakly bound dimer molecules are efficiently associated on a Feshbach resonance7 and subsequently transferred to the rovibronic ground state by a stimulated four-photon process with >50% efficiency. The molecules are trapped in the lattice and have a lifetime of 8 s. Our results present a crucial step towards Bose-Einstein condensation of ground-state molecules and, when suitably generalized to polar heteronuclear molecules, the realization of dipolar quantum-gas phases in optical lattices8-10.},
author = {Danzl, Johann G and Mark, Manfred and Haller, Elmar and Gustavsson, Mattias and Hart, Russell and Aldegunde, Jesus and Hutson, Jeremy and Nägerl, Hanns},
journal = {Nature Physics},
number = {4},
pages = {265 -- 270},
publisher = {Nature Publishing Group},
title = {{An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice}},
doi = {10.1038/nphys1533},
volume = {6},
year = {2010},
}
@article{1045,
abstract = {We report on the observation of confinement-induced resonances in strongly interacting quantum-gas systems with tunable interactions for one- and two-dimensional geometry. Atom-atom scattering is substantially modified when the s-wave scattering length approaches the length scale associated with the tight transversal confinement, leading to characteristic loss and heating signatures. Upon introducing an anisotropy for the transversal confinement we observe a splitting of the confinement-induced resonance. With increasing anisotropy additional resonances appear. In the limit of a two-dimensional system we find that one resonance persists.},
author = {Haller, Elmar and Mark, Manfred and Hart, Russell and Danzl, Johann G and Reichsöllner, Lukas and Melezhik, Vladimir and Schmelcher, Peter and Nägerl, Hanns},
journal = {Physical Review Letters},
number = {15},
publisher = {American Physical Society},
title = {{Confinement-induced resonances in low-dimensional quantum systems}},
doi = {10.1103/PhysRevLett.104.153203},
volume = {104},
year = {2010},
}
@article{1047,
abstract = {Particles in a perfect lattice potential perform Bloch oscillations when subject to a constant force, leading to localization and preventing conductivity. For a weakly interacting Bose-Einstein condensate of Cs atoms, we observe giant center-of-mass oscillations in position space with a displacement across hundreds of lattice sites when we add a periodic modulation to the force near the Bloch frequency. We study the dependence of these "super" Bloch oscillations on lattice depth, modulation amplitude, and modulation frequency and show that they provide a means to induce linear transport in a dissipation-free lattice.},
author = {Haller, Elmar and Hart, Russell and Mark, Manfred and Danzl, Johann G and Reichsöllner, Lukas and Nägerl, Hanns},
journal = {Physical Review Letters},
number = {20},
publisher = {American Physical Society},
title = {{Inducing transport in a dissipation-free lattice with super bloch oscillations}},
doi = {10.1103/PhysRevLett.104.200403},
volume = {104},
year = {2010},
}
@article{1049,
abstract = {Quantum many-body systems can have phase transitions even at zero temperature; fluctuations arising from Heisenbergĝ€™s uncertainty principle, as opposed to thermal effects, drive the system from one phase to another. Typically, during the transition the relative strength of two competing terms in the systemĝ€™s Hamiltonian changes across a finite critical value. A well-known example is the Mottĝ€" Hubbard quantum phase transition from a superfluid to an insulating phase, which has been observed for weakly interacting bosonic atomic gases. However, for strongly interacting quantum systems confined to lower-dimensional geometry, a novel type of quantum phase transition may be induced and driven by an arbitrarily weak perturbation to the Hamiltonian. Here we observe such an effectĝ€"the sineĝ€"Gordon quantum phase transition from a superfluid Luttinger liquid to a Mott insulatorĝ€ "in a one-dimensional quantum gas of bosonic caesium atoms with tunable interactions. For sufficiently strong interactions, the transition is induced by adding an arbitrarily weak optical lattice commensurate with the atomic granularity, which leads to immediate pinning of the atoms. We map out the phase diagram and find that our measurements in the strongly interacting regime agree well with a quantum field description based on the exactly solvable sineĝ€"Gordon model. We trace the phase boundary all the way to the weakly interacting regime, where we find good agreement with the predictions of the one-dimensional Boseĝ€"Hubbard model. Our results open up the experimental study of quantum phase transitions, criticality and transport phenomena beyond Hubbard-type models in the context of ultracold gases.},
author = {Haller, Elmar and Hart, Russell and Mark, Manfred and Danzl, Johann G and Reichsöllner, Lukas and Gustavsson, Mattias and Dalmonte, Marcello and Pupillo, Guido and Nägerl, Hanns},
journal = {Nature},
number = {7306},
pages = {597 -- 600},
publisher = {Nature Publishing Group},
title = {{Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons}},
doi = {10.1038/nature09259},
volume = {466},
year = {2010},
}
@article{9012,
abstract = {In this Letter, we characterize experimentally the diffusiophoretic motion of colloids and λ-DNA toward higher concentration of solutes, using microfluidic technology to build spatially and temporally controlled concentration gradients. We then demonstrate that segregation and spatial patterning of the particles can be achieved from temporal variations of the solute concentration profile. This segregation takes the form of a strong trapping potential, stemming from an osmotically induced rectification mechanism of the solute time-dependent variations. Depending on the spatial and temporal symmetry of the solute signal, localization patterns with various shapes can be achieved. These results highlight the role of solute contrasts in out-of-equilibrium processes occurring in soft matter.},
author = {Palacci, Jérémie A and Abécassis, Benjamin and Cottin-Bizonne, Cécile and Ybert, Christophe and Bocquet, Lydéric},
issn = {10797114},
journal = {Physical Review Letters},
number = {13},
publisher = {American Physical Society},
title = {{Colloidal motility and pattern formation under rectified diffusiophoresis}},
doi = {10.1103/physrevlett.104.138302},
volume = {104},
year = {2010},
}
@article{9013,
abstract = {In this Letter, we investigate experimentally the nonequilibrium steady state of an active colloidal suspension under gravity field. The active particles are made of chemically powered colloids, showing self propulsion in the presence of an added fuel, here hydrogen peroxide. The active suspension is studied in a dedicated microfluidic device, made of permeable gel microstructures. Both the microdynamics of individual colloids and the global stationary state of the suspension under gravity are measured with optical microscopy. This yields a direct measurement of the effective temperature of the active system as a function of the particle activity, on the basis of the fluctuation-dissipation relationship. Our work is a first step in the experimental exploration of the out-of-equilibrium properties of active colloidal systems.},
author = {Palacci, Jérémie A and Cottin-Bizonne, Cécile and Ybert, Christophe and Bocquet, Lydéric},
issn = {10797114},
journal = {Physical Review Letters},
number = {8},
publisher = {American Physical Society },
title = {{Sedimentation and effective temperature of active colloidal suspensions}},
doi = {10.1103/physrevlett.105.088304},
volume = {105},
year = {2010},
}
@article{9146,
abstract = {The factors governing the rate of change in the amount of atmospheric water vapor are analyzed in simulations of climate change. The global-mean amount of water vapor is estimated to increase at a differential rate of 7.3% K − 1 with respect to global-mean surface air temperature in the multi-model mean. Larger rates of change result if the fractional change is evaluated over a finite change in temperature (e.g., 8.2% K − 1 for a 3 K warming), and rates of change of zonal-mean column water vapor range from 6 to 12% K − 1 depending on latitude.
Clausius–Clapeyron scaling is directly evaluated using an invariant distribution of monthly-mean relative humidity, giving a rate of 7.4% K − 1 for global-mean water vapor. There are deviations from Clausius–Clapeyron scaling of zonal-mean column water vapor in the tropics and mid-latitudes, but they largely cancel in the global mean. A purely thermodynamic scaling based on a saturated troposphere gives a higher global rate of 7.9% K − 1.
Surface specific humidity increases at a rate of 5.7% K − 1, considerably lower than the rate for global-mean water vapor. Surface specific humidity closely follows Clausius–Clapeyron scaling over ocean. But there are widespread decreases in surface relative humidity over land (by more than 1% K − 1 in many regions), and it is argued that decreases of this magnitude could result from the land/ocean contrast in surface warming.},
author = {O’Gorman, P A and MULLER, Caroline J},
issn = {1748-9326},
journal = {Environmental Research Letters},
keywords = {Renewable Energy, Sustainability and the Environment, Public Health, Environmental and Occupational Health, General Environmental Science},
number = {2},
publisher = {IOP Publishing},
title = {{How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations?}},
doi = {10.1088/1748-9326/5/2/025207},
volume = {5},
year = {2010},
}
@inproceedings{3719,
abstract = {The induction of a signaling pathway is characterized by transient complex formation and mutual posttranslational modification of proteins. To faithfully capture this combinatorial process in a math- ematical model is an important challenge in systems biology. Exploiting the limited context on which most binding and modification events are conditioned, attempts have been made to reduce the com- binatorial complexity by quotienting the reachable set of molecular species, into species aggregates while preserving the deterministic semantics of the thermodynamic limit. Recently we proposed a quotienting that also preserves the stochastic semantics and that is complete in the sense that the semantics of individual species can be recovered from the aggregate semantics. In this paper we prove that this quotienting yields a sufficient condition for weak lumpability and that it gives rise to a backward Markov bisimulation between the original and aggregated transition system. We illustrate the framework on a case study of the EGF/insulin receptor crosstalk.},
author = {Feret, Jérôme and Henzinger, Thomas A and Koeppl, Heinz and Petrov, Tatjana},
location = {Jena, Germany},
pages = {142--161},
publisher = {Open Publishing Association},
title = {{Lumpability abstractions of rule-based systems}},
volume = {40},
year = {2010},
}
@unpublished{3743,
abstract = {These are notes for a set of 7 two-hour lectures given at the 2010 Summer School on Quantitative Evolutionary and Comparative Genomics at OIST, Okinawa, Japan. The emphasis is on understanding how biological systems process information. We take a physicist's approach of looking for simple phenomenological descriptions that can address the questions of biological function without necessarily modeling all (mostly unknown) microscopic details; the example that is developed throughout the notes is transcriptional regulation in genetic regulatory networks. We present tools from information theory and statistical physics that can be used to analyze noisy nonlinear biological networks, and build generative and predictive models of regulatory processes.},
author = {Gasper Tkacik},
booktitle = {ArXiv},
pages = {1 -- 52},
publisher = {ArXiv},
title = {{From statistical mechanics to information theory: understanding biophysical information-processing systems}},
volume = {q-bio.MN},
year = {2010},
}
@article{3748,
abstract = {The chemotaxis signalling network in Escherichia coli that controls the locomotion of bacteria is a classic model system for signal transduction1, 2. This pathway modulates the behaviour of flagellar motors to propel bacteria towards sources of chemical attractants. Although this system relaxes to a steady state in response to environmental changes, the signalling events within the chemotaxis network are noisy and cause large temporal variations of the motor behaviour even in the absence of stimulus3. That the same signalling network governs both behavioural variability and cellular response raises the question of whether these two traits are independent. Here, we experimentally establish a fluctuation–response relationship in the chemotaxis system of living bacteria. Using this relationship, we demonstrate the possibility of inferring the cellular response from the behavioural variability measured before stimulus. In monitoring the pre- and post-stimulus switching behaviour of individual bacterial motors, we found that variability scales linearly with the response time for different functioning states of the cell. This study highlights that the fundamental relationship between fluctuation and response is not constrained to physical systems at thermodynamic equilibrium4 but is extensible to living cells5. Such a relationship not only implies that behavioural variability and cellular response can be coupled traits, but it also provides a general framework within which we can examine how the selection of a network design shapes this interdependence},
author = {Park, Heungwon and Pontius, William and Calin Guet and Marko, John F and Emonet,Thierry and Cluzel,Philippe},
journal = {Nature},
pages = {819 -- 823},
publisher = {Nature Publishing Group},
title = {{Interdependence of behavioural variability and response to small stimuli in bacteria}},
doi = {10.1038/nature09551},
volume = {468},
year = {2010},
}
@article{3749,
abstract = {In E. coli, chemotactic behavior exhibits perfect adaptation that is robust to changes in the intracellular concentration of the chemotactic proteins, such as CheR and CheB. However, the robustness of the perfect adaptation does not explicitly imply a robust chemotactic response. Previous studies on the robustness of the chemotactic response relied on swarming assays, which can be confounded by processes besides chemotaxis, such as cellular growth and depletion of nutrients. Here, using a high-throughput capillary assay that eliminates the effects of growth, we experimentally studied how the chemotactic response depends on the relative concentration of the chemotactic proteins. We simultaneously measured both the chemotactic response of E. coli cells to L: -aspartate and the concentrations of YFP-CheR and CheB-CFP fusion proteins. We found that the chemotactic response is fine-tuned to a specific ratio of [CheR]/[CheB] with a maximum response comparable to the chemotactic response of wild-type behavior. In contrast to adaptation in chemotaxis, that is robust and exact, capillary assays revealed that the chemotactic response in swimming bacteria is fined-tuned to wild-type level of the [CheR]/[CheB] ratio.},
author = {Park, Heungwon and Calin Guet and Emonet,Thierry and Cluzel,Philippe},
journal = {Current Microbiology},
number = {3},
pages = {764 -- 769},
publisher = {Springer},
title = {{Fine-tuning of chemotactic response in E. coli determined by high-throughput capillary assay}},
doi = {10.1007/s00284-010-9778-z},
volume = {62},
year = {2010},
}
@article{3772,
author = {Barton, Nicholas H},
journal = {PLoS Genetics},
number = {6},
publisher = {Public Library of Science},
title = {{Understanding adaptation in large populations}},
doi = {10.1371/journal.pgen.1000987},
volume = {6},
year = {2010},
}
@article{3773,
abstract = {If distinct biological species are to coexist in sympatry, they must be reproductively isolated and must exploit different limiting resources. A two-niche Levene model is analysed, in which habitat preference and survival depend on underlying additive traits. The population genetics of preference and viability are equivalent. However, there is a linear trade-off between the chances of settling in either niche, whereas viabilities may be constrained arbitrarily. With a convex trade-off, a sexual population evolves a single generalist genotype, whereas with a concave trade-off, disruptive selection favours maximal variance. A pure habitat preference evolves to global linkage equilibrium if mating occurs in a single pool, but remarkably, evolves to pairwise linkage equilibrium within niches if mating is within those niches--independent of the genetics. With a concave trade-off, the population shifts sharply between a unimodal distribution with high gene flow and a bimodal distribution with strong isolation, as the underlying genetic variance increases. However, these alternative states are only simultaneously stable for a narrow parameter range. A sharp threshold is only seen if survival in the 'wrong' niche is low; otherwise, strong isolation is impossible. Gene flow from divergent demes makes speciation much easier in parapatry than in sympatry.},
author = {Barton, Nicholas H},
journal = {Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences},
number = {1547},
pages = {1825 -- 1840},
publisher = {Royal Society},
title = {{What role does natural selection play in speciation?}},
doi = {10.1098/rstb.2010.0001},
volume = {365},
year = {2010},
}
@article{3776,
abstract = {The prevalence of recombination in eukaryotes poses one of the most puzzling questions in biology. The most compelling general explanation is that recombination facilitates selection by breaking down the negative associations generated by random drift (i.e. Hill-Robertson interference, HRI). I classify the effects of HRI owing to: deleterious mutation, balancing selection and selective sweeps on: neutral diversity, rates of adaptation and the mutation load. These effects are mediated primarily by the density of deleterious mutations and of selective sweeps. Sequence polymorphism and divergence suggest that these rates may be high enough to cause significant interference even in genomic regions of high recombination. However, neither seems able to generate enough variance in fitness to select strongly for high rates of recombination. It is plausible that spatial and temporal fluctuations in selection generate much more fitness variance, and hence selection for recombination, than can be explained by uniformly deleterious mutations or species-wide selective sweeps.},
author = {Barton, Nicholas H},
journal = {Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences},
number = {1552},
pages = {2559 -- 2569},
publisher = {Royal Society},
title = {{Genetic linkage and natural selection}},
doi = {10.1098/rstb.2010.0106},
volume = {365},
year = {2010},
}
@article{3777,
abstract = {Under the classical view, selection depends more or less directly on mutation: standing genetic variance is maintained by a balance between selection and mutation, and adaptation is fuelled by new favourable mutations. Recombination is favoured if it breaks negative associations among selected alleles, which interfere with adaptation. Such associations may be generated by negative epistasis, or by random drift (leading to the Hill-Robertson effect). Both deterministic and stochastic explanations depend primarily on the genomic mutation rate, U. This may be large enough to explain high recombination rates in some organisms, but seems unlikely to be so in general. Random drift is a more general source of negative linkage disequilibria, and can cause selection for recombination even in large populations, through the chance loss of new favourable mutations. The rate of species-wide substitutions is much too low to drive this mechanism, but local fluctuations in selection, combined with gene flow, may suffice. These arguments are illustrated by comparing the interaction between good and bad mutations at unlinked loci under the infinitesimal model.},
author = {Barton, Nicholas H},
journal = {Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences},
number = {1544},
pages = {1281 -- 1294},
publisher = {Royal Society},
title = {{Mutation and the evolution of recombination}},
doi = {10.1098/rstb.2009.0320},
volume = {365},
year = {2010},
}
@article{3787,
abstract = {DNA samples were extracted from ethanol and formalin-fixed decapod crustacean tissue using a new method based on Tetramethylsilane (TMS)-Chelex. It is shown that neither an indigestible matrix of cross-linked protein nor soluble PCR inhibitors impede PCR success when dealing with formalin-fixed material. Instead, amplification success from formalin-fixed tissue appears to depend on the presence of unmodified DNA in the extracted sample. A staining method that facilitates the targeting of samples with a high content of unmodified DNA is provided.},
author = {Palero, Ferran and Hall, Sally and Clark, Paul and Johnston, David and Mackenzie Dodds, Jackie and Thatje, Sven},
journal = {Scientia Marina},
number = {3},
pages = {465 -- 470},
publisher = {Consejo Superior de Investigaciones Científicas},
title = {{DNA extraction from formalin-fixed tissue: new light from the deep sea}},
doi = {10.3989/scimar.2010.74n3465},
volume = {74},
year = {2010},
}
@article{3790,
abstract = {Cell shape and motility are primarily controlled by cellular mechanics. The attachment of the plasma membrane to the underlying actomyosin cortex has been proposed to be important for cellular processes involving membrane deformation. However, little is known about the actual function of membrane-to-cortex attachment (MCA) in cell protrusion formation and migration, in particular in the context of the developing embryo. Here, we use a multidisciplinary approach to study MCA in zebrafish mesoderm and endoderm (mesendoderm) germ layer progenitor cells, which migrate using a combination of different protrusion types, namely, lamellipodia, filopodia, and blebs, during zebrafish gastrulation. By interfering with the activity of molecules linking the cortex to the membrane and measuring resulting changes in MCA by atomic force microscopy, we show that reducing MCA in mesendoderm progenitors increases the proportion of cellular blebs and reduces the directionality of cell migration. We propose that MCA is a key parameter controlling the relative proportions of different cell protrusion types in mesendoderm progenitors, and thus is key in controlling directed migration during gastrulation.},
author = {Diz Muñoz, Alba and Krieg, Michael and Bergert, Martin and Ibarlucea Benitez, Itziar and Müller, Daniel and Paluch, Ewa and Heisenberg, Carl-Philipp J},
journal = {PLoS Biology},
number = {11},
publisher = {Public Library of Science},
title = {{Control of directed cell migration in vivo by membrane-to-cortex attachment}},
doi = {10.1371/journal.pbio.1000544},
volume = {8},
year = {2010},
}
@inproceedings{3793,
abstract = {Recent progress in per-pixel object class labeling of natural images can be attributed to the use of multiple types of image features and sound statistical learning approaches. Within the latter, Conditional Random Fields (CRF) are prominently used for their ability to represent interactions between random variables. Despite their popularity in computer vision, parameter learning for CRFs has remained difficult, popular approaches being cross-validation and piecewise training.
In this work, we propose a simple yet expressive tree-structured CRF based on a recent hierarchical image segmentation method. Our model combines and weights multiple image features within a hierarchical representation and allows simple and efficient globally-optimal learning of ≈ 105 parameters. The tractability of our model allows us to pose and answer some of the open questions regarding parameter learning applying to CRF-based approaches. The key findings for learning CRF models are, from the obvious to the surprising, i) multiple image features always help, ii) the limiting dimension with respect to current models is the amount of training data, iii) piecewise training is competitive, iv) current methods for max-margin training fail for models with many parameters.
},
author = {Nowozin, Sebastian and Gehler, Peter and Lampert, Christoph},
location = {Heraklion, Crete, Greece},
pages = {98 -- 111},
publisher = {Springer},
title = {{On parameter learning in CRF-based approaches to object class image segmentation}},
doi = {10.1007/978-3-642-15567-3_8},
volume = {6316},
year = {2010},
}
@inbook{3795,
abstract = {The (apparent) contour of a smooth mapping from a 2-manifold to the plane, f: M → R2 , is the set of critical values, that is, the image of the points at which the gradients of the two component functions are linearly dependent. Assuming M is compact and orientable and measuring difference with the erosion distance, we prove that the contour is stable.},
author = {Edelsbrunner, Herbert and Morozov, Dmitriy and Patel, Amit},
booktitle = {Topological Data Analysis and Visualization: Theory, Algorithms and Applications},
pages = {27 -- 42},
publisher = {Springer},
title = {{The stability of the apparent contour of an orientable 2-manifold}},
doi = {10.1007/978-3-642-15014-2_3},
year = {2010},
}
@article{3831,
abstract = {Fast-spiking, parvalbumin-expressing basket cells (BCs) play a key role in feedforward and feedback inhibition in the hippocampus. However, the dendritic mechanisms underlying rapid interneuron recruitment have remained unclear. To quantitatively address this question, we developed detailed passive cable models of BCs in the dentate gyrus based on dual somatic or somatodendritic recordings and complete morphologic reconstructions. Both specific membrane capacitance and axial resistivity were comparable to those of pyramidal neurons, but the average somatodendritic specific membrane resistance (R(m)) was substantially lower in BCs. Furthermore, R(m) was markedly nonuniform, being lowest in soma and proximal dendrites, intermediate in distal dendrites, and highest in the axon. Thus, the somatodendritic gradient of R(m) was the reverse of that in pyramidal neurons. Further computational analysis revealed that these unique cable properties accelerate the time course of synaptic potentials at the soma in response to fast inputs, while boosting the efficacy of slow distal inputs. These properties will facilitate both rapid phasic and efficient tonic activation of BCs in hippocampal microcircuits.},
author = {Norenberg, Anja and Hua Hu and Vida, Imre and Bartos, Marlene and Peter Jonas},
journal = {PNAS},
number = {2},
pages = {894 -- 9},
publisher = {National Academy of Sciences},
title = {{Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons}},
doi = {10.1073/pnas.0910716107},
volume = {107},
year = {2010},
}
@article{3832,
abstract = {A recent paper by von Engelhardt et al. identifies a novel auxiliary subunit of native AMPARs, termedCKAMP44. Unlike other auxiliary subunits, CKAMP44 accelerates desensitization and prolongs recovery from desensitization. CKAMP44 is highly expressed in hippocampal dentate gyrus granule cells and decreases the paired-pulse ratio at perforant path input synapses. Thus, both principal and auxiliary AMPAR subunits control the time course of signaling at glutamatergic synapses.},
author = {Guzmán, José and Jonas, Peter M},
journal = {Neuron},
number = {1},
pages = {8 -- 10},
publisher = {Elsevier},
title = {{Beyond TARPs: The growing list of auxiliary AMPAR subunits}},
doi = {10.1016/j.neuron.2010.04.003},
volume = {66},
year = {2010},
}
@article{3834,
abstract = {Background
The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species.
Results
In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy.
Conclusions
The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori.},
author = {Wolf, Verena and Goel, Rushil and Mateescu, Maria and Henzinger, Thomas A},
journal = {BMC Systems Biology},
number = {42},
pages = {1 -- 19},
publisher = {BioMed Central},
title = {{Solving the chemical master equation using sliding windows}},
doi = {10.1186/1752-0509-4-42},
volume = {4},
year = {2010},
}
@inproceedings{3838,
abstract = {We present a numerical approximation technique for the analysis of continuous-time Markov chains that describe net- works of biochemical reactions and play an important role in the stochastic modeling of biological systems. Our approach is based on the construction of a stochastic hybrid model in which certain discrete random variables of the original Markov chain are approximated by continuous deterministic variables. We compute the solution of the stochastic hybrid model using a numerical algorithm that discretizes time and in each step performs a mutual update of the transient prob- ability distribution of the discrete stochastic variables and the values of the continuous deterministic variables. We im- plemented the algorithm and we demonstrate its usefulness and efficiency on several case studies from systems biology.},
author = {Henzinger, Thomas A and Mateescu, Maria and Mikeev, Linar and Wolf, Verena},
location = {Trento, Italy},
pages = {55 -- 65},
publisher = {Springer},
title = {{Hybrid numerical solution of the chemical master equation}},
doi = {10.1145/1839764.1839772},
year = {2010},
}
@inproceedings{3839,
abstract = {We present a loop property generation method for loops iterating over multi-dimensional arrays. When used on matrices, our method is able to infer their shapes (also called types), such as upper-triangular, diagonal, etc. To gen- erate loop properties, we first transform a nested loop iterating over a multi- dimensional array into an equivalent collection of unnested loops. Then, we in- fer quantified loop invariants for each unnested loop using a generalization of a recurrence-based invariant generation technique. These loop invariants give us conditions on matrices from which we can derive matrix types automatically us- ing theorem provers. Invariant generation is implemented in the software package Aligator and types are derived by theorem provers and SMT solvers, including Vampire and Z3. When run on the Java matrix package JAMA, our tool was able to infer automatically all matrix types describing the matrix shapes guaranteed by JAMA’s API.},
author = {Henzinger, Thomas A and Hottelier, Thibaud and Kovács, Laura and Voronkov, Andrei},
location = {Madrid, Spain},
pages = {163 -- 179},
publisher = {Springer},
title = {{Invariant and type inference for matrices}},
doi = {10.1007/978-3-642-11319-2_14},
volume = {5944},
year = {2010},
}
@article{3842,
abstract = {Within systems biology there is an increasing interest in the stochastic behavior of biochemical reaction networks. An appropriate stochastic description is provided by the chemical master equation, which represents a continuous-time Markov chain (CTMC). The uniformization technique is an efficient method to compute probability distributions of a CTMC if the number of states is manageable. However, the size of a CTMC that represents a biochemical reaction network is usually far beyond what is feasible. In this paper we present an on-the-fly variant of uniformization, where we improve the original algorithm at the cost of a small approximation error. By means of several examples, we show that our approach is particularly well-suited for biochemical reaction networks.},
author = {Didier, Frédéric and Henzinger, Thomas A and Mateescu, Maria and Wolf, Verena},
journal = {IET Systems Biology},
number = {6},
pages = {441 -- 452},
publisher = {Institution of Engineering and Technology},
title = {{Fast adaptive uniformization of the chemical master equation}},
doi = {10.1049/iet-syb.2010.0005},
volume = {4},
year = {2010},
}
@inproceedings{3845,
abstract = {This paper presents Aligators, a tool for the generation of universally quantified array invariants. Aligators leverages recurrence solving and algebraic techniques to carry out inductive reasoning over array content. The Aligators’ loop extraction module allows treatment of multi-path loops by exploiting their commutativity and serializability properties. Our experience in applying Aligators on a collection of loops from open source software projects indicates the applicability of recurrence and algebraic solving techniques for reasoning about arrays.},
author = {Henzinger, Thomas A and Hottelier, Thibaud and Kovács, Laura and Rybalchenko, Andrey},
location = {Yogyakarta, Indonesia},
pages = {348 -- 356},
publisher = {Springer},
title = {{Aligators for arrays}},
doi = {10.1007/978-3-642-16242-8_25},
volume = {6397},
year = {2010},
}