@inproceedings{11822, abstract = {The fully dynamic transitive closure problem asks to maintain reachability information in a directed graph between arbitrary pairs of vertices, while the graph undergoes a sequence of edge insertions and deletions. The problem has been thoroughly investigated in theory and many specialized algorithms for solving it have been proposed in the last decades. In two large studies [Frigioni ea, 2001; Krommidas and Zaroliagis, 2008], a number of these algorithms have been evaluated experimentally against simple, static algorithms for graph traversal, showing the competitiveness and even superiority of the simple algorithms in practice, except for very dense random graphs or very high ratios of queries. A major drawback of those studies is that only small and mostly randomly generated graphs are considered. In this paper, we engineer new algorithms to maintain all-pairs reachability information which are simple and space-efficient. Moreover, we perform an extensive experimental evaluation on both generated and real-world instances that are several orders of magnitude larger than those in the previous studies. Our results indicate that our new algorithms outperform all state-of-the-art algorithms on all types of input considerably in practice.}, author = {Hanauer, Kathrin and Henzinger, Monika H and Schulz, Christian}, booktitle = {18th International Symposium on Experimental Algorithms}, isbn = {9783959771481}, issn = {1868-8969}, location = {Pisa, Italy}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Faster fully dynamic transitive closure in practice}}, doi = {10.4230/LIPIcs.SEA.2020.14}, volume = {160}, year = {2020}, } @inproceedings{11825, abstract = {We give a fully dynamic (Las-Vegas style) algorithm with constant expected amortized time per update that maintains a proper (Δ+1)-vertex coloring of a graph with maximum degree at most Δ. This improves upon the previous O(log Δ)-time algorithm by Bhattacharya et al. (SODA 2018). Our algorithm uses an approach based on assigning random ranks to vertices and does not need to maintain a hierarchical graph decomposition. We show that our result does not only have optimal running time, but is also optimal in the sense that already deciding whether a Δ-coloring exists in a dynamically changing graph with maximum degree at most Δ takes Ω(log n) time per operation.}, author = {Henzinger, Monika H and Peng, Pan}, booktitle = {37th International Symposium on Theoretical Aspects of Computer Science}, isbn = {9783959771405}, issn = {1868-8969}, location = {Montpellier, France}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Constant-time dynamic (Δ+1)-coloring}}, doi = {10.4230/LIPIcs.STACS.2020.53}, volume = {154}, year = {2020}, } @inproceedings{11819, abstract = {We present a practically efficient algorithm that finds all global minimum cuts in huge undirected graphs. Our algorithm uses a multitude of kernelization rules to reduce the graph to a small equivalent instance and then finds all minimum cuts using an optimized version of the algorithm of Nagamochi, Nakao and Ibaraki. In shared memory we are able to find all minimum cuts of graphs with up to billions of edges and millions of minimum cuts in a few minutes. We also give a new linear time algorithm to find the most balanced minimum cuts given as input the representation of all minimum cuts.}, author = {Henzinger, Monika H and Noe, Alexander and Schulz, Christian and Strash, Darren}, booktitle = {28th Annual European Symposium on Algorithms}, isbn = {9783959771627}, issn = {1868-8969}, location = {Pisa, Italy}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Finding all global minimum cuts in practice}}, doi = {10.4230/LIPIcs.ESA.2020.59}, volume = {173}, year = {2020}, } @inproceedings{11852, abstract = {We present a general framework of designing efficient dynamic approximate algorithms for optimization problems on undirected graphs. In particular, we develop a technique that, given any problem that admits a certain notion of vertex sparsifiers, gives data structures that maintain approximate solutions in sub-linear update and query time. We illustrate the applicability of our paradigm to the following problems. (1)A fully-dynamic algorithm that approximates all-pair maximum-flows/minimum-cuts up to a nearly logarithmic factor in O~(n2/3) 11The O~(⋅) notation is used in this paper to hide poly-logarithmic factors. amortized time against an oblivious adversary, and O~(m3/4) time against an adaptive adversary. (2)An incremental data structure that maintains O(1) - approximate shortest path in no(1) time per operation, as well as fully dynamic approximate all-pair shortest path and transshipment in O~(n2/3+o(1)) amortized time per operation. (3)A fully-dynamic algorithm that approximates all-pair effective resistance up to an (1+ϵ) factor in O~(n2/3+o(1)ϵ−O(1)) amortized update time per operation. The key tool behind result (1) is the dynamic maintenance of an algorithmic construction due to Madry [FOCS' 10], which partitions a graph into a collection of simpler graph structures (known as j-trees) and approximately captures the cut-flow and metric structure of the graph. The O(1)-approximation guarantee of (2) is by adapting the distance oracles by [Thorup-Zwick JACM '05]. Result (3) is obtained by invoking the random-walk based spectral vertex sparsifier by [Durfee et al. STOC '19] in a hierarchical manner, while carefully keeping track of the recourse among levels in the hierarchy. See https://arxiv.org/pdf/2005.02368.pdf for the full version of this paper.}, author = {Chen, Li and Goranci, Gramoz and Henzinger, Monika H and Peng, Richard and Saranurak, Thatchaphol}, booktitle = {61st Annual Symposium on Foundations of Computer Science}, isbn = {978-1-7281-9622-0}, issn = {2575-8454}, location = {Durham, NC, United States}, pages = {1135--1146}, publisher = {Institute of Electrical and Electronics Engineers}, title = {{Fast dynamic cuts, distances and effective resistances via vertex sparsifiers}}, doi = {10.1109/focs46700.2020.00109}, year = {2020}, } @inproceedings{11880, abstract = {Given a directed graph and a source vertex, the fully dynamic single-source reachability problem is to maintain the set of vertices that are reachable from the given vertex, subject to edge deletions and insertions. It is one of the most fundamental problems on graphs and appears directly or indirectly in many and varied applications. While there has been theoretical work on this problem, showing both linear conditional lower bounds for the fully dynamic problem and insertions-only and deletions-only upper bounds beating these conditional lower bounds, there has been no experimental study that compares the performance of fully dynamic reachability algorithms in practice. Previous experimental studies in this area concentrated only on the more general all-pairs reachability or transitive closure problem and did not use real-world dynamic graphs. In this paper, we bridge this gap by empirically studying an extensive set of algorithms for the single-source reachability problem in the fully dynamic setting. In particular, we design several fully dynamic variants of well-known approaches to obtain and maintain reachability information with respect to a distinguished source. Moreover, we extend the existing insertions-only or deletions-only upper bounds into fully dynamic algorithms. Even though the worst-case time per operation of all the fully dynamic algorithms we evaluate is at least linear in the number of edges in the graph (as is to be expected given the conditional lower bounds) we show in our extensive experimental evaluation that their performance differs greatly, both on generated as well as on real-world instances.}, author = {Hanauer, Kathrin and Henzinger, Monika H and Schulz, Christian}, booktitle = {2020 Symposium on Algorithm Engineering and Experiments}, location = {Salt Lake City, UT, United States}, pages = {106--119}, publisher = {Society for Industrial and Applied Mathematics}, title = {{Fully dynamic single-source reachability in practice: An experimental study}}, doi = {10.1137/1.9781611976007.9}, year = {2020}, } @inproceedings{11881, abstract = {We introduce the fastest known exact algorithm for the multiterminal cut problem with k terminals. In particular, we engineer existing as well as new data reduction rules. We use the rules within a branch-and-reduce framework and to boost the performance of an ILP formulation. Our algorithms achieve improvements in running time of up to multiple orders of magnitudes over the ILP formulation without data reductions, which has been the de facto standard used by practitioners. This allows us to solve instances to optimality that are significantly larger than was previously possible.}, author = {Henzinger, Monika H and Noe, Alexander and Schulz, Christian}, booktitle = {2020 Symposium on Algorithm Engineering and Experiments}, location = {Salt Lake City, UT, United States}, pages = {42--55}, publisher = {Society for Industrial and Applied Mathematics}, title = {{Shared-memory branch-and-reduce for multiterminal cuts}}, doi = {10.1137/1.9781611976007.4}, year = {2020}, } @article{11894, abstract = {Graph sparsification aims at compressing large graphs into smaller ones while preserving important characteristics of the input graph. In this work we study vertex sparsifiers, i.e., sparsifiers whose goal is to reduce the number of vertices. We focus on the following notions: (1) Given a digraph 𝐺=(𝑉,𝐸) and terminal vertices 𝐾⊂𝑉 with |𝐾|=𝑘, a (vertex) reachability sparsifier of 𝐺 is a digraph 𝐻=(𝑉𝐻,𝐸𝐻), 𝐾⊂𝑉𝐻 that preserves all reachability information among terminal pairs. Let |𝑉𝐻| denote the size of 𝐻. In this work we introduce the notion of reachability-preserving minors (RPMs), i.e., we require 𝐻 to be a minor of 𝐺. We show any directed graph 𝐺 admits an RPM 𝐻 of size 𝑂(𝑘3), and if 𝐺 is planar, then the size of 𝐻 improves to 𝑂(𝑘2log𝑘). We complement our upper bound by showing that there exists an infinite family of grids such that any RPM must have Ω(𝑘2) vertices. (2) Given a weighted undirected graph 𝐺=(𝑉,𝐸) and terminal vertices 𝐾 with |𝐾|=𝑘, an exact (vertex) cut sparsifier of 𝐺 is a graph 𝐻 with 𝐾⊂𝑉𝐻 that preserves the value of minimum cuts separating any bipartition of 𝐾. We show that planar graphs with all the 𝑘 terminals lying on the same face admit exact cut sparsifiers of size 𝑂(𝑘2) that are also planar. Our result extends to flow and distance sparsifiers. It improves the previous best-known bound of 𝑂(𝑘222𝑘) for cut and flow sparsifiers by an exponential factor and matches an Ω(𝑘2) lower-bound for this class of graphs.}, author = {Goranci, Gramoz and Henzinger, Monika H and Peng, Pan}, issn = {1095-7146}, journal = {SIAM Journal on Discrete Mathematics}, number = {1}, pages = {130--162}, publisher = {Society for Industrial & Applied Mathematics}, title = {{Improved guarantees for vertex sparsification in planar graphs}}, doi = {10.1137/17m1163153}, volume = {34}, year = {2020}, } @article{11954, abstract = {The combination of nickel and photocatalysis has unlocked a variety of cross-couplings. These protocols rely on a few photocatalysts that can only convert a small portion of visible light (<500 nm) into chemical energy. The high-energy photons that excite the photocatalyst can result in unwanted side reactions. Dyes that absorb a much broader spectrum of light are not applicable because of their short-lived singlet excited states. Here, we describe a self-assembling catalyst system that overcomes this limitation. Immobilization of a nickel catalyst on dye-sensitized titanium dioxide results in a material that catalyzes carbon–heteroatom and carbon–carbon bond formations. The modular approach of dye-sensitized metallaphotocatalysts accesses the entire visible light spectrum and allows tackling selectivity issues resulting from low wavelengths strategically. The concept overcomes current limitations of metallaphotocatalysis by unlocking the potential of dyes that were previously unsuitable.}, author = {Reischauer, Susanne and Strauss, Volker and Pieber, Bartholomäus}, issn = {2155-5435}, journal = {ACS Catalysis}, number = {22}, pages = {13269–13274}, publisher = {American Chemical Society}, title = {{Modular, self-assembling metallaphotocatalyst for cross-couplings using the full visible-light spectrum}}, doi = {10.1021/acscatal.0c03950}, volume = {10}, year = {2020}, } @article{11969, abstract = {Photochemistry enables new synthetic means to form carbon–heteroatom bonds. Photocatalysts can catalyze carbon–heteroatom cross-couplings by electron or energy transfer either alone or in combination with a second catalyst. Photocatalyst-free methods are possible using photolabile substrates or by generating photoactive electron donor-acceptor complexes. This review summarizes and discusses the strategies used in light-mediated carbon–heteroatom bond formations based on the proposed mechanisms.}, author = {Cavedon, Cristian and Seeberger, Peter H. and Pieber, Bartholomäus}, issn = {1099-0690}, journal = {European Journal of Organic Chemistry}, number = {10}, pages = {1379--1392}, publisher = {Wiley}, title = {{Photochemical strategies for carbon–heteroatom bond formation}}, doi = {10.1002/ejoc.201901173}, volume = {2020}, year = {2020}, } @article{11978, abstract = {Dual photocatalysis and nickel catalysis can effect cross-coupling under mild conditions, but little is known about the in situ kinetics of this class of reactions. We report a comprehensive kinetic examination of a model carboxylate O-arylation, comparing a state-of-the-art homogeneous photocatalyst (Ir(ppy)3) with a competitive heterogeneous photocatalyst (graphitic carbon nitride). Experimental conditions were adjusted such that the nickel catalytic cycle is saturated with excited photocatalyst. This approach was designed to remove the role of the photocatalyst, by which only the intrinsic behaviors of the nickel catalytic cycles are observed. The two reactions did not display identical kinetics. Ir(ppy)3 deactivates the nickel catalytic cycle and creates more dehalogenated side product. Kinetic data for the reaction using Ir(ppy)3 supports a turnover-limiting reductive elimination. Graphitic carbon nitride gave higher selectivity, even at high photocatalyst-to-nickel ratios. The heterogeneous reaction also showed a rate dependence on aryl halide, indicating that oxidative addition plays a role in rate determination. The results argue against the current mechanistic hypothesis, which states that the photocatalyst is only involved to trigger reductive elimination.}, author = {Malik, Jamal A. and Madani, Amiera and Pieber, Bartholomäus and Seeberger, Peter H.}, issn = {1520-5126}, journal = {Journal of the American Chemical Society}, number = {25}, pages = {11042--11049}, publisher = {American Chemical Society}, title = {{Evidence for photocatalyst involvement in oxidative additions of nickel-catalyzed carboxylate O-arylations}}, doi = {10.1021/jacs.0c02848}, volume = {142}, year = {2020}, } @article{11980, abstract = {Small organic radicals are ubiquitous intermediates in photocatalysis and are used in organic synthesis to install functional groups and to tune electronic properties and pharmacokinetic parameters of the final molecule. Development of new methods to generate small organic radicals with added functionality can further extend the utility of photocatalysis for synthetic needs. Herein, we present a method to generate dichloromethyl radicals from chloroform using a heterogeneous potassium poly(heptazine imide) (K-PHI) photocatalyst under visible light irradiation for C1-extension of the enone backbone. The method is applied on 15 enones, with γ,γ-dichloroketones yields of 18–89%. Due to negative zeta-potential (−40 mV) and small particle size (100 nm) K-PHI suspension is used in quasi-homogeneous flow-photoreactor increasing the productivity by 19 times compared to the batch approach. The resulting γ,γ-dichloroketones, are used as bifunctional building blocks to access value-added organic compounds such as substituted furans and pyrroles.}, author = {Mazzanti, Stefano and Kurpil, Bogdan and Pieber, Bartholomäus and Antonietti, Markus and Savateev, Aleksandr}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Dichloromethylation of enones by carbon nitride photocatalysis}}, doi = {10.1038/s41467-020-15131-0}, volume = {11}, year = {2020}, } @article{11979, abstract = {Dual photoredox/nickel-catalysed C–N cross-couplings suffer from low yields for electron-rich aryl halides. The formation of catalytically inactive nickel-black is responsible for this limitation and causes severe reproducibility issues. Here, we demonstrate that catalyst deactivation can be avoided by using a carbon nitride photocatalyst. The broad absorption of the heterogeneous photocatalyst enables wavelength-dependent control of the rate of reductive elimination to prevent nickel-black formation during the coupling of cyclic, secondary amines and aryl halides. A second approach, which is applicable to a broader set of electron-rich aryl halides, is to run the reactions at high concentrations to increase the rate of oxidative addition. Less nucleophilic, primary amines can be coupled with electron-rich aryl halides by stabilizing low-valent nickel intermediates with a suitable additive. The developed protocols enable reproducible, selective C–N cross-couplings of electron-rich aryl bromides and can also be applied for electron-poor aryl chlorides.}, author = {Gisbertz, Sebastian and Reischauer, Susanne and Pieber, Bartholomäus}, issn = {2520-1158}, journal = {Nature Catalysis}, number = {8}, pages = {611--620}, publisher = {Springer Nature}, title = {{Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation}}, doi = {10.1038/s41929-020-0473-6}, volume = {3}, year = {2020}, } @article{11986, abstract = {Carbon nitride materials have emerged as an efficient and sustainable class of heterogeneous photocatalysts, particularly when paired with nickel in dual catalytic cross-coupling reactions. Performing these transformations on larger scales using a continuous process is difficult due to the problems associated with handling solids in flow. By combining an oscillatory pump with a microstructured plug flow photoreactor, a stable suspension of the photocatalyst can be maintained, circumventing clogging of the reactor channels. Through careful tuning of the oscillator properties, the residence time distribution (RTD) was optimized, whilst maintaining a stable catalyst suspension. Short residence times (20 min) were achieved using optimized conditions and the recyclability of the photocatalyst was demonstrated over 10 cycles with no loss of activity. During a stable 4.5 hour scale-out demonstration, the model substrate could be isolated on 12 g scale (90% yield, 2.67 g h−1). Moreover, the method was applied for the gram scale synthesis of an intermediate of the active pharmaceutical ingredient tetracaine.}, author = {Rosso, Cristian and Gisbertz, Sebastian and Williams, Jason D. and Gemoets, Hannes P. L. and Debrouwer, Wouter and Pieber, Bartholomäus and Kappe, C. Oliver}, issn = {2058-9883}, journal = {Reaction Chemistry and Engineering}, number = {3}, pages = {597--604}, publisher = {Royal Society of Chemistry}, title = {{An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings}}, doi = {10.1039/d0re00036a}, volume = {5}, year = {2020}, } @article{7084, abstract = {The unusual correlated state that emerges in URu2Si2 below THO = 17.5 K is known as “hidden order” because even basic characteristics of the order parameter, such as its dimensionality (whether it has one component or two), are “hidden.” We use resonant ultrasound spectroscopy to measure the symmetry-resolved elastic anomalies across THO. We observe no anomalies in the shear elastic moduli, providing strong thermodynamic evidence for a one-component order parameter. We develop a machine learning framework that reaches this conclusion directly from the raw data, even in a crystal that is too small for traditional resonant ultrasound. Our result rules out a broad class of theories of hidden order based on two-component order parameters, and constrains the nature of the fluctuations from which unconventional superconductivity emerges at lower temperature. Our machine learning framework is a powerful new tool for classifying the ubiquitous competing orders in correlated electron systems.}, author = {Ghosh, Sayak and Matty, Michael and Baumbach, Ryan and Bauer, Eric D. and Modic, Kimberly A and Shekhter, Arkady and Mydosh, J. A. and Kim, Eun-Ah and Ramshaw, B. J.}, journal = {Science Advances}, number = {10}, publisher = {American Association for the Advancement of Science}, title = {{One-component order parameter in URu2Si2 uncovered by resonant ultrasound spectroscopy and machine learning}}, doi = {10.1126/sciadv.aaz4074}, volume = {6}, year = {2020}, } @inproceedings{7272, abstract = {Many systems rely on optimistic concurrent search trees for multi-core scalability. In principle, optimistic trees have a simple performance story: searches are read-only and so run in parallel, with writes to shared memory occurring only when modifying the data structure. However, this paper shows that in practice, obtaining the full performance benefits of optimistic search trees is not so simple. We focus on optimistic binary search trees (BSTs) and perform a detailed performance analysis of 10 state-of-the-art BSTs on large scale x86-64 hardware, using both microbenchmarks and an in-memory database system. We find and explain significant unexpected performance differences between BSTs with similar tree structure and search implementations, which we trace to subtle performance-degrading interactions of BSTs with systems software and hardware subsystems. We further derive a prescriptive approach to avoid this performance degradation, as well as algorithmic insights on optimistic BST design. Our work underlines the gap between the theory and practice of multi-core performance, and calls for further research to help bridge this gap.}, author = {Arbel-Raviv, Maya and Brown, Trevor A and Morrison, Adam}, booktitle = {Proceedings of the 2018 USENIX Annual Technical Conference}, isbn = {9781939133021}, location = {Boston, MA, United States}, pages = {295--306}, publisher = {USENIX Association}, title = {{Getting to the root of concurrent binary search tree performance}}, year = {2020}, } @inproceedings{7346, abstract = {The Price of Anarchy (PoA) is a well-established game-theoretic concept to shed light on coordination issues arising in open distributed systems. Leaving agents to selfishly optimize comes with the risk of ending up in sub-optimal states (in terms of performance and/or costs), compared to a centralized system design. However, the PoA relies on strong assumptions about agents' rationality (e.g., resources and information) and interactions, whereas in many distributed systems agents interact locally with bounded resources. They do so repeatedly over time (in contrast to "one-shot games"), and their strategies may evolve. Using a more realistic evolutionary game model, this paper introduces a realized evolutionary Price of Anarchy (ePoA). The ePoA allows an exploration of equilibrium selection in dynamic distributed systems with multiple equilibria, based on local interactions of simple memoryless agents. Considering a fundamental game related to virus propagation on networks, we present analytical bounds on the ePoA in basic network topologies and for different strategy update dynamics. In particular, deriving stationary distributions of the stochastic evolutionary process, we find that the Nash equilibria are not always the most abundant states, and that different processes can feature significant off-equilibrium behavior, leading to a significantly higher ePoA compared to the PoA studied traditionally in the literature. }, author = {Schmid, Laura and Chatterjee, Krishnendu and Schmid, Stefan}, booktitle = {Proceedings of the 23rd International Conference on Principles of Distributed Systems}, location = {Neuchâtel, Switzerland}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game}}, doi = {10.4230/LIPIcs.OPODIS.2019.21}, volume = {153}, year = {2020}, } @inproceedings{7348, abstract = {The monitoring of event frequencies can be used to recognize behavioral anomalies, to identify trends, and to deduce or discard hypotheses about the underlying system. For example, the performance of a web server may be monitored based on the ratio of the total count of requests from the least and most active clients. Exact frequency monitoring, however, can be prohibitively expensive; in the above example it would require as many counters as there are clients. In this paper, we propose the efficient probabilistic monitoring of common frequency properties, including the mode (i.e., the most common event) and the median of an event sequence. We define a logic to express composite frequency properties as a combination of atomic frequency properties. Our main contribution is an algorithm that, under suitable probabilistic assumptions, can be used to monitor these important frequency properties with four counters, independent of the number of different events. Our algorithm samples longer and longer subwords of an infinite event sequence. We prove the almost-sure convergence of our algorithm by generalizing ergodic theory from increasing-length prefixes to increasing-length subwords of an infinite sequence. A similar algorithm could be used to learn a connected Markov chain of a given structure from observing its outputs, to arbitrary precision, for a given confidence. }, author = {Ferrere, Thomas and Henzinger, Thomas A and Kragl, Bernhard}, booktitle = {28th EACSL Annual Conference on Computer Science Logic}, isbn = {9783959771320}, issn = {1868-8969}, location = {Barcelona, Spain}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Monitoring event frequencies}}, doi = {10.4230/LIPIcs.CSL.2020.20}, volume = {152}, year = {2020}, } @article{7477, abstract = {We present conductance-matrix measurements of a three-terminal superconductor-semiconductor hybrid device consisting of two normal leads and one superconducting lead. Using a symmetry decomposition of the conductance, we find that antisymmetric components of pairs of local and nonlocal conductances qualitatively match at energies below the superconducting gap, and we compare this finding with symmetry relations based on a noninteracting scattering matrix approach. Further, the local charge character of Andreev bound states is extracted from the symmetry-decomposed conductance data and is found to be similar at both ends of the device and tunable with gate voltage. Finally, we measure the conductance matrix as a function of magnetic field and identify correlated splittings in low-energy features, demonstrating how conductance-matrix measurements can complement traditional single-probe measurements in the search for Majorana zero modes.}, author = {Ménard, G. C. and Anselmetti, G. L. R. and Martinez, E. A. and Puglia, D. and Malinowski, F. K. and Lee, J. S. and Choi, S. and Pendharkar, M. and Palmstrøm, C. J. and Flensberg, K. and Marcus, C. M. and Casparis, L. and Higginbotham, Andrew P}, issn = {0031-9007}, journal = {Physical Review Letters}, number = {3}, publisher = {APS}, title = {{Conductance-matrix symmetries of a three-terminal hybrid device}}, doi = {10.1103/physrevlett.124.036802}, volume = {124}, year = {2020}, } @article{7478, abstract = {Two-terminal conductance spectroscopy of superconducting devices is a common tool for probing Andreev and Majorana bound states. Here, we study theoretically a three-terminal setup, with two normal leads coupled to a grounded superconducting terminal. Using a single-electron scattering matrix, we derive the subgap conductance matrix for the normal leads and discuss its symmetries. In particular, we show that the local and the nonlocal elements of the conductance matrix have pairwise identical antisymmetric components. Moreover, we find that the nonlocal elements are directly related to the local BCS charges of the bound states close to the normal probes and we show how the BCS charge of overlapping Majorana bound states can be extracted from experiments.}, author = {Danon, Jeroen and Hellenes, Anna Birk and Hansen, Esben Bork and Casparis, Lucas and Higginbotham, Andrew P and Flensberg, Karsten}, issn = {0031-9007}, journal = {Physical Review Letters}, number = {3}, publisher = {APS}, title = {{Nonlocal conductance spectroscopy of Andreev bound states: Symmetry relations and BCS charges}}, doi = {10.1103/physrevlett.124.036801}, volume = {124}, year = {2020}, } @article{7530, abstract = {In developing technologies based on superconducting quantum circuits, the need to control and route heating is a significant challenge in the experimental realisation and operation of these devices. One of the more ubiquitous devices in the current quantum computing toolbox is the transmon-type superconducting quantum bit, embedded in a resonator-based architecture. In the study of heat transport in superconducting circuits, a versatile and sensitive thermometer is based on studying the tunnelling characteristics of superconducting probes weakly coupled to a normal-metal island. Here we show that by integrating superconducting quantum bit coupled to two superconducting resonators at different frequencies, each resonator terminated (and thermally populated) by such a mesoscopic thin film metal island, one can experimentally observe magnetic flux-tunable photonic heat rectification between 0 and 10%.}, author = {Senior, Jorden L and Gubaydullin, Azat and Karimi, Bayan and Peltonen, Joonas T. and Ankerhold, Joachim and Pekola, Jukka P.}, issn = {2399-3650}, journal = {Communications Physics}, number = {1}, publisher = {Springer Nature}, title = {{Heat rectification via a superconducting artificial atom}}, doi = {10.1038/s42005-020-0307-5}, volume = {3}, year = {2020}, } @article{7545, abstract = {Neuronal activity often leads to alterations in gene expression and cellular architecture. The nematode Caenorhabditis elegans, owing to its compact translucent nervous system, is a powerful system in which to study conserved aspects of the development and plasticity of neuronal morphology. Here we focus on one pair of sensory neurons, termed URX, which the worm uses to sense and avoid high levels of environmental oxygen. Previous studies have reported that the URX neuron pair has variable branched endings at its dendritic sensory tip. By controlling oxygen levels and analyzing mutants, we found that these microtubule-rich branched endings grow over time as a consequence of neuronal activity in adulthood. We also find that the growth of these branches correlates with an increase in cellular sensitivity to particular ranges of oxygen that is observable in the behavior of older worms. Given the strengths of C. elegans as a model organism, URX may serve as a potent system for uncovering genes and mechanisms involved in activity-dependent morphological changes in neurons and possible adaptive changes in the aging nervous system.}, author = {Cohn, Jesse A. and Cebul, Elizabeth R. and Valperga, Giulio and Brose, Lotti and de Bono, Mario and Heiman, Maxwell G. and Pierce, Jonathan T.}, issn = {0012-1606}, journal = {Developmental Biology}, number = {1}, pages = {66--74}, publisher = {Elsevier}, title = {{Long-term activity drives dendritic branch elaboration of a C. elegans sensory neuron}}, doi = {10.1016/j.ydbio.2020.01.005}, volume = {461}, year = {2020}, } @article{7567, abstract = {Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we mean that given an individual simplex we can recover the entire triangulation of Euclidean space by inductively reflecting in the faces of the simplex. In this paper we establish that the quality of the simplices in all Coxeter triangulations is O(1/d−−√) of the quality of regular simplex. We further investigate the Delaunay property for these triangulations. Moreover, we consider an extension of the Delaunay property, namely protection, which is a measure of non-degeneracy of a Delaunay triangulation. In particular, one family of Coxeter triangulations achieves the protection O(1/d2). We conjecture that both bounds are optimal for triangulations in Euclidean space.}, author = {Choudhary, Aruni and Kachanovich, Siargey and Wintraecken, Mathijs}, issn = {1661-8289}, journal = {Mathematics in Computer Science}, pages = {141--176}, publisher = {Springer Nature}, title = {{Coxeter triangulations have good quality}}, doi = {10.1007/s11786-020-00461-5}, volume = {14}, year = {2020}, } @article{7594, abstract = {The concept of the entanglement between spin and orbital degrees of freedom plays a crucial role in our understanding of various phases and exotic ground states in a broad class of materials, including orbitally ordered materials and spin liquids. We investigate how the spin-orbital entanglement in a Mott insulator depends on the value of the spin-orbit coupling of the relativistic origin. To this end, we numerically diagonalize a one-dimensional spin-orbital model with Kugel-Khomskii exchange interactions between spins and orbitals on different sites supplemented by the on-site spin-orbit coupling. In the regime of small spin-orbit coupling with regard to the spin-orbital exchange, the ground state to a large extent resembles the one obtained in the limit of vanishing spin-orbit coupling. On the other hand, for large spin-orbit coupling the ground state can, depending on the model parameters, either still show negligible spin-orbital entanglement or evolve to a highly spin-orbitally-entangled phase with completely distinct properties that are described by an effective XXZ model. The presented results suggest that (i) the spin-orbital entanglement may be induced by large on-site spin-orbit coupling, as found in the 5d transition metal oxides, such as the iridates; (ii) for Mott insulators with weak spin-orbit coupling of Ising type, such as, e.g., the alkali hyperoxides, the effects of the spin-orbit coupling on the ground state can, in the first order of perturbation theory, be neglected.}, author = {Gotfryd, Dorota and Paerschke, Ekaterina and Chaloupka, Jiri and Oles, Andrzej M. and Wohlfeld, Krzysztof}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, title = {{How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator}}, doi = {10.1103/PhysRevResearch.2.013353}, volume = {2}, year = {2020}, } @inproceedings{7605, abstract = {Union-Find (or Disjoint-Set Union) is one of the fundamental problems in computer science; it has been well-studied from both theoretical and practical perspectives in the sequential case. Recently, there has been mounting interest in analyzing this problem in the concurrent scenario, and several asymptotically-efficient algorithms have been proposed. Yet, to date, there is very little known about the practical performance of concurrent Union-Find. This work addresses this gap. We evaluate and analyze the performance of several concurrent Union-Find algorithms and optimization strategies across a wide range of platforms (Intel, AMD, and ARM) and workloads (social, random, and road networks, as well as integrations into more complex algorithms). We first observe that, due to the limited computational cost, the number of induced cache misses is the critical determining factor for the performance of existing algorithms. We introduce new techniques to reduce this cost by storing node priorities implicitly and by using plain reads and writes in a way that does not affect the correctness of the algorithms. Finally, we show that Union-Find implementations are an interesting application for Transactional Memory (TM): one of the fastest algorithm variants we discovered is a sequential one that uses coarse-grained locking with the lock elision optimization to reduce synchronization cost and increase scalability. }, author = {Alistarh, Dan-Adrian and Fedorov, Alexander and Koval, Nikita}, booktitle = {23rd International Conference on Principles of Distributed Systems}, isbn = {9783959771337}, issn = {18688969}, location = {Neuchatal, Switzerland}, pages = {15:1--15:16}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{In search of the fastest concurrent union-find algorithm}}, doi = {10.4230/LIPIcs.OPODIS.2019.15}, volume = {153}, year = {2020}, } @unpublished{7601, abstract = {Plasmodesmata (PD) are crucial structures for intercellular communication in multicellular plants with remorins being their crucial plant-specific structural and functional constituents. The PD biogenesis is an intriguing but poorly understood process. By expressing an Arabidopsis remorin protein in mammalian cells, we have reconstituted a PD-like filamentous structure, termed remorin filament (RF), connecting neighboring cells physically and physiologically. Notably, RFs are capable of transporting macromolecules intercellularly, in a way similar to plant PD. With further super-resolution microscopic analysis and biochemical characterization, we found that RFs are also composed of actin filaments, forming the core skeleton structure, aligned with the remorin protein. This unique heterologous filamentous structure might explain the molecular mechanism for remorin function as well as PD construction. Furthermore, remorin protein exhibits a specific distribution manner in the plasma membrane in mammalian cells, representing a lipid nanodomain, depending on its lipid modification status. Our studies not only provide crucial insights into the mechanism of PD biogenesis, but also uncovers unsuspected fundamental mechanistic and evolutionary links between intercellular communication systems of plants and animals.}, author = {Wei, Zhuang and Tan, Shutang and Liu, Tao and Wu, Yuan and Lei, Ji-Gang and Chen, ZhengJun and Friml, Jiří and Xue, Hong-Wei and Liao, Kan}, booktitle = {bioRxiv}, pages = {22}, publisher = {Cold Spring Harbor Laboratory}, title = {{Plasmodesmata-like intercellular connections by plant remorin in animal cells}}, doi = {10.1101/791137}, year = {2020}, } @article{7651, abstract = {The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods.}, author = {Larsson, J. and Westram, Anja M and Bengmark, S. and Lundh, T. and Butlin, R. K.}, issn = {1742-5662}, journal = {Journal of The Royal Society Interface}, number = {163}, publisher = {The Royal Society}, title = {{A developmentally descriptive method for quantifying shape in gastropod shells}}, doi = {10.1098/rsif.2019.0721}, volume = {17}, year = {2020}, } @article{7708, abstract = {We conducted DNA methylation association analyses using Illumina 450K data from whole blood for an Australian amyotrophic lateral sclerosis (ALS) case–control cohort (782 cases and 613 controls). Analyses used mixed linear models as implemented in the OSCA software. We found a significantly higher proportion of neutrophils in cases compared to controls which replicated in an independent cohort from the Netherlands (1159 cases and 637 controls). The OSCA MOMENT linear mixed model has been shown in simulations to best account for confounders. When combined in a methylation profile score, the 25 most-associated probes identified by MOMENT significantly classified case–control status in the Netherlands sample (area under the curve, AUC = 0.65, CI95% = [0.62–0.68], p = 8.3 × 10−22). The maximum AUC achieved was 0.69 (CI95% = [0.66–0.71], p = 4.3 × 10−34) when cell-type proportion was included in the predictor.}, author = {Nabais, Marta F. and Lin, Tian and Benyamin, Beben and Williams, Kelly L. and Garton, Fleur C. and Vinkhuyzen, Anna A. E. and Zhang, Futao and Vallerga, Costanza L. and Restuadi, Restuadi and Freydenzon, Anna and Zwamborn, Ramona A. J. and Hop, Paul J. and Robinson, Matthew Richard and Gratten, Jacob and Visscher, Peter M. and Hannon, Eilis and Mill, Jonathan and Brown, Matthew A. and Laing, Nigel G. and Mather, Karen A. and Sachdev, Perminder S. and Ngo, Shyuan T. and Steyn, Frederik J. and Wallace, Leanne and Henders, Anjali K. and Needham, Merrilee and Veldink, Jan H. and Mathers, Susan and Nicholson, Garth and Rowe, Dominic B. and Henderson, Robert D. and McCombe, Pamela A. and Pamphlett, Roger and Yang, Jian and Blair, Ian P. and McRae, Allan F. and Wray, Naomi R.}, issn = {2056-7944}, journal = {npj Genomic Medicine}, publisher = {Springer Nature}, title = {{Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis}}, doi = {10.1038/s41525-020-0118-3}, volume = {5}, year = {2020}, } @article{7707, abstract = {The growing sample size of genome-wide association studies has facilitated the discovery of gene-environment interactions (GxE). Here we propose a maximum likelihood method to estimate the contribution of GxE to continuous traits taking into account all interacting environmental variables, without the need to measure any. Extensive simulations demonstrate that our method provides unbiased interaction estimates and excellent coverage. We also offer strategies to distinguish specific GxE from general scale effects. Applying our method to 32 traits in the UK Biobank reveals that while the genetic risk score (GRS) of 376 variants explains 5.2% of body mass index (BMI) variance, GRSxE explains an additional 1.9%. Nevertheless, this interaction holds for any variable with identical correlation to BMI as the GRS, hence may not be GRS-specific. Still, we observe that the global contribution of specific GRSxE to complex traits is substantial for nine obesity-related measures (including leg impedance and trunk fat-free mass).}, author = {Sulc, Jonathan and Mounier, Ninon and Günther, Felix and Winkler, Thomas and Wood, Andrew R. and Frayling, Timothy M. and Heid, Iris M. and Robinson, Matthew Richard and Kutalik, Zoltán}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Quantification of the overall contribution of gene-environment interaction for obesity-related traits}}, doi = {10.1038/s41467-020-15107-0}, volume = {11}, year = {2020}, } @article{7778, abstract = {Recent advances in synthetic posttranslational protein circuits are substantially impacting the landscape of cellular engineering and offer several advantages compared to traditional gene circuits. However, engineering dynamic phenomena such as oscillations in protein-level circuits remains an outstanding challenge. Few examples of biological posttranslational oscillators are known, necessitating theoretical progress to determine realizable oscillators. We construct mathematical models for two posttranslational oscillators, using few components that interact only through reversible binding and phosphorylation/dephosphorylation reactions. Our designed oscillators rely on the self-assembly of two protein species into multimeric functional enzymes that respectively inhibit and enhance this self-assembly. We limit our analysis to within experimental constraints, finding (i) significant portions of the restricted parameter space yielding oscillations and (ii) that oscillation periods can be tuned by several orders of magnitude using recent advances in computational protein design. Our work paves the way for the rational design and realization of protein-based dynamic systems.}, author = {Kimchi, Ofer and Goodrich, Carl Peter and Courbet, Alexis and Curatolo, Agnese I. and Woodall, Nicholas B. and Baker, David and Brenner, Michael P.}, journal = {Science Advances}, number = {51}, title = {{Self-assembly-based posttranslational protein oscillators}}, doi = {10.1126/sciadv.abc1939}, volume = {6}, year = {2020}, } @inproceedings{7803, abstract = {We settle the complexity of the (Δ+1)-coloring and (Δ+1)-list coloring problems in the CONGESTED CLIQUE model by presenting a simple deterministic algorithm for both problems running in a constant number of rounds. This matches the complexity of the recent breakthrough randomized constant-round (Δ+1)-list coloring algorithm due to Chang et al. (PODC'19), and significantly improves upon the state-of-the-art O(logΔ)-round deterministic (Δ+1)-coloring bound of Parter (ICALP'18). A remarkable property of our algorithm is its simplicity. Whereas the state-of-the-art randomized algorithms for this problem are based on the quite involved local coloring algorithm of Chang et al. (STOC'18), our algorithm can be described in just a few lines. At a high level, it applies a careful derandomization of a recursive procedure which partitions the nodes and their respective palettes into separate bins. We show that after O(1) recursion steps, the remaining uncolored subgraph within each bin has linear size, and thus can be solved locally by collecting it to a single node. This algorithm can also be implemented in the Massively Parallel Computation (MPC) model provided that each machine has linear (in n, the number of nodes in the input graph) space. We also show an extension of our algorithm to the MPC regime in which machines have sublinear space: we present the first deterministic (Δ+1)-list coloring algorithm designed for sublinear-space MPC, which runs in O(logΔ+loglogn) rounds.}, author = {Czumaj, Artur and Davies, Peter and Parter, Merav}, booktitle = {Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing}, location = {Salerno, Italy}, pages = {309--318}, publisher = {Association for Computing Machinery}, title = {{Simple, deterministic, constant-round coloring in the congested clique}}, doi = {10.1145/3382734.3405751}, year = {2020}, } @inproceedings{7806, abstract = {We consider the following decision problem EMBEDk→d in computational topology (where k ≤ d are fixed positive integers): Given a finite simplicial complex K of dimension k, does there exist a (piecewise-linear) embedding of K into ℝd? The special case EMBED1→2 is graph planarity, which is decidable in linear time, as shown by Hopcroft and Tarjan. In higher dimensions, EMBED2→3 and EMBED3→3 are known to be decidable (as well as NP-hard), and recent results of Čadek et al. in computational homotopy theory, in combination with the classical Haefliger–Weber theorem in geometric topology, imply that EMBEDk→d can be solved in polynomial time for any fixed pair (k, d) of dimensions in the so-called metastable range . Here, by contrast, we prove that EMBEDk→d is algorithmically undecidable for almost all pairs of dimensions outside the metastable range, namely for . This almost completely resolves the decidability vs. undecidability of EMBEDk→d in higher dimensions and establishes a sharp dichotomy between polynomial-time solvability and undecidability. Our result complements (and in a wide range of dimensions strengthens) earlier results of Matoušek, Tancer, and the second author, who showed that EMBEDk→d is undecidable for 4 ≤ k ϵ {d – 1, d}, and NP-hard for all remaining pairs (k, d) outside the metastable range and satisfying d ≥ 4.}, author = {Filakovský, Marek and Wagner, Uli and Zhechev, Stephan Y}, booktitle = {Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms}, isbn = {9781611975994}, location = {Salt Lake City, UT, United States}, pages = {767--785}, publisher = {SIAM}, title = {{Embeddability of simplicial complexes is undecidable}}, doi = {10.1137/1.9781611975994.47}, volume = {2020-January}, year = {2020}, } @article{7814, abstract = {Scientific research is to date largely restricted to wealthy laboratories in developed nations due to the necessity of complex and expensive equipment. This inequality limits the capacity of science to be used as a diplomatic channel. Maker movements use open-source technologies including additive manufacturing (3D printing) and laser cutting, together with low-cost computers for developing novel products. This movement is setting the groundwork for a revolution, allowing scientific equipment to be sourced at a fraction of the cost and has the potential to increase the availability of equipment for scientists around the world. Science education is increasingly recognized as another channel for science diplomacy. In this perspective, we introduce the idea that the Maker movement and open-source technologies have the potential to revolutionize science, technology, engineering and mathematics (STEM) education worldwide. We present an open-source STEM didactic tool called SCOPES (Sparking Curiosity through Open-source Platforms in Education and Science). SCOPES is self-contained, independent of local resources, and cost-effective. SCOPES can be adapted to communicate complex subjects from genetics to neurobiology, perform real-world biological experiments and explore digitized scientific samples. We envision such platforms will enhance science diplomacy by providing a means for scientists to share their findings with classrooms and for educators to incorporate didactic concepts into STEM lessons. By providing students the opportunity to design, perform, and share scientific experiments, students also experience firsthand the benefits of a multinational scientific community. We provide instructions on how to build and use SCOPES on our webpage: http://scopeseducation.org.}, author = {Beattie, Robert J and Hippenmeyer, Simon and Pauler, Florian}, issn = {2504-284X}, journal = {Frontiers in Education}, publisher = {Frontiers Media}, title = {{SCOPES: Sparking curiosity through Open-Source platforms in education and science}}, doi = {10.3389/feduc.2020.00048}, volume = {5}, year = {2020}, } @article{7866, abstract = {In this paper, we establish convergence to equilibrium for a drift–diffusion–recombination system modelling the charge transport within certain semiconductor devices. More precisely, we consider a two-level system for electrons and holes which is augmented by an intermediate energy level for electrons in so-called trapped states. The recombination dynamics use the mass action principle by taking into account this additional trap level. The main part of the paper is concerned with the derivation of an entropy–entropy production inequality, which entails exponential convergence to the equilibrium via the so-called entropy method. The novelty of our approach lies in the fact that the entropy method is applied uniformly in a fast-reaction parameter which governs the lifetime of electrons on the trap level. Thus, the resulting decay estimate for the densities of electrons and holes extends to the corresponding quasi-steady-state approximation.}, author = {Fellner, Klemens and Kniely, Michael}, issn = {22969039}, journal = {Journal of Elliptic and Parabolic Equations}, pages = {529--598}, publisher = {Springer Nature}, title = {{Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model}}, doi = {10.1007/s41808-020-00068-8}, volume = {6}, year = {2020}, } @article{7919, abstract = {We explore the time evolution of two impurities in a trapped one-dimensional Bose gas that follows a change of the boson-impurity interaction. We study the induced impurity-impurity interactions and their effect on the quench dynamics. In particular, we report on the size of the impurity cloud, the impurity-impurity entanglement, and the impurity-impurity correlation function. The presented numerical simulations are based upon the variational multilayer multiconfiguration time-dependent Hartree method for bosons. To analyze and quantify induced impurity-impurity correlations, we employ an effective two-body Hamiltonian with a contact interaction. We show that the effective model consistent with the mean-field attraction of two heavy impurities explains qualitatively our results for weak interactions. Our findings suggest that the quench dynamics in cold-atom systems can be a tool for studying impurity-impurity correlations.}, author = {Mistakidis, S. I. and Volosniev, Artem and Schmelcher, P.}, issn = {2643-1564}, journal = {Physical Review Research}, publisher = {American Physical Society}, title = {{Induced correlations between impurities in a one-dimensional quenched Bose gas}}, doi = {10.1103/physrevresearch.2.023154}, volume = {2}, year = {2020}, } @inproceedings{7991, abstract = {We define and study a discrete process that generalizes the convex-layer decomposition of a planar point set. Our process, which we call homotopic curve shortening (HCS), starts with a closed curve (which might self-intersect) in the presence of a set P⊂ ℝ² of point obstacles, and evolves in discrete steps, where each step consists of (1) taking shortcuts around the obstacles, and (2) reducing the curve to its shortest homotopic equivalent. We find experimentally that, if the initial curve is held fixed and P is chosen to be either a very fine regular grid or a uniformly random point set, then HCS behaves at the limit like the affine curve-shortening flow (ACSF). This connection between HCS and ACSF generalizes the link between "grid peeling" and the ACSF observed by Eppstein et al. (2017), which applied only to convex curves, and which was studied only for regular grids. We prove that HCS satisfies some properties analogous to those of ACSF: HCS is invariant under affine transformations, preserves convexity, and does not increase the total absolute curvature. Furthermore, the number of self-intersections of a curve, or intersections between two curves (appropriately defined), does not increase. Finally, if the initial curve is simple, then the number of inflection points (appropriately defined) does not increase.}, author = {Avvakumov, Sergey and Nivasch, Gabriel}, booktitle = {36th International Symposium on Computational Geometry}, isbn = {9783959771436}, issn = {18688969}, location = {Zürich, Switzerland}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Homotopic curve shortening and the affine curve-shortening flow}}, doi = {10.4230/LIPIcs.SoCG.2020.12}, volume = {164}, year = {2020}, } @inproceedings{7989, abstract = {We prove general topological Radon-type theorems for sets in ℝ^d, smooth real manifolds or finite dimensional simplicial complexes. Combined with a recent result of Holmsen and Lee, it gives fractional Helly theorem, and consequently the existence of weak ε-nets as well as a (p,q)-theorem. More precisely: Let X be either ℝ^d, smooth real d-manifold, or a finite d-dimensional simplicial complex. Then if F is a finite, intersection-closed family of sets in X such that the ith reduced Betti number (with ℤ₂ coefficients) of any set in F is at most b for every non-negative integer i less or equal to k, then the Radon number of F is bounded in terms of b and X. Here k is the smallest integer larger or equal to d/2 - 1 if X = ℝ^d; k=d-1 if X is a smooth real d-manifold and not a surface, k=0 if X is a surface and k=d if X is a d-dimensional simplicial complex. Using the recent result of the author and Kalai, we manage to prove the following optimal bound on fractional Helly number for families of open sets in a surface: Let F be a finite family of open sets in a surface S such that the intersection of any subfamily of F is either empty, or path-connected. Then the fractional Helly number of F is at most three. This also settles a conjecture of Holmsen, Kim, and Lee about an existence of a (p,q)-theorem for open subsets of a surface.}, author = {Patakova, Zuzana}, booktitle = {36th International Symposium on Computational Geometry}, isbn = {9783959771436}, issn = {18688969}, location = {Zürich, Switzerland}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Bounding radon number via Betti numbers}}, doi = {10.4230/LIPIcs.SoCG.2020.61}, volume = {164}, year = {2020}, } @inproceedings{7992, abstract = {Let K be a convex body in ℝⁿ (i.e., a compact convex set with nonempty interior). Given a point p in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of K ∩ h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p through which there are at least n+1 distinct barycentric hyperplanes. Two years later, this was seemingly resolved affirmatively by showing that this is the case if p=p₀ is the point of maximal depth in K. However, while working on a related question, we noticed that one of the auxiliary claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s question. It follows from known results that for n ≥ 2, there are always at least three distinct barycentric cuts through the point p₀ ∈ K of maximal depth. Using tools related to Morse theory we are able to improve this bound: four distinct barycentric cuts through p₀ are guaranteed if n ≥ 3.}, author = {Patakova, Zuzana and Tancer, Martin and Wagner, Uli}, booktitle = {36th International Symposium on Computational Geometry}, isbn = {9783959771436}, issn = {18688969}, location = {Zürich, Switzerland}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Barycentric cuts through a convex body}}, doi = {10.4230/LIPIcs.SoCG.2020.62}, volume = {164}, year = {2020}, } @inproceedings{7994, abstract = {In the recent study of crossing numbers, drawings of graphs that can be extended to an arrangement of pseudolines (pseudolinear drawings) have played an important role as they are a natural combinatorial extension of rectilinear (or straight-line) drawings. A characterization of the pseudolinear drawings of K_n was found recently. We extend this characterization to all graphs, by describing the set of minimal forbidden subdrawings for pseudolinear drawings. Our characterization also leads to a polynomial-time algorithm to recognize pseudolinear drawings and construct the pseudolines when it is possible.}, author = {Arroyo Guevara, Alan M and Bensmail, Julien and Bruce Richter, R.}, booktitle = {36th International Symposium on Computational Geometry}, isbn = {9783959771436}, issn = {18688969}, location = {Zürich, Switzerland}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Extending drawings of graphs to arrangements of pseudolines}}, doi = {10.4230/LIPIcs.SoCG.2020.9}, volume = {164}, year = {2020}, } @article{8011, abstract = {Relaxation to a thermal state is the inevitable fate of nonequilibrium interacting quantum systems without special conservation laws. While thermalization in one-dimensional systems can often be suppressed by integrability mechanisms, in two spatial dimensions thermalization is expected to be far more effective due to the increased phase space. In this work we propose a general framework for escaping or delaying the emergence of the thermal state in two-dimensional arrays of Rydberg atoms via the mechanism of quantum scars, i.e., initial states that fail to thermalize. The suppression of thermalization is achieved in two complementary ways: by adding local perturbations or by adjusting the driving Rabi frequency according to the local connectivity of the lattice. We demonstrate that these mechanisms allow us to realize robust quantum scars in various two-dimensional lattices, including decorated lattices with nonconstant connectivity. In particular, we show that a small decrease of the Rabi frequency at the corners of the lattice is crucial for mitigating the strong boundary effects in two-dimensional systems. Our results identify synchronization as an important tool for future experiments on two-dimensional quantum scars.}, author = {Michailidis, Alexios and Turner, C. J. and Papić, Z. and Abanin, D. A. and Serbyn, Maksym}, issn = {2643-1564}, journal = {Physical Review Research}, number = {2}, publisher = {American Physical Society}, title = {{Stabilizing two-dimensional quantum scars by deformation and synchronization}}, doi = {10.1103/physrevresearch.2.022065}, volume = {2}, year = {2020}, } @unpublished{8063, abstract = {We present a generative model of images that explicitly reasons over the set of objects they show. Our model learns a structured latent representation that separates objects from each other and from the background; unlike prior works, it explicitly represents the 2D position and depth of each object, as well as an embedding of its segmentation mask and appearance. The model can be trained from images alone in a purely unsupervised fashion without the need for object masks or depth information. Moreover, it always generates complete objects, even though a significant fraction of training images contain occlusions. Finally, we show that our model can infer decompositions of novel images into their constituent objects, including accurate prediction of depth ordering and segmentation of occluded parts.}, author = {Anciukevicius, Titas and Lampert, Christoph and Henderson, Paul M}, booktitle = {arXiv}, title = {{Object-centric image generation with factored depths, locations, and appearances}}, year = {2020}, } @unpublished{8081, abstract = {Here, we employ micro- and nanosized cellulose particles, namely paper fines and cellulose nanocrystals, to induce hierarchical organization over a wide length scale. After processing them into carbonaceous materials, we demonstrate that these hierarchically organized materials outperform the best materials for supercapacitors operating with organic electrolytes reported in literature in terms of specific energy/power (Ragone plot) while showing hardly any capacity fade over 4,000 cycles. The highly porous materials feature a specific surface area as high as 2500 m2ˑg-1 and exhibit pore sizes in the range of 0.5 to 200 nm as proven by scanning electron microscopy and N2 physisorption. The carbonaceous materials have been further investigated by X-ray photoelectron spectroscopy and RAMAN spectroscopy. Since paper fines are an underutilized side stream in any paper production process, they are a cheap and highly available feedstock to prepare carbonaceous materials with outstanding performance in electrochemical applications. }, author = {Hobisch, Mathias A. and Mourad, Eléonore and Fischer, Wolfgang J. and Prehal, Christian and Eyley, Samuel and Childress, Anthony and Zankel, Armin and Mautner, Andreas and Breitenbach, Stefan and Rao, Apparao M. and Thielemans, Wim and Freunberger, Stefan Alexander and Eckhart, Rene and Bauer, Wolfgang and Spirk, Stefan }, title = {{High specific capacitance supercapacitors from hierarchically organized all-cellulose composites}}, year = {2020}, } @article{8105, abstract = {Physical and biological systems often exhibit intermittent dynamics with bursts or avalanches (active states) characterized by power-law size and duration distributions. These emergent features are typical of systems at the critical point of continuous phase transitions, and have led to the hypothesis that such systems may self-organize at criticality, i.e. without any fine tuning of parameters. Since the introduction of the Bak-Tang-Wiesenfeld (BTW) model, the paradigm of self-organized criticality (SOC) has been very fruitful for the analysis of emergent collective behaviors in a number of systems, including the brain. Although considerable effort has been devoted in identifying and modeling scaling features of burst and avalanche statistics, dynamical aspects related to the temporal organization of bursts remain often poorly understood or controversial. Of crucial importance to understand the mechanisms responsible for emergent behaviors is the relationship between active and quiet periods, and the nature of the correlations. Here we investigate the dynamics of active (θ-bursts) and quiet states (δ-bursts) in brain activity during the sleep-wake cycle. We show the duality of power-law (θ, active phase) and exponential-like (δ, quiescent phase) duration distributions, typical of SOC, jointly emerge with power-law temporal correlations and anti-correlated coupling between active and quiet states. Importantly, we demonstrate that such temporal organization shares important similarities with earthquake dynamics, and propose that specific power-law correlations and coupling between active and quiet states are distinctive characteristics of a class of systems with self-organization at criticality.}, author = {Lombardi, Fabrizio and Wang, Jilin W.J.L. and Zhang, Xiyun and Ivanov, Plamen Ch}, issn = {2100-014X}, journal = {EPJ Web of Conferences}, publisher = {EDP Sciences}, title = {{Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality}}, doi = {10.1051/epjconf/202023000005}, volume = {230}, year = {2020}, } @inproceedings{8135, abstract = {Discrete Morse theory has recently lead to new developments in the theory of random geometric complexes. This article surveys the methods and results obtained with this new approach, and discusses some of its shortcomings. It uses simulations to illustrate the results and to form conjectures, getting numerical estimates for combinatorial, topological, and geometric properties of weighted and unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha and Wrap complexes contained in the mosaics.}, author = {Edelsbrunner, Herbert and Nikitenko, Anton and Ölsböck, Katharina and Synak, Peter}, booktitle = {Topological Data Analysis}, isbn = {9783030434076}, issn = {21978549}, pages = {181--218}, publisher = {Springer Nature}, title = {{Radius functions on Poisson–Delaunay mosaics and related complexes experimentally}}, doi = {10.1007/978-3-030-43408-3_8}, volume = {15}, year = {2020}, } @misc{8181, author = {Hauschild, Robert}, publisher = {IST Austria}, title = {{Amplified centrosomes in dendritic cells promote immune cell effector functions}}, doi = {10.15479/AT:ISTA:8181}, year = {2020}, } @article{8225, abstract = {Birch pollen allergy is among the most prevalent pollen allergies in Northern and Central Europe. This IgE-mediated disease can be treated with allergen immunotherapy (AIT), which typically gives rise to IgG antibodies inducing tolerance. Although the main mechanisms of allergen immunotherapy (AIT) are known, questions regarding possible Fc-mediated effects of IgG antibodies remain unanswered. This can mainly be attributed to the unavailability of appropriate tools, i.e., well-characterised recombinant antibodies (rAbs). We hereby aimed at providing human rAbs of several classes for mechanistic studies and as possible candidates for passive immunotherapy. We engineered IgE, IgG1, and IgG4 sharing the same variable region against the major birch pollen allergen Bet v 1 using Polymerase Incomplete Primer Extension (PIPE) cloning. We tested IgE functionality and IgG blocking capabilities using appropriate model cell lines. In vitro studies showed IgE engagement with FcεRI and CD23 and Bet v 1-dependent degranulation. Overall, we hereby present fully functional, human IgE, IgG1, and IgG4 sharing the same variable region against Bet v 1 and showcase possible applications in first mechanistic studies. Furthermore, our IgG antibodies might be useful candidates for passive immunotherapy of birch pollen allergy.}, author = {Köhler, Verena K. and Crescioli, Silvia and Fazekas-Singer, Judit and Bax, Heather J. and Hofer, Gerhard and Pranger, Christina L. and Hufnagl, Karin and Bianchini, Rodolfo and Flicker, Sabine and Keller, Walter and Karagiannis, Sophia N. and Jensen-Jarolim, Erika}, issn = {1422-0067}, journal = {International Journal of Molecular Sciences}, number = {16}, publisher = {MDPI}, title = {{Filling the antibody pipeline in allergy: PIPE cloning of IgE, IgG1 and IgG4 against the major birch pollen allergen Bet v 1}}, doi = {10.3390/ijms21165693}, volume = {21}, year = {2020}, } @article{8226, author = {Gotovina, Jelena and Bianchini, Rodolfo and Fazekas-Singer, Judit and Herrmann, Ina and Pellizzari, Giulia and Haidl, Ian D. and Hufnagl, Karin and Karagiannis, Sophia N. and Marshall, Jean S. and Jensen‐Jarolim, Erika}, issn = {0105-4538}, journal = {Allergy}, publisher = {Wiley}, title = {{Epinephrine drives human M2a allergic macrophages to a regulatory phenotype reducing mast cell degranulation in vitro}}, doi = {10.1111/all.14299}, year = {2020}, } @misc{8294, abstract = {Automated root growth analysis and tracking of root tips. }, author = {Hauschild, Robert}, publisher = {IST Austria}, title = {{RGtracker}}, doi = {10.15479/AT:ISTA:8294}, year = {2020}, } @unpublished{8307, abstract = {Classic Byzantine fault-tolerant consensus protocols forfeit liveness in the face of asynchrony in order to preserve safety, whereas most deployed blockchain protocols forfeit safety in order to remain live. In this work, we achieve the best of both worlds by proposing a novel abstractions called the finality gadget. A finality gadget allows for transactions to always optimistically commit but informs the clients that these transactions might be unsafe. As a result, a blockchain can execute transactions optimistically and only commit them after they have been sufficiently and provably audited. In this work, we formally model the finality gadget abstraction, prove that it is impossible to solve it deterministically in full asynchrony (even though it is stronger than consensus) and provide a partially synchronous protocol which is currently securing a major blockchain. This way we show that the protocol designer can decouple safety and liveness in order to speed up recovery from failures. We believe that there can be other types of finality gadgets that provide weaker safety (e.g., probabilistic) in order to gain more efficiency and this can depend on the probability that the network is not in synchrony.}, author = {Stewart, Alistair and Kokoris Kogias, Eleftherios}, booktitle = {arXiv}, title = {{GRANDPA: A Byzantine finality gadget}}, year = {2020}, } @inproceedings{8322, abstract = {Reverse firewalls were introduced at Eurocrypt 2015 by Miro-nov and Stephens-Davidowitz, as a method for protecting cryptographic protocols against attacks on the devices of the honest parties. In a nutshell: a reverse firewall is placed outside of a device and its goal is to “sanitize” the messages sent by it, in such a way that a malicious device cannot leak its secrets to the outside world. It is typically assumed that the cryptographic devices are attacked in a “functionality-preserving way” (i.e. informally speaking, the functionality of the protocol remains unchanged under this attacks). In their paper, Mironov and Stephens-Davidowitz construct a protocol for passively-secure two-party computations with firewalls, leaving extension of this result to stronger models as an open question. In this paper, we address this problem by constructing a protocol for secure computation with firewalls that has two main advantages over the original protocol from Eurocrypt 2015. Firstly, it is a multiparty computation protocol (i.e. it works for an arbitrary number n of the parties, and not just for 2). Secondly, it is secure in much stronger corruption settings, namely in the active corruption model. More precisely: we consider an adversary that can fully corrupt up to 𝑛−1 parties, while the remaining parties are corrupt in a functionality-preserving way. Our core techniques are: malleable commitments and malleable non-interactive zero-knowledge, which in particular allow us to create a novel protocol for multiparty augmented coin-tossing into the well with reverse firewalls (that is based on a protocol of Lindell from Crypto 2001).}, author = {Chakraborty, Suvradip and Dziembowski, Stefan and Nielsen, Jesper Buus}, booktitle = {Advances in Cryptology – CRYPTO 2020}, isbn = {9783030568795}, issn = {16113349}, location = {Santa Barbara, CA, United States}, pages = {732--762}, publisher = {Springer Nature}, title = {{Reverse firewalls for actively secure MPCs}}, doi = {10.1007/978-3-030-56880-1_26}, volume = {12171}, year = {2020}, } @inproceedings{8339, abstract = {Discrete Gaussian distributions over lattices are central to lattice-based cryptography, and to the computational and mathematical aspects of lattices more broadly. The literature contains a wealth of useful theorems about the behavior of discrete Gaussians under convolutions and related operations. Yet despite their structural similarities, most of these theorems are formally incomparable, and their proofs tend to be monolithic and written nearly “from scratch,” making them unnecessarily hard to verify, understand, and extend. In this work we present a modular framework for analyzing linear operations on discrete Gaussian distributions. The framework abstracts away the particulars of Gaussians, and usually reduces proofs to the choice of appropriate linear transformations and elementary linear algebra. To showcase the approach, we establish several general properties of discrete Gaussians, and show how to obtain all prior convolution theorems (along with some new ones) as straightforward corollaries. As another application, we describe a self-reduction for Learning With Errors (LWE) that uses a fixed number of samples to generate an unlimited number of additional ones (having somewhat larger error). The distinguishing features of our reduction are its simple analysis in our framework, and its exclusive use of discrete Gaussians without any loss in parameters relative to a prior mixed discrete-and-continuous approach. As a contribution of independent interest, for subgaussian random matrices we prove a singular value concentration bound with explicitly stated constants, and we give tighter heuristics for specific distributions that are commonly used for generating lattice trapdoors. These bounds yield improvements in the concrete bit-security estimates for trapdoor lattice cryptosystems.}, author = {Genise, Nicholas and Micciancio, Daniele and Peikert, Chris and Walter, Michael}, booktitle = {23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography}, isbn = {9783030453732}, issn = {16113349}, location = {Edinburgh, United Kingdom}, pages = {623--651}, publisher = {Springer Nature}, title = {{Improved discrete Gaussian and subgaussian analysis for lattice cryptography}}, doi = {10.1007/978-3-030-45374-9_21}, volume = {12110}, year = {2020}, }