@article{15045, abstract = {Coupling of orbital motion to a spin degree of freedom gives rise to various transport phenomena in quantum systems that are beyond the standard paradigms of classical physics. Here, we discuss features of spin-orbit dynamics that can be visualized using a classical model with two coupled angular degrees of freedom. Specifically, we demonstrate classical ‘spin’ filtering through our model and show that the interplay between angular degrees of freedom and dissipation can lead to asymmetric ‘spin’ transport.}, author = {Varshney, Atul and Ghazaryan, Areg and Volosniev, Artem}, issn = {1432-5411}, journal = {Few-Body Systems}, keywords = {Atomic and Molecular Physics, and Optics}, publisher = {Springer Nature}, title = {{Classical ‘spin’ filtering with two degrees of freedom and dissipation}}, doi = {10.1007/s00601-024-01880-x}, volume = {65}, year = {2024}, } @article{15053, abstract = {Atom-based quantum simulators have had many successes in tackling challenging quantum many-body problems, owing to the precise and dynamical control that they provide over the systems' parameters. They are, however, often optimized to address a specific type of problem. Here, we present the design and implementation of a 6Li-based quantum gas platform that provides wide-ranging capabilities and is able to address a variety of quantum many-body problems. Our two-chamber architecture relies on a robust combination of gray molasses and optical transport from a laser-cooling chamber to a glass cell with excellent optical access. There, we first create unitary Fermi superfluids in a three-dimensional axially symmetric harmonic trap and characterize them using in situ thermometry, reaching temperatures below 20 nK. This allows us to enter the deep superfluid regime with samples of extreme diluteness, where the interparticle spacing is sufficiently large for direct single-atom imaging. Second, we generate optical lattice potentials with triangular and honeycomb geometry in which we study diffraction of molecular Bose-Einstein condensates, and show how going beyond the Kapitza-Dirac regime allows us to unambiguously distinguish between the two geometries. With the ability to probe quantum many-body physics in both discrete and continuous space, and its suitability for bulk and single-atom imaging, our setup represents an important step towards achieving a wide-scope quantum simulator.}, author = {Jin, Shuwei and Dai, Kunlun and Verstraten, Joris and Dixmerias, Maxime and Al Hyder, Ragheed and Salomon, Christophe and Peaudecerf, Bruno and de Jongh, Tim and Yefsah, Tarik}, issn = {2643-1564}, journal = {Physical Review Research}, keywords = {General Physics and Astronomy}, number = {1}, publisher = {American Physical Society}, title = {{Multipurpose platform for analog quantum simulation}}, doi = {10.1103/physrevresearch.6.013158}, volume = {6}, year = {2024}, } @article{15048, abstract = {Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm.}, author = {Schauer, Alexandra and Pranjic-Ferscha, Kornelija and Hauschild, Robert and Heisenberg, Carl-Philipp J}, issn = {1477-9129}, journal = {Development}, number = {4}, pages = {1--18}, publisher = {The Company of Biologists}, title = {{Robust axis elongation by Nodal-dependent restriction of BMP signaling}}, doi = {10.1242/dev.202316}, volume = {151}, year = {2024}, } @misc{14926, author = {Hauschild, Robert}, publisher = {ISTA}, title = {{Matlab script for analysis of clone dispersal}}, doi = {10.15479/AT:ISTA:14926}, year = {2024}, } @article{15047, abstract = {Tropical precipitation extremes and their changes with surface warming are investigated using global storm resolving simulations and high-resolution observations. The simulations demonstrate that the mesoscale organization of convection, a process that cannot be physically represented by conventional global climate models, is important for the variations of tropical daily accumulated precipitation extremes. In both the simulations and observations, daily precipitation extremes increase in a more organized state, in association with larger, but less frequent, storms. Repeating the simulations for a warmer climate results in a robust increase in monthly-mean daily precipitation extremes. Higher precipitation percentiles have a greater sensitivity to convective organization, which is predicted to increase with warming. Without changes in organization, the strongest daily precipitation extremes over the tropical oceans increase at a rate close to Clausius-Clapeyron (CC) scaling. Thus, in a future warmer state with increased organization, the strongest daily precipitation extremes over oceans increase at a faster rate than CC scaling.}, author = {Bao, Jiawei and Stevens, Bjorn and Kluft, Lukas and Muller, Caroline J}, issn = {2375-2548}, journal = {Science Advances}, number = {8}, publisher = {American Association for the Advancement of Science}, title = {{Intensification of daily tropical precipitation extremes from more organized convection}}, doi = {10.1126/sciadv.adj6801}, volume = {10}, year = {2024}, }