@article{13475, abstract = {Stars stripped of their hydrogen-rich envelope through interaction with a binary companion are generally not considered when accounting for ionizing radiation from stellar populations, despite the expectation that stripped stars emit hard ionizing radiation, form frequently, and live 10–100 times longer than single massive stars. We compute the first grid of evolutionary and spectral models specially made for stars stripped in binaries for a range of progenitor masses (2–20 M⊙) and metallicities ranging from solar to values representative for pop II stars. For stripped stars with masses in the range 0.3–7 M⊙, we find consistently high effective temperatures (20 000–100 000 K, increasing with mass), small radii (0.2–1 R⊙), and high bolometric luminosities, comparable to that of their progenitor before stripping. The spectra show a continuous sequence that naturally bridges subdwarf-type stars at the low-mass end and Wolf-Rayet-like spectra at the high-mass end. For intermediate masses we find hybrid spectral classes showing a mixture of absorption and emission lines. These appear for stars with mass-loss rates of 10−8−10−6 M⊙ yr−1, which have semi-transparent atmospheres. At low metallicity, substantial hydrogen-rich layers are left at the surface and we predict spectra that resemble O-type stars instead. We obtain spectra undistinguishable from subdwarfs for stripped stars with masses up to 1.7 M⊙, which questions whether the widely adopted canonical value of 0.47 M⊙ is uniformly valid. Only a handful of stripped stars of intermediate mass have currently been identified observationally. Increasing this sample will provide necessary tests for the physics of interaction, internal mixing, and stellar winds. We use our model spectra to investigate the feasibility to detect stripped stars next to an optically bright companion and recommend systematic searches for their UV excess and possible emission lines, most notably HeII λ4686 in the optical and HeII λ1640 in the UV. Our models are publicly available for further investigations or inclusion in spectral synthesis simulations.}, author = {Götberg, Ylva Louise Linsdotter and de Mink, S. E. and Groh, J. H. and Kupfer, T. and Crowther, P. A. and Zapartas, E. and Renzo, M.}, issn = {1432-0746}, journal = {Astronomy & Astrophysics}, keywords = {Space and Planetary Science, Astronomy and Astrophysics}, publisher = {EDP Sciences}, title = {{Spectral models for binary products: Unifying subdwarfs and Wolf-Rayet stars as a sequence of stripped-envelope stars}}, doi = {10.1051/0004-6361/201732274}, volume = {615}, year = {2018}, } @article{13473, abstract = {Stripped-envelope stars form in binary systems after losing mass through Roche-lobe overflow. They bear astrophysical significance as sources of UV and ionizing radiation in older stellar populations and, if sufficiently massive, as stripped supernova progenitors. Binary evolutionary models predict that they are common, but only a handful of subdwarfs with B-type companions are known. The question is whether a large population of such systems has evaded detection as a result of biases, or whether the model predictions are wrong. We reanalyze the well-studied post-interaction binary φ Persei. Recently, new data have improved the orbital solution of the system, which contains an ~1.2M⊙ stripped-envelope star and a rapidly rotating ~9.6M⊙ Be star. We compare with an extensive grid of evolutionary models using a Bayesian approach and constrain the initial masses of the progenitor to 7.2 ± 0.4M⊙ for the stripped star and 3.8 ± 0.4M⊙ for the Be star. The system must have evolved through near-conservative mass transfer. These findings are consistent with earlier studies. The age we obtain, 57 ± 9 Myr, is in excellent agreement with the age of the α Persei cluster. We note that neither star was initially massive enough to produce a core-collapse supernova, but mass exchange pushed the Be star above the mass threshold. We find that the subdwarf is overluminous for its mass by almost an order of magnitude, compared to the expectations for a helium core burning star. We can only reconcile this if the subdwarf resides in a late phase of helium shell burning, which lasts only 2–3% of the total lifetime as a subdwarf. Assuming continuous star formation implies that up to ~50 less evolved, dimmer subdwarfs exist for each system similar to φ Persei, but have evaded detection so far. Our findings can be interpreted as a strong indication that a substantial population of stripped-envelope stars indeed exists, but has so far evaded detection because of observational biases and lack of large-scale systematic searches.}, author = {Schootemeijer, A. and Götberg, Ylva Louise Linsdotter and de Mink, S. E. and Gies, D. and Zapartas, E.}, issn = {1432-0746}, journal = {Astronomy & Astrophysics}, keywords = {Space and Planetary Science, Astronomy and Astrophysics}, publisher = {EDP Sciences}, title = {{Clues about the scarcity of stripped-envelope stars from the evolutionary state of the sdO+Be binary system φ Persei}}, doi = {10.1051/0004-6361/201731194}, volume = {615}, year = {2018}, } @article{13474, abstract = {Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf–Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption – but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10–15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10–18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung–Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.}, author = {Smith, Nathan and Götberg, Ylva Louise Linsdotter and de Mink, Selma E}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics}, number = {1}, pages = {772--782}, publisher = {Oxford University Press}, title = {{Extreme isolation of WN3/O3 stars and implications for their evolutionary origin as the elusive stripped binaries}}, doi = {10.1093/mnras/stx3181}, volume = {475}, year = {2018}, } @inproceedings{186, abstract = {A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The ℤ2-genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t × t grid or one of the following so-called t-Kuratowski graphs: K3, t, or t copies of K5 or K3,3 sharing at most 2 common vertices. We show that the ℤ2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its ℤ2-genus, solving a problem posed by Schaefer and Štefankovič, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces.}, author = {Fulek, Radoslav and Kynčl, Jan}, location = {Budapest, Hungary}, pages = {40.1 -- 40.14}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{The ℤ2-Genus of Kuratowski minors}}, doi = {10.4230/LIPIcs.SoCG.2018.40}, volume = {99}, year = {2018}, } @article{14003, abstract = {Molecular chirality plays an essential role in most biochemical processes. The observation and quantification of chirality-sensitive signals, however, remains extremely challenging, especially on ultrafast timescales and in dilute media. Here, we describe the experimental realization of an all-optical and ultrafast scheme for detecting chiral dynamics in molecules. This technique is based on high-harmonic generation by a combination of two-color counterrotating femtosecond laser pulses with polarization states tunable from linear to circular. We demonstrate two different implementations of chiral-sensitive high-harmonic spectroscopy on an ensemble of randomly oriented methyloxirane molecules in the gas phase. Using two elliptically polarized fields, we observe that the ellipticities maximizing the harmonic signal reach up to 4.4 ± 0.2 % (at 17.6 eV). Using two circularly polarized fields, we observe circular dichroisms ranging up to 13 ± 6 % (28.3–33.1 eV). Our theoretical analysis confirms that the observed chiral response originates from subfemtosecond electron dynamics driven by the magnetic component of the driving laser field. This assignment is supported by the experimental observation of a strong intensity dependence of the chiral effects and its agreement with theory. We moreover report and explain a pronounced variation of the signal strength and dichroism with the driving-field ellipticities and harmonic orders. Finally, we demonstrate the sensitivity of the experimental observables to the shape of the electron hole. This technique for chiral discrimination will yield femtosecond temporal resolution when integrated in a pump-probe scheme and subfemtosecond resolution on chiral charge migration in a self-probing scheme.}, author = {Baykusheva, Denitsa Rangelova and Wörner, Hans Jakob}, issn = {2160-3308}, journal = {Physical Review X}, keywords = {General Physics and Astronomy}, number = {3}, publisher = {American Physical Society}, title = {{Chiral discrimination through bielliptical high-harmonic spectroscopy}}, doi = {10.1103/physrevx.8.031060}, volume = {8}, year = {2018}, }