@inproceedings{8728, abstract = {Discrete-time Markov Chains (MCs) and Markov Decision Processes (MDPs) are two standard formalisms in system analysis. Their main associated quantitative objectives are hitting probabilities, discounted sum, and mean payoff. Although there are many techniques for computing these objectives in general MCs/MDPs, they have not been thoroughly studied in terms of parameterized algorithms, particularly when treewidth is used as the parameter. This is in sharp contrast to qualitative objectives for MCs, MDPs and graph games, for which treewidth-based algorithms yield significant complexity improvements. In this work, we show that treewidth can also be used to obtain faster algorithms for the quantitative problems. For an MC with n states and m transitions, we show that each of the classical quantitative objectives can be computed in O((n+m)⋅t2) time, given a tree decomposition of the MC with width t. Our results also imply a bound of O(κ⋅(n+m)⋅t2) for each objective on MDPs, where κ is the number of strategy-iteration refinements required for the given input and objective. Finally, we make an experimental evaluation of our new algorithms on low-treewidth MCs and MDPs obtained from the DaCapo benchmark suite. Our experiments show that on low-treewidth MCs and MDPs, our algorithms outperform existing well-established methods by one or more orders of magnitude.}, author = {Asadi, Ali and Chatterjee, Krishnendu and Goharshady, Amir Kafshdar and Mohammadi, Kiarash and Pavlogiannis, Andreas}, booktitle = {Automated Technology for Verification and Analysis}, isbn = {9783030591519}, issn = {1611-3349}, location = {Hanoi, Vietnam}, pages = {253--270}, publisher = {Springer Nature}, title = {{Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth}}, doi = {10.1007/978-3-030-59152-6_14}, volume = {12302}, year = {2020}, } @inproceedings{8089, abstract = {We consider the classical problem of invariant generation for programs with polynomial assignments and focus on synthesizing invariants that are a conjunction of strict polynomial inequalities. We present a sound and semi-complete method based on positivstellensaetze, i.e. theorems in semi-algebraic geometry that characterize positive polynomials over a semi-algebraic set. On the theoretical side, the worst-case complexity of our approach is subexponential, whereas the worst-case complexity of the previous complete method (Kapur, ACA 2004) is doubly-exponential. Even when restricted to linear invariants, the best previous complexity for complete invariant generation is exponential (Colon et al, CAV 2003). On the practical side, we reduce the invariant generation problem to quadratic programming (QCLP), which is a classical optimization problem with many industrial solvers. We demonstrate the applicability of our approach by providing experimental results on several academic benchmarks. To the best of our knowledge, the only previous invariant generation method that provides completeness guarantees for invariants consisting of polynomial inequalities is (Kapur, ACA 2004), which relies on quantifier elimination and cannot even handle toy programs such as our running example.}, author = {Chatterjee, Krishnendu and Fu, Hongfei and Goharshady, Amir Kafshdar and Goharshady, Ehsan Kafshdar}, booktitle = {Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation}, isbn = {9781450376136}, location = {London, United Kingdom}, pages = {672--687}, publisher = {Association for Computing Machinery}, title = {{Polynomial invariant generation for non-deterministic recursive programs}}, doi = {10.1145/3385412.3385969}, year = {2020}, } @article{6918, abstract = {We consider the classic problem of Network Reliability. A network is given together with a source vertex, one or more target vertices, and probabilities assigned to each of the edges. Each edge of the network is operable with its associated probability and the problem is to determine the probability of having at least one source-to-target path that is entirely composed of operable edges. This problem is known to be NP-hard. We provide a novel scalable algorithm to solve the Network Reliability problem when the treewidth of the underlying network is small. We also show our algorithm’s applicability for real-world transit networks that have small treewidth, including the metro networks of major cities, such as London and Tokyo. Our algorithm leverages tree decompositions to shrink the original graph into much smaller graphs, for which reliability can be efficiently and exactly computed using a brute force method. To the best of our knowledge, this is the first exact algorithm for Network Reliability that can scale to handle real-world instances of the problem.}, author = {Goharshady, Amir Kafshdar and Mohammadi, Fatemeh}, issn = {09518320}, journal = {Reliability Engineering and System Safety}, publisher = {Elsevier}, title = {{An efficient algorithm for computing network reliability in small treewidth}}, doi = {10.1016/j.ress.2019.106665}, volume = {193}, year = {2020}, } @article{7161, abstract = {In this paper, we introduce an inertial projection-type method with different updating strategies for solving quasi-variational inequalities with strongly monotone and Lipschitz continuous operators in real Hilbert spaces. Under standard assumptions, we establish different strong convergence results for the proposed algorithm. Primary numerical experiments demonstrate the potential applicability of our scheme compared with some related methods in the literature.}, author = {Shehu, Yekini and Gibali, Aviv and Sagratella, Simone}, issn = {1573-2878}, journal = {Journal of Optimization Theory and Applications}, pages = {877–894}, publisher = {Springer Nature}, title = {{Inertial projection-type methods for solving quasi-variational inequalities in real Hilbert spaces}}, doi = {10.1007/s10957-019-01616-6}, volume = {184}, year = {2020}, } @article{7652, abstract = {Organisms cope with change by taking advantage of transcriptional regulators. However, when faced with rare environments, the evolution of transcriptional regulators and their promoters may be too slow. Here, we investigate whether the intrinsic instability of gene duplication and amplification provides a generic alternative to canonical gene regulation. Using real-time monitoring of gene-copy-number mutations in Escherichia coli, we show that gene duplications and amplifications enable adaptation to fluctuating environments by rapidly generating copy-number and, therefore, expression-level polymorphisms. This amplification-mediated gene expression tuning (AMGET) occurs on timescales that are similar to canonical gene regulation and can respond to rapid environmental changes. Mathematical modelling shows that amplifications also tune gene expression in stochastic environments in which transcription-factor-based schemes are hard to evolve or maintain. The fleeting nature of gene amplifications gives rise to a generic population-level mechanism that relies on genetic heterogeneity to rapidly tune the expression of any gene, without leaving any genomic signature.}, author = {Tomanek, Isabella and Grah, Rok and Lagator, M. and Andersson, A. M. C. and Bollback, Jonathan P and Tkačik, Gašper and Guet, Calin C}, issn = {2397-334X}, journal = {Nature Ecology & Evolution}, number = {4}, pages = {612--625}, publisher = {Springer Nature}, title = {{Gene amplification as a form of population-level gene expression regulation}}, doi = {10.1038/s41559-020-1132-7}, volume = {4}, year = {2020}, }