@phdthesis{10663, abstract = {The superconducting state of matter enables one to observe quantum effects on the macroscopic scale and hosts many fascinating phenomena. Topological defects of the superconducting order parameter, such as vortices and fluxoid states in multiply connected structures, are often the key ingredients of these phenomena. This dissertation describes a new mode of magnetic force microscopy (Φ0-MFM) for investigating vortex and fluxoid sates in mesoscopic superconducting (SC) structures. The technique relies on the magneto-mechanical coupling of a MFM cantilever to the motion of fluxons. The novelty of the technique is that a magnetic particle attached to the cantilever is used not only to sense the state of a SC structure, but also as a primary source of the inhomogeneous magnetic field which induces that state. Φ0-MFM enables us to map the transitions between tip-induced states during a scan: at the positions of the tip, where the two lowest energy states become degenerate, small oscillations of the tip drive the transitions between these states, which causes a significant shift in the resonant frequency and dissipation of the cantilever. For narrow-wall aluminum rings, the mapped fluxoid transitions form concentric contours on a scan. We show that the changes in the cantilever resonant frequency and dissipation are well-described by a stochastic resonance (SR) of cantilever-driven thermally activated phase slips (TAPS). The SR model allows us to experimentally determine the rate of TAPS and compare it to the Langer-Ambegaokar-McCumber-Halperin (LAMH) theory for TAPS in 1D superconducting structures. Further, we use the SR model to qualitatively study the effects of a locally applied magnetic field on the phase slip rate in rings containing constrictions. The states with multiple vortices or winding numbers could be useful for the development of novel superconducting devices, or the study of vortex interactions and interference effects. Using Φ0-MFM allows us to induce, probe and control fluxoid states in thin wall structures comprised of multiple loops. We show that Φ0-MFM images of the fluxoid transitions allow us to identify the underlying states and to investigate their energetics and dynamics even in complicated structures.}, author = {Polshyn, Hryhoriy}, keywords = {physics, superconductivity, magnetic force microscopy, phase slips}, pages = {103}, publisher = {University of Illinois at Urbana-Champaign}, title = {{Magnetic force microscopy studies of mesoscopic superconducting structures}}, year = {2017}, } @inproceedings{10745, abstract = {New ways to investigate and manipulate fluxoid and vortex states of mesoscopic superconducting structures are of great interest. The states with multiple vortices or winding numbers could be useful for the study of vortex interactions and interference effects, the braiding of Majorana bound states by winding vortices, and the development of novel superconducting devices. We demonstrate a methodology based on magnetic force microscopy that allows us to induce, probe and control fluxoid states in thin wall structures comprised of multiple loops. By using micro-magnet as a source of inhomogeneous magnetic field, we can efficiently explore the configuration space of fluxoid states. Scanning over the structure reveals the energy crossing points of the lowest laying fluxoid states. This is due the strong interaction of cantilever with thermally activated fluxoid transitions at points of degeneracy. We show that measured patterns of fluxoid transitions allow to identify the states, investigate their energetics, and manipulate them. Further, we show that the dynamics of driven fluxoid transitions can be described by stochastic resonance model, which provides a unique way of measuring fluxoid transition rate and related energy barrier for chosen transitions even in complicated structures}, author = {Polshyn, Hryhoriy and Naibert, Tyler and Budakian, Raffi}, booktitle = {APS March Meeting 2017}, issn = {0003-0503}, location = {New Orleans, LA, United States}, number = {4}, publisher = {American Physical Society}, title = {{ Probing and controlling fluxoid states in multiply-connected mesoscopic superconducting structures}}, volume = {62}, year = {2017}, } @inbook{1075, author = {Wenzl, Bernhard}, booktitle = {Austria and America: 20th-Century Cross-Cultural Encounters}, editor = {Parker, Joshua and Poole, Ralph}, isbn = {978-3643908124}, pages = {73 -- 80}, publisher = {LIT Verlag Berlin-Münster-Wien-Zürich-London}, title = {{An American in Allied-occupied Austria: John Dos Passos Reports on "The Vienna Frontier"}}, volume = {15}, year = {2017}, } @article{11066, abstract = {Recent studies have shown that a subset of nucleoporins (Nups) can detach from the nuclear pore complex and move into the nuclear interior to regulate transcription. One such dynamic Nup, called Nup98, has been implicated in gene activation in healthy cells and has been shown to drive leukemogenesis when mutated in patients with acute myeloid leukemia (AML). Here we show that in hematopoietic cells, Nup98 binds predominantly to transcription start sites to recruit the Wdr82–Set1A/COMPASS (complex of proteins associated with Set1) complex, which is required for deposition of the histone 3 Lys4 trimethyl (H3K4me3)-activating mark. Depletion of Nup98 or Wdr82 abolishes Set1A recruitment to chromatin and subsequently ablates H3K4me3 at adjacent promoters. Furthermore, expression of a Nup98 fusion protein implicated in aggressive AML causes mislocalization of H3K4me3 at abnormal regions and up-regulation of associated genes. Our findings establish a function of Nup98 in hematopoietic gene activation and provide mechanistic insight into which Nup98 leukemic fusion proteins promote AML.}, author = {Franks, Tobias M. and McCloskey, Asako and Shokhirev, Maxim Nikolaievich and Benner, Chris and Rathore, Annie and HETZER, Martin W}, issn = {0890-9369}, journal = {Genes & Development}, keywords = {Developmental Biology, Genetics}, number = {22}, pages = {2222--2234}, publisher = {Cold Spring Harbor Laboratory}, title = {{Nup98 recruits the Wdr82–Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells}}, doi = {10.1101/gad.306753.117}, volume = {31}, year = {2017}, } @article{11067, abstract = {Neural progenitor cells (NeuPCs) possess a unique nuclear architecture that changes during differentiation. Nucleoporins are linked with cell-type-specific gene regulation, coupling physical changes in nuclear structure to transcriptional output; but, whether and how they coordinate with key fate-determining transcription factors is unclear. Here we show that the nucleoporin Nup153 interacts with Sox2 in adult NeuPCs, where it is indispensable for their maintenance and controls neuronal differentiation. Genome-wide analyses show that Nup153 and Sox2 bind and co-regulate hundreds of genes. Binding of Nup153 to gene promoters or transcriptional end sites correlates with increased or decreased gene expression, respectively, and inhibiting Nup153 expression alters open chromatin configurations at its target genes, disrupts genomic localization of Sox2, and promotes differentiation in vitro and a gliogenic fate switch in vivo. Together, these findings reveal that nuclear structural proteins may exert bimodal transcriptional effects to control cell fate.}, author = {Toda, Tomohisa and Hsu, Jonathan Y. and Linker, Sara B. and Hu, Lauren and Schafer, Simon T. and Mertens, Jerome and Jacinto, Filipe V. and HETZER, Martin W and Gage, Fred H.}, issn = {1934-5909}, journal = {Cell Stem Cell}, keywords = {Cell Biology, Genetics, Molecular Medicine}, number = {5}, pages = {618--634.e7}, publisher = {Elsevier}, title = {{Nup153 interacts with Sox2 to enable bimodal gene regulation and maintenance of neural progenitor cells}}, doi = {10.1016/j.stem.2017.08.012}, volume = {21}, year = {2017}, } @article{11065, abstract = {Premature aging disorders provide an opportunity to study the mechanisms that drive aging. In Hutchinson-Gilford progeria syndrome (HGPS), a mutant form of the nuclear scaffold protein lamin A distorts nuclei and sequesters nuclear proteins. We sought to investigate protein homeostasis in this disease. Here, we report a widespread increase in protein turnover in HGPS-derived cells compared to normal cells. We determine that global protein synthesis is elevated as a consequence of activated nucleoli and enhanced ribosome biogenesis in HGPS-derived fibroblasts. Depleting normal lamin A or inducing mutant lamin A expression are each sufficient to drive nucleolar expansion. We further show that nucleolar size correlates with donor age in primary fibroblasts derived from healthy individuals and that ribosomal RNA production increases with age, indicating that nucleolar size and activity can serve as aging biomarkers. While limiting ribosome biogenesis extends lifespan in several systems, we show that increased ribosome biogenesis and activity are a hallmark of premature aging.}, author = {Buchwalter, Abigail and HETZER, Martin W}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry}, publisher = {Springer Nature}, title = {{Nucleolar expansion and elevated protein translation in premature aging}}, doi = {10.1038/s41467-017-00322-z}, volume = {8}, year = {2017}, } @article{11518, abstract = {We present spectroscopic follow-up observations of CR7 with ALMA, targeted at constraining the infrared (IR) continuum and [C II]158 mm line-emission at high spatial resolution matched to the HST/WFC3 imaging. CR7 is a luminous Lyα emitting galaxy at z = 6.6 that consists of three separated UV-continuum components. Our observations reveal several well-separated components of [C II] emission. The two most luminous components in [C II] coincide with the brightest UV components (A and B), blueshifted by »150 km s−1 with respect to the peak of Lyα emission. Other [C II] components are observed close to UV clumps B and C and are blueshifted by »300 and ≈80 km s−1 with respect to the systemic redshift. We do not detect FIR continuum emission due to dust with a 3σ limiting luminosity LIR T L d 35 K 3.1 10 = <´ 10 ( ) . This allows us to mitigate uncertainties in the dust-corrected SFR and derive SFRs for the three UV clumps A, B, and C of 28, 5, and 7 M yr−1. All clumps have [C II] luminosities consistent within the scatter observed in the local relation between SFR and L[ ] C II , implying that strong Lyα emission does not necessarily anti-correlate with [C II] luminosity. Combining our measurements with the literature, we show that galaxies with blue UV slopes have weaker [C II] emission at fixed SFR, potentially due to their lower metallicities and/or higher photoionization. Comparison with hydrodynamical simulations suggests that CR7ʼs clumps have metallicities of 0.1 Z Z 0.2 < < . The observed ISM structure of CR7 indicates that we are likely witnessing the build up of a central galaxy in the early universe through complex accretion of satellites.}, author = {Matthee, Jorryt J and Sobral, D. and Boone, F. and Röttgering, H. and Schaerer, D. and Girard, M. and Pallottini, A. and Vallini, L. and Ferrara, A. and Darvish, B. and Mobasher, B.}, issn = {1538-4357}, journal = {The Astrophysical Journal}, keywords = {Space and Planetary Science, Astronomy and Astrophysics, dark ages, reionization, first stars – galaxies: formation – galaxies: high-redshift – galaxies: ISM – galaxies: kinematics and dynamics}, number = {2}, publisher = {IOP Publishing}, title = {{ALMA reveals metals yet no dust within multiple components in CR7}}, doi = {10.3847/1538-4357/aa9931}, volume = {851}, year = {2017}, } @article{11562, abstract = {We present the CAlibrating LYMan-α with Hα (CALYMHA) pilot survey and new results on Lyman α (Lyα) selected galaxies at z ∼ 2. We use a custom-built Lyα narrow-band filter at the Isaac Newton Telescope, designed to provide a matched volume coverage to the z = 2.23 Hα HiZELS survey. Here, we present the first results for the COSMOS and UDS fields. Our survey currently reaches a 3σ line flux limit of ∼4 × 10−17 erg s−1 cm−2, and a Lyα luminosity limit of ∼1042.3 erg s−1. We find 188 Lyα emitters over 7.3 × 105 Mpc3, but also find significant numbers of other line-emitting sources corresponding to He II, C III] and C IV emission lines. These sources are important contaminants, and we carefully remove them, unlike most previous studies. We find that the Lyα luminosity function at z = 2.23 is very well described by a Schechter function up to LLy α ≈ 1043 erg s−1 with L∗=1042.59+0.16−0.08 erg s−1, ϕ∗=10−3.09+0.14−0.34 Mpc−3 and α = −1.75 ± 0.25. Above LLy α ≈ 1043 erg s−1, the Lyα luminosity function becomes power-law like, driven by X-ray AGN. We find that Lyα-selected emitters have a high escape fraction of 37 ± 7 per cent, anticorrelated with Lyα luminosity and correlated with Lyα equivalent width. Lyα emitters have ubiquitous large (≈40 kpc) Lyα haloes, ∼2 times larger than their Hα extents. By directly comparing our Lyα and Hα luminosity functions, we find that the global/overall escape fraction of Lyα photons (within a 13 kpc radius) from the full population of star-forming galaxies is 5.1 ± 0.2 per cent at the peak of the star formation history. An extra 3.3 ± 0.3 per cent of Lyα photons likely still escape, but at larger radii.}, author = {Sobral, David and Matthee, Jorryt J and Best, Philip and Stroe, Andra and Röttgering, Huub and Oteo, Iván and Smail, Ian and Morabito, Leah and Paulino-Afonso, Ana}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics, galaxies: evolution, galaxies: haloes, galaxies: high-redshift, galaxies: luminosity function, mass function, galaxies: statistics, cosmology: observations}, number = {1}, pages = {1242--1258}, publisher = {Oxford University Press}, title = {{The CALYMHA survey: Lyα luminosity function and global escape fraction of Lyα photons at z = 2.23}}, doi = {10.1093/mnras/stw3090}, volume = {466}, year = {2017}, } @article{11566, abstract = {While traditionally associated with active galactic nuclei (AGN), the properties of the C II] (λ = 2326 Å), C III] (λ, λ = 1907, 1909 Å) and C IV (λ, λ = 1549, 1551 Å) emission lines are still uncertain as large, unbiased samples of sources are scarce. We present the first blind, statistical study of C II], C III] and C IV emitters at z ∼ 0.68, 1.05, 1.53, respectively, uniformly selected down to a flux limit of ∼4 × 10−17 erg s−1 cm−1 through a narrow-band survey covering an area of ∼1.4 deg2 over COSMOS and UDS. We detect 16 C II], 35 C III] and 17 C IV emitters, whose nature we investigate using optical colours as well as Hubble Space Telescope (HST), X-ray, radio and far-infrared data. We find that z ∼ 0.7 C II] emitters are consistent with a mixture of blue (UV slope β = −2.0 ± 0.4) star-forming (SF) galaxies with discy HST structure and AGN with Seyfert-like morphologies. Bright C II] emitters have individual X-ray detections as well as high average black hole accretion rates (BHARs) of ∼0.1 M⊙ yr−1. C III] emitters at z ∼ 1.05 trace a general population of SF galaxies, with β = −0.8 ± 1.1, a variety of optical morphologies, including isolated and interacting galaxies and low BHAR (<0.02 M⊙ yr−1). Our C IV emitters at z ∼ 1.5 are consistent with young, blue quasars (β ∼ −1.9) with point-like optical morphologies, bright X-ray counterparts and large BHAR (0.8  M⊙ yr−1). We also find some surprising C II], C III] and C IV emitters with rest-frame equivalent widths (EWs) that could be as large as 50–100 Å. AGN or spatial offsets between the UV continuum stellar disc and the line-emitting regions may explain the large EW. These bright C II], C III] and C IV emitters are ideal candidates for spectroscopic follow-up to fully unveil their nature.}, author = {Stroe, Andra and Sobral, David and Matthee, Jorryt J and Calhau, João and Oteo, Ivan}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics, galaxies: active, galaxies: high-redshift, quasars: emission lines, galaxies: star formation, cosmology: observations}, number = {3}, pages = {2558--2574}, publisher = {Oxford University Press}, title = {{A 1.4 deg2 blind survey for C II], C III] and C IV at z ∼ 0.7–1.5 – I. Nature, morphologies and equivalent widths }}, doi = {10.1093/mnras/stx1712}, volume = {471}, year = {2017}, } @article{11564, abstract = {We study the production rate of ionizing photons of a sample of 588 Hα emitters (HAEs) and 160 Lyman-α emitters (LAEs) at z = 2.2 in the COSMOS field in order to assess the implied emissivity from galaxies, based on their ultraviolet (UV) luminosity. By exploring the rest-frame Lyman Continuum (LyC) with GALEX/NUV data, we find fesc < 2.8 (6.4) per cent through median (mean) stacking. By combining the Hα luminosity density with intergalactic medium emissivity measurements from absorption studies, we find a globally averaged 〈fesc〉 of 5.9+14.5−4.2 per cent at z = 2.2 if we assume HAEs are the only source of ionizing photons. We find similarly low values of the global 〈fesc〉 at z ≈ 3–5, also ruling out a high 〈fesc〉 at z < 5. These low escape fractions allow us to measure ξion, the number of produced ionizing photons per unit UV luminosity, and investigate how this depends on galaxy properties. We find a typical ξion ≈ 1024.77 ± 0.04 Hz erg−1 for HAEs and ξion ≈ 1025.14 ± 0.09 Hz erg−1 for LAEs. LAEs and low-mass HAEs at z = 2.2 show similar values of ξion as typically assumed in the reionization era, while the typical HAE is three times less ionizing. Due to an increasing ξion with increasing EW(Hα), ξion likely increases with redshift. This evolution alone is fully in line with the observed evolution of ξion between z ≈ 2 and 5, indicating a typical value of ξion ≈ 1025.4 Hz erg−1 in the reionization era.}, author = {Matthee, Jorryt J and Sobral, David and Best, Philip and Khostovan, Ali Ahmad and Oteo, Iván and Bouwens, Rychard and Röttgering, Huub}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics, galaxies: evolution, galaxies: high-redshift, cosmology: observations, dark ages, reionization, first stars}, number = {3}, pages = {3637--3655}, publisher = {Oxford University Press}, title = {{The production and escape of Lyman-Continuum radiation from star-forming galaxies at z ∼ 2 and their redshift evolution}}, doi = {10.1093/mnras/stw2973}, volume = {465}, year = {2017}, } @article{11567, abstract = {Recently, the C III] and C IV emission lines have been observed in galaxies in the early Universe (z > 5), providing new ways to measure their redshift and study their stellar populations and active galactic nuclei (AGN). We explore the first blind C II], C III] and C IV survey (z ∼ 0.68, 1.05, 1.53, respectively) presented in Stroe et al. (2017). We derive luminosity functions (LF) and study properties of C II], C III] and C IV line emitters through comparisons to the LFs of H α and Ly α emitters, UV selected star-forming (SF) galaxies and quasars at similar redshifts. The C II] LF at z ∼ 0.68 is equally well described by a Schechter or a power-law LF, characteristic of a mixture of SF and AGN activity. The C III] LF (z ∼ 1.05) is consistent to a scaled down version of the Schechter H α and Ly α LF at their redshift, indicating a SF origin. In stark contrast, the C IV LF at z ∼ 1.53 is well fit by a power-law, quasar-like LF. We find that the brightest UV sources (MUV < −22) will universally have C III] and C IV emission. However, on average, C III] and C IV are not as abundant as H α or Ly α emitters at the same redshift, with cosmic average ratios of ∼0.02–0.06 to H α and ∼0.01–0.1 to intrinsic Ly α. We predict that the C III] and C IV lines can only be truly competitive in confirming high-redshift candidates when the hosts are intrinsically bright and the effective Ly α escape fraction is below 1 per cent. While C III] and C IV were proposed as good tracers of young, relatively low-metallicity galaxies typical of the early Universe, we find that, at least at z ∼ 1.5, C IV is exclusively hosted by AGN/quasars, especially at large line equivalent widths.}, author = {Stroe, Andra and Sobral, David and Matthee, Jorryt J and Calhau, João and Oteo, Ivan}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics, galaxies: active, galaxies: high redshift, galaxies: luminosity function, mass function, quasars: emission lines, star formation, cosmology: observations}, number = {3}, pages = {2575--2586}, publisher = {Oxford University Press}, title = {{A 1.4 deg2 blind survey for C II], C III] and C IV at z ∼ 0.7–1.5 – II. Luminosity functions and cosmic average line ratios}}, doi = {10.1093/mnras/stx1713}, volume = {471}, year = {2017}, } @article{11565, abstract = {We use the hydrodynamical EAGLE simulation to study the magnitude and origin of the scatter in the stellar mass–halo mass relation for central galaxies. We separate cause and effect by correlating stellar masses in the baryonic simulation with halo properties in a matched dark matter only (DMO) simulation. The scatter in stellar mass increases with redshift and decreases with halo mass. At z = 0.1, it declines from 0.25 dex at M200, DMO ≈ 1011 M⊙ to 0.12 dex at M200, DMO ≈ 1013 M⊙, but the trend is weak above 1012 M⊙. For M200, DMO < 1012.5 M⊙ up to 0.04 dex of the scatter is due to scatter in the halo concentration. At fixed halo mass, a larger stellar mass corresponds to a more concentrated halo. This is likely because higher concentrations imply earlier formation times and hence more time for accretion and star formation, and/or because feedback is less efficient in haloes with higher binding energies. The maximum circular velocity, Vmax, DMO, and binding energy are therefore more fundamental properties than halo mass, meaning that they are more accurate predictors of stellar mass, and we provide fitting formulae for their relations with stellar mass. However, concentration alone cannot explain the total scatter in the Mstar−M200,DMO relation, and it does not explain the scatter in Mstar–Vmax, DMO. Halo spin, sphericity, triaxiality, substructure and environment are also not responsible for the remaining scatter, which thus could be due to more complex halo properties or non-linear/stochastic baryonic effects.}, author = {Matthee, Jorryt J and Schaye, Joop and Crain, Robert A. and Schaller, Matthieu and Bower, Richard and Theuns, Tom}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics, galaxies: evolution, galaxies: formation, galaxies: haloes, cosmology: theory}, number = {2}, pages = {2381--2396}, publisher = {Oxford University Press}, title = {{The origin of scatter in the stellar mass–halo mass relation of central galaxies in the EAGLE simulation}}, doi = {10.1093/mnras/stw2884}, volume = {465}, year = {2017}, } @article{11561, abstract = {We present a sample of ∼1000 emission-line galaxies at z = 0.4–4.7 from the ∼0.7deg2 High-z Emission-Line Survey in the Boötes field identified with a suite of six narrow-band filters at ≈0.4–2.1 μm. These galaxies have been selected on their Ly α (73), [O II] (285), H β/[O III] (387) or H α (362) emission line, and have been classified with optical to near-infrared colours. A subsample of 98 sources have reliable redshifts from multiple narrow-band (e.g. [O II]–H α) detections and/or spectroscopy. In this survey paper, we present the observations, selection and catalogues of emitters. We measure number densities of Ly α, [O II], H β/[O III] and H α and confirm strong luminosity evolution in star-forming galaxies from z ∼ 0.4 to ∼5, in agreement with previous results. To demonstrate the usefulness of dual-line emitters, we use the sample of dual [O II]–H α emitters to measure the observed [O II]/H α ratio at z = 1.47. The observed [O II]/H α ratio increases significantly from 0.40 ± 0.01 at z = 0.1 to 0.52 ± 0.05 at z = 1.47, which we attribute to either decreasing dust attenuation with redshift, or due to a bias in the (typically) fibre measurements in the local Universe that only measure the central kpc regions. At the bright end, we find that both the H α and Ly α number densities at z ≈ 2.2 deviate significantly from a Schechter form, following a power law. We show that this is driven entirely by an increasing X-ray/active galactic nucleus fraction with line luminosity, which reaches ≈100 per cent at line luminosities L ≳ 3 × 1044 erg s−1.}, author = {Matthee, Jorryt J and Sobral, David and Best, Philip and Smail, Ian and Bian, Fuyan and Darvish, Behnam and Röttgering, Huub and Fan, Xiaohui}, issn = {0035-8711}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics galaxies, active, galaxies, evolution, galaxies, high-redshift, galaxies, luminosity function, mass function, galaxies: star formation}, number = {1}, pages = {629--649}, publisher = {Oxford University Press}, title = {{Boötes-HiZELS: An optical to near-infrared survey of emission-line galaxies at z = 0.4–4.7}}, doi = {10.1093/mnras/stx1569}, volume = {471}, year = {2017}, } @article{11572, abstract = {We present spectroscopic follow-up of candidate luminous Ly α emitters (LAEs) at z = 5.7–6.6 in the SA22 field with VLT/X-SHOOTER. We confirm two new luminous LAEs at z = 5.676 (SR6) and z = 6.532 (VR7), and also present HST follow-up of both sources. These sources have luminosities LLy α ≈ 3 × 1043 erg s−1, very high rest-frame equivalent widths of EW0 ≳ 200 Å and narrow Ly α lines (200–340 km s−1). VR7 is the most UV-luminous LAE at z > 6.5, with M1500 = −22.5, even brighter in the UV than CR7. Besides Ly α, we do not detect any other rest-frame UV lines in the spectra of SR6 and VR7, and argue that rest-frame UV lines are easier to observe in bright galaxies with low Ly α equivalent widths. We confirm that Ly α line widths increase with Ly α luminosity at z = 5.7, while there are indications that Ly α lines of faint LAEs become broader at z = 6.6, potentially due to reionization. We find a large spread of up to 3 dex in UV luminosity for >L⋆ LAEs, but find that the Ly α luminosity of the brightest LAEs is strongly related to UV luminosity at z = 6.6. Under basic assumptions, we find that several LAEs at z ≈ 6–7 have Ly α escape fractions ≳ 100  per cent, indicating bursty star formation histories, alternative Ly α production mechanisms, or dust attenuating Ly α emission differently than UV emission. Finally, we present a method to compute ξion, the production efficiency of ionizing photons, and find that LAEs at z ≈ 6–7 have high values of log10(ξion/Hz erg−1) ≈ 25.51 ± 0.09 that may alleviate the need for high Lyman-Continuum escape fractions required for reionization.}, author = {Matthee, Jorryt J and Sobral, David and Darvish, Behnam and Santos, Sérgio and Mobasher, Bahram and Paulino-Afonso, Ana and Röttgering, Huub and Alegre, Lara}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics, galaxies: evolution – galaxies: high-redshift, dark ages, reionization, first stars, cosmology: observations}, number = {1}, pages = {772--787}, publisher = {Oxford University Press}, title = {{Spectroscopic properties of luminous Ly α emitters at z ≈ 6–7 and comparison to the Lyman-break population}}, doi = {10.1093/mnras/stx2061}, volume = {472}, year = {2017}, } @article{11573, abstract = {We present dynamical measurements from the KMOS (K-band multi-object spectrograph) Deep Survey (KDS), which comprises 77 typical star-forming galaxies at z ≃ 3.5 in the mass range 9.0 < log (M⋆/M⊙) < 10.5. These measurements constrain the internal dynamics, the intrinsic velocity dispersions (σint) and rotation velocities (VC) of galaxies in the high-redshift Universe. The mean velocity dispersion of the galaxies in our sample is σint=70.8+3.3−3.1kms−1⁠, revealing that the increasing average σint with increasing redshift, reported for z ≲ 2, continues out to z ≃ 3.5. Only 36 ± 8 per cent of our galaxies are rotation-dominated (VC/σint > 1), with the sample average VC/σint value much smaller than at lower redshift. After carefully selecting comparable star-forming samples at multiple epochs, we find that the rotation-dominated fraction evolves with redshift with a z−0.2 dependence. The rotation-dominated KDS galaxies show no clear offset from the local rotation velocity–stellar mass (i.e. VC–M⋆) relation, although a smaller fraction of the galaxies are on the relation due to the increase in the dispersion-dominated fraction. These observations are consistent with a simple equilibrium model picture, in which random motions are boosted in high-redshift galaxies by a combination of the increasing gas fractions, accretion efficiency, specific star formation rate and stellar feedback and which may provide significant pressure support against gravity on the galactic disc scale.}, author = {Turner, O. J. and Cirasuolo, M. and Harrison, C. M. and McLure, R. J. and Dunlop, J. S. and Swinbank, A. M. and Johnson, H. L. and Sobral, D. and Matthee, Jorryt J and Sharples, R. M.}, issn = {1365-2966}, journal = {Monthly Notices of the Royal Astronomical Society}, keywords = {Space and Planetary Science, Astronomy and Astrophysics, galaxies: evolution, galaxies: high-redshift, galaxies: kinematics and dynamics}, number = {2}, pages = {1280--1320}, publisher = {Oxford University Press}, title = {{The KMOS Deep Survey (KDS) – I. Dynamical measurements of typical star-forming galaxies at z ≃ 3.5}}, doi = {10.1093/mnras/stx1366}, volume = {471}, year = {2017}, } @unpublished{11633, abstract = {Our understanding of stars through asteroseismic data analysis is limited by our ability to take advantage of the huge amount of observed stars provided by space missions such as CoRoT, Kepler , K2, and soon TESS and PLATO. Global seismic pipelines provide global stellar parameters such as mass and radius using the mean seismic parameters, as well as the effective temperature. These pipelines are commonly used automatically on thousands of stars observed by K2 for 3 months (and soon TESS for at least ∼ 1 month). However, pipelines are not immune from misidentifying noise peaks and stellar oscillations. Therefore, new validation techniques are required to assess the quality of these results. We present a new metric called FliPer (Flicker in Power), which takes into account the average variability at all measured time scales. The proper calibration of FliPer enables us to obtain good estimations of global stellar parameters such as surface gravity that are robust against the influence of noise peaks and hence are an excellent way to find faults in asteroseismic pipelines.}, author = {Bugnet, Lisa Annabelle and Garcia, R. A. and Davies, G. R. and Mathur, S. and Corsaro, E.}, booktitle = {arXiv}, keywords = {asteroseismology - methods, data analysis - stars, oscillations}, title = {{FliPer: Checking the reliability of global seismic parameters from automatic pipelines}}, doi = {10.48550/arXiv.1711.02890}, year = {2017}, } @inproceedings{11651, abstract = {Diffusions and related random walk procedures are of central importance in many areas of machine learning, data analysis, and applied mathematics. Because they spread mass agnostically at each step in an iterative manner, they can sometimes spread mass “too aggressively,” thereby failing to find the “right” clusters. We introduce a novel Capacity Releasing Diffusion (CRD) Process, which is both faster and stays more local than the classical spectral diffusion process. As an application, we use our CRD Process to develop an improved local algorithm for graph clustering. Our local graph clustering method can find local clusters in a model of clustering where one begins the CRD Process in a cluster whose vertices are connected better internally than externally by an O(log2n) factor, where n is the number of nodes in the cluster. Thus, our CRD Process is the first local graph clustering algorithm that is not subject to the well-known quadratic Cheeger barrier. Our result requires a certain smoothness condition, which we expect to be an artifact of our analysis. Our empirical evaluation demonstrates improved results, in particular for realistic social graphs where there are moderately good—but not very good—clusters.}, author = {Wang, Di and Fountoulakis, Kimon and Henzinger, Monika H and Mahoney, Michael W. and Rao , Satish}, booktitle = {Proceedings of the 34th International Conference on Machine Learning}, issn = {2640-3498}, location = {Sydney, Australia}, pages = {3598--3607}, publisher = {ML Research Press}, title = {{Capacity releasing diffusion for speed and locality}}, volume = {70}, year = {2017}, } @article{11665, abstract = {We study the problem of maintaining a breadth-first spanning tree (BFS tree) in partially dynamic distributed networks modeling a sequence of either failures or additions of communication links (but not both). We present deterministic (1+ϵ)-approximation algorithms whose amortized time (over some number of link changes) is sublinear in D, the maximum diameter of the network. Our technique also leads to a deterministic (1+ϵ)-approximate incremental algorithm for single-source shortest paths in the sequential (usual RAM) model. Prior to our work, the state of the art was the classic exact algorithm of Even and Shiloach (1981), which is optimal under some assumptions (Roditty and Zwick 2011; Henzinger et al. 2015). Our result is the first to show that, in the incremental setting, this bound can be beaten in certain cases if some approximation is allowed.}, author = {Henzinger, Monika H and Krinninger, Sebastian and Nanongkai, Danupon}, issn = {1549-6333}, journal = {ACM Transactions on Algorithms}, number = {4}, publisher = {Association for Computing Machinery}, title = {{Sublinear-time maintenance of breadth-first spanning trees in partially dynamic networks}}, doi = {10.1145/3146550}, volume = {13}, year = {2017}, } @article{11676, abstract = {We study the problem of maximizing a monotone submodular function with viability constraints. This problem originates from computational biology, where we are given a phylogenetic tree over a set of species and a directed graph, the so-called food web, encoding viability constraints between these species. These food webs usually have constant depth. The goal is to select a subset of k species that satisfies the viability constraints and has maximal phylogenetic diversity. As this problem is known to be NP-hard, we investigate approximation algorithms. We present the first constant factor approximation algorithm if the depth is constant. Its approximation ratio is (1−1e√). This algorithm not only applies to phylogenetic trees with viability constraints but for arbitrary monotone submodular set functions with viability constraints. Second, we show that there is no (1−1/e+ϵ)-approximation algorithm for our problem setting (even for additive functions) and that there is no approximation algorithm for a slight extension of this setting.}, author = {Dvořák, Wolfgang and Henzinger, Monika H and Williamson, David P.}, issn = {1432-0541}, journal = {Algorithmica}, keywords = {Approximation algorithms, Submodular functions, Phylogenetic diversity, Viability constraints}, number = {1}, pages = {152--172}, publisher = {Springer Nature}, title = {{Maximizing a submodular function with viability constraints}}, doi = {10.1007/s00453-015-0066-y}, volume = {77}, year = {2017}, } @inproceedings{1175, abstract = {We study space complexity and time-space trade-offs with a focus not on peak memory usage but on overall memory consumption throughout the computation. Such a cumulative space measure was introduced for the computational model of parallel black pebbling by [Alwen and Serbinenko ’15] as a tool for obtaining results in cryptography. We consider instead the non- deterministic black-white pebble game and prove optimal cumulative space lower bounds and trade-offs, where in order to minimize pebbling time the space has to remain large during a significant fraction of the pebbling. We also initiate the study of cumulative space in proof complexity, an area where other space complexity measures have been extensively studied during the last 10–15 years. Using and extending the connection between proof complexity and pebble games in [Ben-Sasson and Nordström ’08, ’11] we obtain several strong cumulative space results for (even parallel versions of) the resolution proof system, and outline some possible future directions of study of this, in our opinion, natural and interesting space measure.}, author = {Alwen, Joel F and De Rezende, Susanna and Nordstrom, Jakob and Vinyals, Marc}, editor = {Papadimitriou, Christos}, issn = {18688969}, location = {Berkeley, CA, United States}, pages = {38:1--38--21}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Cumulative space in black-white pebbling and resolution}}, doi = {10.4230/LIPIcs.ITCS.2017.38}, volume = {67}, year = {2017}, }