@unpublished{573,
abstract = {Mitchison and Jozsa recently suggested that the "chained-Zeno" counterfactual computation protocol recently proposed by Hosten et al. is counterfactual for only one output of the computer. This claim was based on the existing abstract algebraic definition of counterfactual computation, and indeed according to this definition, their argument is correct. However, a more general definition (physically adequate) for counterfactual computation is implicitly assumed by Hosten et. al. Here we explain in detail why the protocol is counterfactual and how the "history tracking" method of the existing description inadequately represents the physics underlying the protocol. Consequently, we propose a modified definition of counterfactual computation. Finally, we comment on one of the most interesting aspects of the error-correcting protocol. },
author = {Hosten, Onur and Rakher, Matthew and Barreiro, Julio and Peters, Nicholas and Kwiat, Paul},
pages = {12},
publisher = {ArXiv},
title = {{Counterfactual computation revisited}},
year = {2006},
}
@unpublished{574,
abstract = {Vaidman, in a recent article adopts the method of 'quantum weak measurements in pre- and postselected ensembles' to ascertain whether or not the chained-Zeno counterfactual computation scheme proposed by Hosten et al. is counterfactual; which has been the topic of a debate on the definition of counterfactuality. We disagree with his conclusion, which brings up some interesting aspects of quantum weak measurements and some concerns about the way they are interpreted. },
author = {Hosten, Onur and Kwiat, Paul},
pages = {2},
publisher = {ArXiv},
title = {{Weak measurements and counterfactual computation}},
year = {2006},
}
@article{6151,
author = {Salecker, Iris and Häusser, Michael and de Bono, Mario},
issn = {1469-221X},
journal = {EMBO reports},
number = {6},
pages = {585--589},
publisher = {Wiley},
title = {{On the axonal road to circuit function and behaviour: Workshop on the assembly and function of neuronal circuits}},
doi = {10.1038/sj.embor.7400713},
volume = {7},
year = {2006},
}
@article{1461,
abstract = {This note proves combinatorially that the intersection pairing on the middle-dimensional compactly supported cohomology of a toric hyperkähler variety is always definite, providing a large number of non-trivial L 2 harmonic forms for toric hyperkähler metrics on these varieties. This is motivated by a result of Hitchin about the definiteness of the pairing of L 2 harmonic forms on complete hyperkähler manifolds of linear growth.},
author = {Tamas Hausel and Swartz, Edward},
journal = {Proceedings of the American Mathematical Society},
number = {8},
pages = {2403 -- 2409},
publisher = {American Mathematical Society},
title = {{Intersection forms of toric hyperkähler varieties}},
doi = {10.1090/S0002-9939-06-08248-7},
volume = {134},
year = {2006},
}
@article{1462,
abstract = {A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas of Poincaré polynomials of toric hyperkähler varieties (recovering results of Bielawski-Dancer and Hausel-Sturmfels), Poincaré polynomials of Hubert schemes of points and twisted Atiyah-Drinfeld-Hitchin-Manin (ADHM) spaces of instantons on ℂ2 (recovering results of Nakajima-Yoshioka), and Poincaré polynomials of all Nakajima quiver varieties. As an application, a proof of a conjecture of Kac on the number of absolutely indecomposable representations of a quiver is announced.},
author = {Tamas Hausel},
journal = {PNAS},
number = {16},
pages = {6120 -- 6124},
publisher = {National Academy of Sciences},
title = {{Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform}},
doi = {10.1073/pnas.0601337103},
volume = {103},
year = {2006},
}
@article{1033,
abstract = {Systems of three interacting particles are notorious for their complex physical behaviour. A landmark theoretical result in few-body quantum physics is Efimov\'s prediction1,2 of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov\'s problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics3-8. However, the observation of Efimov quantum states has remained an elusive goal3,5. Here we report the observation of an Efimov resonance in an ultracold gas of caesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss9,10 when the strength of the two-body interaction is varied. We also detect a minimum 9,11,12 in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems7. While Feshbach resonances13,14 have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter15 to the world of few-body quantum phenomena.},
author = {Kraemer, Tobias and Mark, Michael and Waldburger, Philipp and Danzl, Johann G and Chin, Cheng and Engeser, Bastian and Lange, Adam and Pilch, Karl and Jaakkola, Antti and Nägerl, Hanns and Grimm, Rudolf},
journal = {Nature},
number = {7082},
pages = {315 -- 318},
publisher = {Nature Publishing Group},
title = {{Evidence for Efimov quantum states in an ultracold gas of caesium atoms}},
doi = {10.1038/nature04626},
volume = {440},
year = {2006},
}
@inproceedings{1034,
abstract = {Three interacting particles form a system which is well known for its complex physical behavior. A landmark theoretical result in few-body quantum physics is Efimov\'s prediction of a universal set of weakly bound trimer states appearing for three identical bosons with a resonant two-body interaction [1, 2]. Surprisingly, these states even exist in the absence of a corresponding two-body bound state and their precise nature is largely independent of the particular type of the two-body interaction potential. Efimov\'s scenario has attracted great interest in many areas of physics; an experimental test however has not been achieved. We report the observation of an Efimov resonance in an ultracold thermal gas of cesium atoms [3]. The resonance occurs in the range of large negative two-body scattering lengths and arises from the coupling of three free atoms to an Efimov trimer. We observe its signature as a giant three-body recombination loss when the strength of the two-body interaction is varied near a Feshbach resonance. This resonance develops into a continuum resonance at non-zero collision energies, and we observe a shift of the resonance position as a function of temperature. We also report on a minimum in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point from which to explore the universal properties of resonantly interacting few-body systems.},
author = {Nägerl, Hanns and Kraemer, Tobias and Mark, Michael and Waldburger, Philipp and Danzl, Johann G and Engeser, Bastian and Lange, Adam and Pilch, Karl and Jaakkola, Antti and Chin, Cheng and Grimm, Rudolf},
pages = {269 -- 277},
publisher = {AIP},
title = {{Experimental evidence for Efimov quantum states}},
doi = {10.1063/1.2400657},
volume = {869},
year = {2006},
}
@article{3755,
abstract = {A primitive example of adaptation in gene expression is the balance between the rate of synthesis and degradation of cellular RNA, which allows rapid responses to environmental signals. Here, we investigate how multidrug efflux pump systems mediate the dynamics of a simple drug-inducible system in response to a steady level of inducer. Using fluorescence correlation spectroscopy, we measured in real time within a single bacterium the transcription activity at the RNA level of the acrAB-TolC multidrug efflux pump system. When cells are exposed to constant level of anhydrotetracycline inducer and are adsorbed onto a poly-L-lysine-coated surface, we found that the acrAB-TolC promoter is steadily active. We also monitored the activity of the tet promoter to characterize the effect of this efflux system on the dynamics of drug-inducible transcription. We found that the transcriptional response of the tet promoter to a steady level of aTc rises and then falls back to its preinduction level. The rate of RNA degradation was constant throughout the transcriptional pulse, indicating that the modulation of intracellular inducer concentration alone can produce this pulsating response. Single-cell experiments together with numerical simulations suggest that such pulsating response in drug-inducible genetic systems is a property emerging from the dependence of drug-inducible transcription on multidrug efflux systems.},
author = {Le,Thuc T. and Emonet,Thierry and Harlepp, Sébastien and Calin Guet and Cluzel,Philippe},
journal = {Biophysical Journal},
number = {9},
pages = {3315 -- 3321},
publisher = {Biophysical Society},
title = {{Dynamical determinants of drug-inducible gene expression in a single bacterium}},
doi = {10.1529/biophysj.105.073353},
volume = {90},
year = {2006},
}
@article{3813,
abstract = {Hyperpolarization-activated channels (Ih or HCN channels) are widely expressed in principal neurons in the central nervous system. However, Ih in inhibitory GABAergic interneurons is less well characterized. We examined the functional properties of Ih in fast-spiking basket cells (BCs) of the dentate gyrus, using hippocampal slices from 17- to 21-day-old rats. Bath application of the Ih channel blocker ZD 7288 at a concentration of 30 microm induced a hyperpolarization of 5.7 +/- 1.5 mV, an increase in input resistance and a correlated increase in apparent membrane time constant. ZD 7288 blocked a hyperpolarization-activated current in a concentration-dependent manner (IC50, 1.4 microm). The effects of ZD 7288 were mimicked by external Cs+. The reversal potential of Ih was -27.4 mV, corresponding to a Na+ to K+ permeability ratio (PNa/PK) of 0.36. The midpoint potential of the activation curve of Ih was -83.9 mV, and the activation time constant at -120 mV was 190 ms. Single-cell expression analysis using reverse transcription followed by quantitative polymerase chain reaction revealed that BCs coexpress HCN1 and HCN2 subunit mRNA, suggesting the formation of heteromeric HCN1/2 channels. ZD 7288 increased the current threshold for evoking antidromic action potentials by extracellular stimulation, consistent with the expression of Ih in BC axons. Finally, ZD 7288 decreased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in hippocampal granule cells, the main target cells of BCs, to 70 +/- 4% of the control value. In contrast, the amplitude of mIPSCs was unchanged, consistent with the presence of Ih in inhibitory terminals. In conclusion, our results suggest that Ih channels are expressed in the somatodendritic region, axon and presynaptic elements of fast-spiking BCs in the hippocampus.},
author = {Aponte, Yexica and Lien, Cheng-Chang and Reisinger, Ellen and Peter Jonas},
journal = {Journal of Physiology},
number = {Pt 1},
pages = {229 -- 43},
publisher = {Wiley-Blackwell},
title = {{Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus}},
doi = {10.1113/jphysiol.2005.104042},
volume = {574},
year = {2006},
}
@article{4173,
abstract = {Background: Zebrafish (D. rerio) has become a powerful and widely used model system for the analysis of vertebrate embryogenesis and organ development. While genetic methods are readily available in zebrafish, protocols for two dimensional (2D) gel electrophoresis and proteomics have yet to be developed. Results: As a prerequisite to carry out proteomic experiments with early zebrafish embryos, we developed a method to efficiently remove the yolk from large batches of embryos. This method enabled high resolution 2D gel electrophoresis and improved Western blotting considerably. Here, we provide detailed protocols for proteomics in zebrafish from sample preparation to mass spectrometry (MS), including a comparison of databases for MS identification of zebrafish proteins. Conclusion: The provided protocols for proteomic analysis of early embryos enable research to be taken in novel directions in embryogenesis.},
author = {Link, Vinzenz and Shevchenko, Andrej and Heisenberg, Carl-Philipp J},
journal = {BMC Developmental Biology},
pages = {1 -- 9},
publisher = {BioMed Central},
title = {{Proteomics of early zebrafish embryos}},
doi = {10.1186/1471-213X-6-1},
volume = {6},
year = {2006},
}
@article{3009,
author = {Paciorek, Tomasz and Friml, Jirí},
journal = {Journal of Cell Science},
number = {7},
pages = {1199 -- 1202},
publisher = {Company of Biologists},
title = {{Auxin signaling}},
doi = {10.1242/jcs.02910},
volume = {119},
year = {2006},
}
@unpublished{3431,
abstract = {Ising models with pairwise interactions are the least structured, or maximum-entropy, probability distributions that exactly reproduce measured pairwise correlations between spins. Here we use this equivalence to construct Ising models that describe the correlated spiking activity of populations of 40 neurons in the retina, and show that pairwise interactions account for observed higher-order correlations. By first finding a representative ensemble for observed networks we can create synthetic networks of 120 neurons, and find that with increasing size the networks operate closer to a critical point and start exhibiting collective behaviors reminiscent of spin glasses.},
author = {Gasper Tkacik and Schneidman, E. and Berry, M. J. and Bialek, William S},
booktitle = {ArXiv},
pages = {1 -- 4},
publisher = {ArXiv},
title = {{Ising models for networks of real neurons}},
year = {2006},
}
@article{3695,
abstract = {We give an analytical and geometrical treatment of what it means to separate a Gaussian kernel along arbitrary axes in Ropfn, and we present a separation scheme that allows us to efficiently implement anisotropic Gaussian convolution filters for data of arbitrary dimensionality. Based on our previous analysis we show that this scheme is optimal with regard to the number of memory accesses and interpolation operations needed. The proposed method relies on nonorthogonal convolution axes and works completely in image space. Thus, it avoids the need for a fast Fourier transform (FFT)-subroutine. Depending on the accuracy and speed requirements, different interpolation schemes and methods to implement the one-dimensional Gaussian (finite impulse response and infinite impulse response) can be integrated. Special emphasis is put on analyzing the performance and accuracy of the new method. In particular, we show that without any special optimization of the source code, it can perform anisotropic Gaussian filtering faster than methods relying on the FFT.},
author = {Christoph Lampert and Wirjadi,Oliver},
journal = {IEEE Transactions on Image Processing (TIP)},
number = {11},
pages = {3501 -- 3513},
publisher = {IEEE},
title = {{An optimal non-orthogonal separation of the anisotropic Gaussian convolution filter}},
doi = { 10.1109/TIP.2006.877501 },
volume = {15},
year = {2006},
}
@book{2335,
abstract = {This book contains a unique survey of the mathematically rigorous results about the quantum-mechanical many-body problem that have been obtained by the authors in the past seven years. It addresses a topic that is not only rich mathematically, using a large variety of techniques in mathematical analysis, but is also one with strong ties to current experiments on ultra-cold Bose gases and Bose-Einstein condensation. The book provides a pedagogical entry into an active area of ongoing research for both graduate students and researchers. It is an outgrowth of a course given by the authors for graduate students and post-doctoral researchers at the Oberwolfach Research Institute in 2004. The book also provides a coherent summary of the field and a reference for mathematicians and physicists active in research on quantum mechanics.},
author = {Lieb, Élliott H and Robert Seiringer and Solovej, Jan P and Yngvason, Jakob},
booktitle = {The mathematics of the Bose gas and its condensation},
publisher = {Birkhäuser},
title = {{The mathematics of the Bose gas and its condensation}},
volume = {34},
year = {2005},
}
@inbook{2336,
abstract = {
Now that the low temperature properties of quantum-mechanical many-body systems (bosons) at low density, ρ, can be examined experimentally it is appropriate to revisit some of the formulas deduced by many authors 4–5 decades ago, and to explore new regimes not treated before. For systems with repulsive (i.e. positive) interaction potentials the experimental low temperature state and the ground state are effectively synonymous — and this fact is used in all modeling. In such cases, the leading term in the energy/particle is 2πħ2 aρ/m where a is the scattering length of the two-body potential. Owing to the delicate and peculiar nature of bosonic correlations (such as the strange N 7/5 law for charged bosons), four decades of research failed to establish this plausible formula rigorously. The only previous lower bound for the energy was found by Dyson in 1957, but it was 14 times too small. The correct asymptotic formula has been obtained by us and this work will be presented. The reason behind the mathematical difficulties will be emphasized. A different formula, postulated as late as 1971 by Schick, holds in two dimensions and this, too, will be shown to be correct. With the aid of the methodology developed to prove the lower bound for the homogeneous gas, several other problems have been successfully addressed. One is the proof by us that the Gross-Pitaevskii equation correctly describes the ground state in the ‘traps’ actually used in the experiments. For this system it is also possible to prove complete Bose condensation and superfluidity as we have shown. On the frontier of experimental developments is the possibility that a dilute gas in an elongated trap will behave like a one-dimensional system; we have proved this mathematically. Another topic is a proof that Foldy’s 1961 theory of a high density Bose gas of charged particles correctly describes its ground state energy; using this we can also prove the N 7/5 formula for the ground state energy of the two-component charged Bose gas proposed by Dyson in 1967. All of this is quite recent work and it is hoped that the mathematical methodology might be useful, ultimately, to solve more complex problems connected with these interesting systems.},
author = {Lieb, Élliott H and Robert Seiringer and Solovej, Jan P and Yngvason, Jakob},
booktitle = {Perspectives in Analysis},
editor = {Benedicks, Michael and Jones, Peter W and Smirnov, Stanislav and Winckler, Björn},
pages = {97 -- 183},
publisher = {Springer},
title = {{The quantum-mechanical many-body problem: The Bose gas}},
doi = {10.1007/3-540-30434-7_9},
volume = {27},
year = {2005},
}
@article{2359,
abstract = {The validity of substituting a c-number z for the k = 0 mode operator a0 is established rigorously in full generality, thereby verifying one aspect of Bogoliubov's 1947 theory. This substitution not only yields the correct value of thermodynamic quantities such as the pressure or ground state energy, but also the value of |z|2 that maximizes the partition function equals the true amount of condensation in the presence of a gauge-symmetry-breaking term. This point had previously been elusive.},
author = {Lieb, Élliott H and Robert Seiringer and Yngvason, Jakob},
journal = {Physical Review Letters},
number = {8},
publisher = {American Physical Society},
title = {{Justification of c-number substitutions in bosonic hamiltonians}},
doi = {10.1103/PhysRevLett.94.080401},
volume = {94},
year = {2005},
}
@article{2361,
abstract = {The strong subadditivity of entropy plays a key role in several areas of physics and mathematics. It states that the entropy S[±]=- Tr(Ï±lnÏ±) of a density matrix Ï±123 on the product of three Hilbert spaces satisfies S[Ï±123]- S[Ï±12]≤S[Ï±23]-S[Ï±2]. We strengthen this to S[Ï±123]-S[Ï±12] ≤αnα(S[Ï±23α]-S[Ï±2α]), where the nα are weights and the Ï±23α are partitions of Ï±23. Correspondingly, there is a strengthening of the theorem that the map A|Trexp[L+lnA] is concave. As applications we prove some monotonicity and convexity properties of the Wehrl coherent state entropy and entropy inequalities for quantum gases.},
author = {Lieb, Élliott H and Robert Seiringer},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {6},
publisher = {American Physical Society},
title = {{Stronger subadditivity of entropy}},
doi = {10.1103/PhysRevA.71.062329},
volume = {71},
year = {2005},
}
@article{2362,
abstract = {Recent developments in the physics of low-density trapped gases make it worthwhile to verify old, well-known results that, while plausible, were based on perturbation theory and assumptions about pseudopotentials. We use and extend recently developed techniques to give a rigorous derivation of the asymptotic formula for the ground-state energy of a dilute gas of N fermions interacting with a short-range, positive potential of scattering length a. For spin-12 fermions, this is E∼E0+(22m)2πNa, where E0 is the energy of the noninteracting system and is the density. A similar formula holds in two dimensions (2D), with a replaced by ln(a2). Obviously this 2D energy is not the expectation value of a density-independent pseudopotential.},
author = {Lieb, Élliott H and Robert Seiringer and Solovej, Jan P},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {5},
publisher = {American Physical Society},
title = {{Ground state energy of the low density Fermi gas}},
doi = {10.1103/PhysRevA.71.053605},
volume = {71},
year = {2005},
}
@article{2867,
abstract = {The plant hormone auxin elicits many specific context-dependent developmental responses. Auxin promotes degradation of Aux/IAA proteins that prevent transcription factors of the auxin response factor (ARF) family from regulating auxin-responsive target genes. Aux/IAAs and ARFs are represented by large gene families in Arabidopsis. Here we show that stabilization of BDL/IAA12 or its sister protein IAA13 prevents MP/ARF5-dependent embryonic root formation whereas stabilized SHY2/IAA3 interferes with seedling growth. Although both bdl and shy2-2 proteins inhibited MP/ARF5-dependent reporter gene activation, shy2-2 was much less efficient than bdl to interfere with embryonic root initiation when expressed from the BDL promoter. Similarly, MP was much more efficient than ARF16 in this process. When expressed from the SHY2 promoter, both shy2-2 and bdl inhibited cell elongation and auxin-induced gene expression in the seedling hypocotyl. By contrast, gravitropism and auxin-induced gene expression in the root, which were promoted by functionally redundant NPH4/ARF7 and ARF19 proteins, were inhibited by shy2-2, but not by bdl protein. Our results suggest that auxin signals are converted into specific responses by matching pairs of coexpressed ARF and Aux/IAA proteins.},
author = {Weijers, Dolf and Eva Benková and Jäger, Katja E and Schlereth, Alexandra and Hamann, Thorsten and Kientz, Marika and Wilmoth, Jill C and Reed, Jason W and Jürgens, Gerd},
journal = {EMBO Journal},
number = {10},
pages = {1874 -- 1885},
publisher = {Wiley-Blackwell},
title = {{Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators}},
doi = {10.1038/sj.emboj.7600659},
volume = {24},
year = {2005},
}
@article{8028,
abstract = {Transmission of signals within the brain is essential for cognitive function, but it is not clear how neural circuits support reliable and accurate signal propagation over a sufficiently large dynamic range. Two modes of propagation have been studied: synfire chains, in which synchronous activity travels through feedforward layers of a neuronal network, and the propagation of fluctuations in firing rate across these layers. In both cases, a sufficient amount of noise, which was added to previous models from an external source, had to be included to support stable propagation. Sparse, randomly connected networks of spiking model neurons can generate chaotic patterns of activity. We investigate whether this activity, which is a more realistic noise source, is sufficient to allow for signal transmission. We find that, for rate-coded signals but not for synfire chains, such networks support robust and accurate signal reproduction through up to six layers if appropriate adjustments are made in synaptic strengths. We investigate the factors affecting transmission and show that multiple signals can propagate simultaneously along different pathways. Using this feature, we show how different types of logic gates can arise within the architecture of the random network through the strengthening of specific synapses.},
author = {Vogels, Tim P and Abbott, L. F.},
issn = {0270-6474},
journal = {Journal of Neuroscience},
number = {46},
pages = {10786--10795},
publisher = {Society for Neuroscience},
title = {{Signal propagation and logic gating in networks of integrate-and-fire neurons}},
doi = {10.1523/jneurosci.3508-05.2005},
volume = {25},
year = {2005},
}