@article{6511, abstract = {Let U and V be two independent N by N random matrices that are distributed according to Haar measure on U(N). Let Σ be a nonnegative deterministic N by N matrix. The single ring theorem [Ann. of Math. (2) 174 (2011) 1189–1217] asserts that the empirical eigenvalue distribution of the matrix X:=UΣV∗ converges weakly, in the limit of large N, to a deterministic measure which is supported on a single ring centered at the origin in ℂ. Within the bulk regime, that is, in the interior of the single ring, we establish the convergence of the empirical eigenvalue distribution on the optimal local scale of order N−1/2+ε and establish the optimal convergence rate. The same results hold true when U and V are Haar distributed on O(N).}, author = {Bao, Zhigang and Erdös, László and Schnelli, Kevin}, issn = {00911798}, journal = {Annals of Probability}, number = {3}, pages = {1270--1334}, publisher = {Institute of Mathematical Statistics}, title = {{Local single ring theorem on optimal scale}}, doi = {10.1214/18-AOP1284}, volume = {47}, year = {2019}, } @article{6566, abstract = {Methodologies that involve the use of nanoparticles as “artificial atoms” to rationally build materials in a bottom-up fashion are particularly well-suited to control the matter at the nanoscale. Colloidal synthetic routes allow for an exquisite control over such “artificial atoms” in terms of size, shape, and crystal phase as well as core and surface compositions. We present here a bottom-up approach to produce Pb–Ag–K–S–Te nanocomposites, which is a highly promising system for thermoelectric energy conversion. First, we developed a high-yield and scalable colloidal synthesis route to uniform lead sulfide (PbS) nanorods, whose tips are made of silver sulfide (Ag2S). We then took advantage of the large surface-to-volume ratio to introduce a p-type dopant (K) by replacing native organic ligands with K2Te. Upon thermal consolidation, K2Te-surface modified PbS–Ag2S nanorods yield p-type doped nanocomposites with PbTe and PbS as major phases and Ag2S and Ag2Te as embedded nanoinclusions. Thermoelectric characterization of such consolidated nanosolids showed a high thermoelectric figure-of-merit of 1 at 620 K.}, author = {Ibáñez, Maria and Genç, Aziz and Hasler, Roger and Liu, Yu and Dobrozhan, Oleksandr and Nazarenko, Olga and Mata, María de la and Arbiol, Jordi and Cabot, Andreu and Kovalenko, Maksym V.}, issn = {1936-086X}, journal = {ACS Nano}, keywords = {colloidal nanoparticles, asymmetric nanoparticles, inorganic ligands, heterostructures, catalyst assisted growth, nanocomposites, thermoelectrics}, number = {6}, pages = {6572--6580}, publisher = {American Chemical Society}, title = {{Tuning transport properties in thermoelectric nanocomposites through inorganic ligands and heterostructured building blocks}}, doi = {10.1021/acsnano.9b00346}, volume = {13}, year = {2019}, } @article{6607, abstract = {Acute myeloid leukemia (AML) is a heterogeneous disease with respect to its genetic and molecular basis and to patients´ outcome. Clinical, cytogenetic, and mutational data are used to classify patients into risk groups with different survival, however, within-group heterogeneity is still an issue. Here, we used a robust likelihood-based survival modeling approach and publicly available gene expression data to identify a minimal number of genes whose combined expression values were prognostic of overall survival. The resulting gene expression signature (4-GES) consisted of 4 genes (SOCS2, IL2RA, NPDC1, PHGDH), predicted patient survival as an independent prognostic parameter in several cohorts of AML patients (total, 1272 patients), and further refined prognostication based on the European Leukemia Net classification. An oncogenic role of the top scoring gene in this signature, SOCS2, was investigated using MLL-AF9 and Flt3-ITD/NPM1c driven mouse models of AML. SOCS2 promoted leukemogenesis as well as the abundance, quiescence, and activity of AML stem cells. Overall, the 4-GES represents a highly discriminating prognostic parameter in AML, whose clinical applicability is greatly enhanced by its small number of genes. The newly established role of SOCS2 in leukemia aggressiveness and stemness raises the possibility that the signature might even be exploitable therapeutically.}, author = {Nguyen, Chi Huu and Glüxam, Tobias and Schlerka, Angela and Bauer, Katharina and Grandits, Alexander M. and Hackl, Hubert and Dovey, Oliver and Zöchbauer-Müller, Sabine and Cooper, Jonathan L. and Vassiliou, George S. and Stoiber, Dagmar and Wieser, Rotraud and Heller, Gerwin}, journal = {Scientific Reports}, number = {1}, publisher = {Nature Publishing Group}, title = {{SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness}}, doi = {10.1038/s41598-019-45579-0}, volume = {9}, year = {2019}, } @article{6609, abstract = {Mechanical systems facilitate the development of a hybrid quantum technology comprising electrical, optical, atomic and acoustic degrees of freedom1, and entanglement is essential to realize quantum-enabled devices. Continuous-variable entangled fields—known as Einstein–Podolsky–Rosen (EPR) states—are spatially separated two-mode squeezed states that can be used for quantum teleportation and quantum communication2. In the optical domain, EPR states are typically generated using nondegenerate optical amplifiers3, and at microwave frequencies Josephson circuits can serve as a nonlinear medium4,5,6. An outstanding goal is to deterministically generate and distribute entangled states with a mechanical oscillator, which requires a carefully arranged balance between excitation, cooling and dissipation in an ultralow noise environment. Here we observe stationary emission of path-entangled microwave radiation from a parametrically driven 30-micrometre-long silicon nanostring oscillator, squeezing the joint field operators of two thermal modes by 3.40 decibels below the vacuum level. The motion of this micromechanical system correlates up to 50 photons per second per hertz, giving rise to a quantum discord that is robust with respect to microwave noise7. Such generalized quantum correlations of separable states are important for quantum-enhanced detection8 and provide direct evidence of the non-classical nature of the mechanical oscillator without directly measuring its state9. This noninvasive measurement scheme allows to infer information about otherwise inaccessible objects, with potential implications for sensing, open-system dynamics and fundamental tests of quantum gravity. In the future, similar on-chip devices could be used to entangle subsystems on very different energy scales, such as microwave and optical photons.}, author = {Barzanjeh, Shabir and Redchenko, Elena and Peruzzo, Matilda and Wulf, Matthias and Lewis, Dylan and Arnold, Georg M and Fink, Johannes M}, journal = {Nature}, pages = {480--483}, publisher = {Nature Publishing Group}, title = {{Stationary entangled radiation from micromechanical motion}}, doi = {10.1038/s41586-019-1320-2}, volume = {570}, year = {2019}, } @article{6596, abstract = {It is well known that many problems in image recovery, signal processing, and machine learning can be modeled as finding zeros of the sum of maximal monotone and Lipschitz continuous monotone operators. Many papers have studied forward-backward splitting methods for finding zeros of the sum of two monotone operators in Hilbert spaces. Most of the proposed splitting methods in the literature have been proposed for the sum of maximal monotone and inverse-strongly monotone operators in Hilbert spaces. In this paper, we consider splitting methods for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators in Banach spaces. We obtain weak and strong convergence results for the zeros of the sum of maximal monotone and Lipschitz continuous monotone operators in Banach spaces. Many already studied problems in the literature can be considered as special cases of this paper.}, author = {Shehu, Yekini}, issn = {1420-9012}, journal = {Results in Mathematics}, number = {4}, publisher = {Springer}, title = {{Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces}}, doi = {10.1007/s00025-019-1061-4}, volume = {74}, year = {2019}, } @article{6601, abstract = {There is increasing evidence that both mechanical and biochemical signals play important roles in development and disease. The development of complex organisms, in particular, has been proposed to rely on the feedback between mechanical and biochemical patterning events. This feedback occurs at the molecular level via mechanosensation but can also arise as an emergent property of the system at the cellular and tissue level. In recent years, dynamic changes in tissue geometry, flow, rheology, and cell fate specification have emerged as key platforms of mechanochemical feedback loops in multiple processes. Here, we review recent experimental and theoretical advances in understanding how these feedbacks function in development and disease.}, author = {Hannezo, Edouard B and Heisenberg, Carl-Philipp J}, issn = {00928674}, journal = {Cell}, number = {1}, pages = {12--25}, publisher = {Elsevier}, title = {{Mechanochemical feedback loops in development and disease}}, doi = {10.1016/j.cell.2019.05.052}, volume = {178}, year = {2019}, } @article{6617, abstract = {The effective large-scale properties of materials with random heterogeneities on a small scale are typically determined by the method of representative volumes: a sample of the random material is chosen—the representative volume—and its effective properties are computed by the cell formula. Intuitively, for a fixed sample size it should be possible to increase the accuracy of the method by choosing a material sample which captures the statistical properties of the material particularly well; for example, for a composite material consisting of two constituents, one would select a representative volume in which the volume fraction of the constituents matches closely with their volume fraction in the overall material. Inspired by similar attempts in materials science, Le Bris, Legoll and Minvielle have designed a selection approach for representative volumes which performs remarkably well in numerical examples of linear materials with moderate contrast. In the present work, we provide a rigorous analysis of this selection approach for representative volumes in the context of stochastic homogenization of linear elliptic equations. In particular, we prove that the method essentially never performs worse than a random selection of the material sample and may perform much better if the selection criterion for the material samples is chosen suitably.}, author = {Fischer, Julian L}, issn = {1432-0673}, journal = {Archive for Rational Mechanics and Analysis}, number = {2}, pages = {635–726}, publisher = {Springer}, title = {{The choice of representative volumes in the approximation of effective properties of random materials}}, doi = {10.1007/s00205-019-01400-w}, volume = {234}, year = {2019}, } @article{6611, abstract = {Cell polarity is crucial for the coordinated development of all multicellular organisms. In plants, this is exemplified by the PIN-FORMED (PIN) efflux carriers of the phytohormone auxin: The polar subcellular localization of the PINs is instructive to the directional intercellular auxin transport, and thus to a plethora of auxin-regulated growth and developmental processes. Despite its importance, the regulation of PIN polar subcellular localization remains poorly understood. Here, we have employed advanced live-cell imaging techniques to study the roles of microtubules and actin microfilaments in the establishment of apical polar localization of PIN2 in the epidermis of the Arabidopsis root meristem. We report that apical PIN2 polarity requires neither intact actin microfilaments nor microtubules, suggesting that the primary spatial cue for polar PIN distribution is likely independent of cytoskeleton-guided endomembrane trafficking.}, author = {Glanc, Matous and Fendrych, Matyas and Friml, Jiří}, journal = {Biomolecules}, number = {6}, publisher = {MDPI}, title = {{PIN2 polarity establishment in arabidopsis in the absence of an intact cytoskeleton}}, doi = {10.3390/biom9060222}, volume = {9}, year = {2019}, } @article{6620, abstract = {This paper establishes an asymptotic formula with a power-saving error term for the number of rational points of bounded height on the singular cubic surface of ℙ3ℚ given by the following equation 𝑥0(𝑥21+𝑥22)−𝑥33=0 in agreement with the Manin-Peyre conjectures. }, author = {De La Bretèche, Régis and Destagnol, Kevin N and Liu, Jianya and Wu, Jie and Zhao, Yongqiang}, issn = {16747283}, journal = {Science China Mathematics}, number = {12}, pages = {2435–2446}, publisher = {Springer}, title = {{On a certain non-split cubic surface}}, doi = {10.1007/s11425-018-9543-8}, volume = {62}, year = {2019}, } @article{6637, abstract = {The environment changes constantly at various time scales and, in order to survive, species need to keep adapting. Whether these species succeed in avoiding extinction is a major evolutionary question. Using a multilocus evolutionary model of a mutation‐limited population adapting under strong selection, we investigate the effects of the frequency of environmental fluctuations on adaptation. Our results rely on an “adaptive‐walk” approximation and use mathematical methods from evolutionary computation theory to investigate the interplay between fluctuation frequency, the similarity of environments, and the number of loci contributing to adaptation. First, we assume a linear additive fitness function, but later generalize our results to include several types of epistasis. We show that frequent environmental changes prevent populations from reaching a fitness peak, but they may also prevent the large fitness loss that occurs after a single environmental change. Thus, the population can survive, although not thrive, in a wide range of conditions. Furthermore, we show that in a frequently changing environment, the similarity of threats that a population faces affects the level of adaptation that it is able to achieve. We check and supplement our analytical results with simulations.}, author = {Trubenova, Barbora and Krejca, Martin and Lehre, Per Kristian and Kötzing, Timo}, journal = {Evolution}, number = {7}, pages = {1356--1374}, publisher = {Wiley}, title = {{Surfing on the seascape: Adaptation in a changing environment}}, doi = {10.1111/evo.13784}, volume = {73}, year = {2019}, } @article{6634, abstract = {In this paper we prove several new results around Gromov's waist theorem. We give a simple proof of Vaaler's theorem on sections of the unit cube using the Borsuk-Ulam-Crofton technique, consider waists of real and complex projective spaces, flat tori, convex bodies in Euclidean space; and establish waist-type results in terms of the Hausdorff measure.}, author = {Akopyan, Arseniy and Hubard, Alfredo and Karasev, Roman}, journal = {Topological Methods in Nonlinear Analysis}, number = {2}, pages = {457--490}, publisher = {Akademicka Platforma Czasopism}, title = {{Lower and upper bounds for the waists of different spaces}}, doi = {10.12775/TMNA.2019.008}, volume = {53}, year = {2019}, } @article{6638, abstract = {The crossing number of a graph G is the least number of crossings over all possible drawings of G. We present a structural characterization of graphs with crossing number one.}, author = {Silva, André and Arroyo Guevara, Alan M and Richter, Bruce and Lee, Orlando}, issn = {0012-365X}, journal = {Discrete Mathematics}, number = {11}, pages = {3201--3207}, publisher = {Elsevier}, title = {{Graphs with at most one crossing}}, doi = {10.1016/j.disc.2019.06.031}, volume = {342}, year = {2019}, } @article{6660, abstract = {Commercially available full-color 3D printing allows for detailed control of material deposition in a volume, but an exact reproduction of a target surface appearance is hampered by the strong subsurface scattering that causes nontrivial volumetric cross-talk at the print surface. Previous work showed how an iterative optimization scheme based on accumulating absorptive materials at the surface can be used to find a volumetric distribution of print materials that closely approximates a given target appearance. In this work, we first revisit the assumption that pushing the absorptive materials to the surface results in minimal volumetric cross-talk. We design a full-fledged optimization on a small domain for this task and confirm this previously reported heuristic. Then, we extend the above approach that is critically limited to color reproduction on planar surfaces, to arbitrary 3D shapes. Our method enables high-fidelity color texture reproduction on 3D prints by effectively compensating for internal light scattering within arbitrarily shaped objects. In addition, we propose a content-aware gamut mapping that significantly improves color reproduction for the pathological case of thin geometric features. Using a wide range of sample objects with complex textures and geometries, we demonstrate color reproduction whose fidelity is superior to state-of-the-art drivers for color 3D printers.}, author = {Sumin, Denis and Weyrich, Tim and Rittig, Tobias and Babaei, Vahid and Nindel, Thomas and Wilkie, Alexander and Didyk, Piotr and Bickel, Bernd and Křivánek, Jaroslav and Myszkowski, Karol}, issn = {0730-0301}, journal = {ACM Transactions on Graphics}, number = {4}, publisher = {ACM}, title = {{Geometry-aware scattering compensation for 3D printing}}, doi = {10.1145/3306346.3322992}, volume = {38}, year = {2019}, } @article{6658, abstract = {New genes are a major source of novelties, and a disproportionate amount of them are known to show testis expression in later phases of male gametogenesis in different groups such as mammals and plants. Here, we propose that this enhanced expression is a consequence of haploid selection during the latter stages of male gametogenesis. Because emerging adaptive mutations will be fixed faster if their phenotypes are expressed by haploid rather than diploid genotypes, new genes with advantageous functions arising during this unique stage of development have a better chance to become fixed. To test this hypothesis, expression levels of genes of differing evolutionary age were examined at various stages of Drosophila spermatogenesis. We found, consistent with a model based on haploid selection, that new Drosophila genes are both expressed in later haploid phases of spermatogenesis and harbor a significant enrichment of adaptive mutations. Additionally, the observed overexpression of new genes in the latter phases of spermatogenesis was limited to the autosomes. Because all male cells exhibit hemizygous expression for X-linked genes (and therefore effectively haploid), there is no expectation that selection acting on late spermatogenesis will have a different effect on X-linked genes in comparison to initial diploid phases. Together, our proposed hypothesis and the analyzed data suggest that natural selection in haploid cells elucidates several aspects of the origin of new genes by explaining the general prevalence of their testis expression, and a parsimonious solution for new alleles to avoid being lost by genetic drift or pseudogenization. }, author = {Raices, Julia and Otto, Paulo and Vibranovski, Maria}, journal = {Genome Research}, number = {7}, pages = {1115--1122}, publisher = {CSH Press}, title = {{Haploid selection drives new gene male germline expression}}, doi = {10.1101/gr.238824.118}, volume = {29}, year = {2019}, } @article{6650, abstract = {We propose a novel technique for the automatic design of molds to cast highly complex shapes. The technique generates composite, two-piece molds. Each mold piece is made up of a hard plastic shell and a flexible silicone part. Thanks to the thin, soft, and smartly shaped silicone part, which is kept in place by a hard plastic shell, we can cast objects of unprecedented complexity. An innovative algorithm based on a volumetric analysis defines the layout of the internal cuts in the silicone mold part. Our approach can robustly handle thin protruding features and intertwined topologies that have caused previous methods to fail. We compare our results with state of the art techniques, and we demonstrate the casting of shapes with extremely complex geometry.}, author = {Alderighi, Thomas and Malomo, Luigi and Giorgi, Daniela and Bickel, Bernd and Cignoni, Paolo and Pietroni, Nico}, issn = {0730-0301}, journal = {ACM Transactions on Graphics}, number = {4}, publisher = {ACM}, title = {{Volume-aware design of composite molds}}, doi = {10.1145/3306346.3322981}, volume = {38}, year = {2019}, } @article{6717, abstract = {With the recent publication by Silpe and Bassler (2019), considering phage detection of a bacterial quorum-sensing (QS) autoinducer, we now have as many as five examples of phage-associated intercellular communication (Table 1). Each potentially involves ecological inferences by phages as to concentrations of surrounding phage-infected or uninfected bacteria. While the utility of phage detection of bacterial QS molecules may at first glance appear to be straightforward, we suggest in this commentary that the underlying ecological explanation is unlikely to be simple.}, author = {Igler, Claudia and Abedon, Stephen T.}, journal = {Frontiers in Microbiology}, publisher = {Frontiers}, title = {{Commentary: A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision}}, doi = {10.3389/fmicb.2019.01171}, volume = {10}, year = {2019}, } @article{6680, abstract = {This paper analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the Inbreeding History Model (Kelly, 2007) in order to characterize mutation‐selection balance in a large, partially selfing source population under selection involving multiple non‐identical loci. I then use individual‐based simulations to study the eco‐evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long‐term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection are discussed.}, author = {Sachdeva, Himani}, issn = {1558-5646}, journal = {Evolution}, number = {9}, pages = {1729--1745}, publisher = {Wiley}, title = {{Effect of partial selfing and polygenic selection on establishment in a new habitat}}, doi = {10.1111/evo.13812}, volume = {73}, year = {2019}, } @article{6710, abstract = {Sexual dimorphism in morphology, physiology or life history traits is common in dioecious plants at reproductive maturity, but it is typically inconspicuous or absent in juveniles. Although plants of different sexes probably begin to diverge in gene expression both before their reproduction commences and before dimorphism becomes readily apparent, to our knowledge transcriptome-wide differential gene expression has yet to be demonstrated for any angiosperm species.}, author = {Cossard, Guillaume and Toups, Melissa A and Pannell, John }, issn = {1095-8290}, journal = {Annals of botany}, number = {7}, pages = {1119--1131}, publisher = {Oxford University Press}, title = {{Sexual dimorphism and rapid turnover in gene expression in pre-reproductive seedlings of a dioecious herb}}, doi = {10.1093/aob/mcy183}, volume = {123}, year = {2019}, } @misc{9804, abstract = {Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response.}, author = {Castro, João Pl and Yancoskie, Michelle N. and Marchini, Marta and Belohlavy, Stefanie and Hiramatsu, Layla and Kučka, Marek and Beluch, William H. and Naumann, Ronald and Skuplik, Isabella and Cobb, John and Barton, Nicholas H and Rolian, Campbell and Chan, Yingguang Frank}, publisher = {Dryad}, title = {{Data from: An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice}}, doi = {10.5061/dryad.0q2h6tk}, year = {2019}, } @misc{9802, abstract = {This paper analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the Inbreeding History Model (Kelly, 2007) in order to characterize mutation-selection balance in a large, partially selfing source population under selection involving multiple non-identical loci. I then use individual-based simulations to study the eco-evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long-term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection are discussed.}, author = {Sachdeva, Himani}, publisher = {Dryad}, title = {{Data from: Effect of partial selfing and polygenic selection on establishment in a new habitat}}, doi = {10.5061/dryad.8tp0900}, year = {2019}, }