@article{2064,
abstract = {We examined the synaptic structure, quantity, and distribution of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-type glutamate receptors (AMPARs and NMDARs, respectively) in rat cochlear nuclei by a highly sensitive freeze-fracture replica labeling technique. Four excitatory synapses formed by two distinct inputs, auditory nerve (AN) and parallel fibers (PF), on different cell types were analyzed. These excitatory synapse types included AN synapses on bushy cells (AN-BC synapses) and fusiform cells (AN-FC synapses) and PF synapses on FC (PF-FC synapses) and cartwheel cell spines (PF-CwC synapses). Immunogold labeling revealed differences in synaptic structure as well as AMPAR and NMDAR number and/or density in both AN and PF synapses, indicating a target-dependent organization. The immunogold receptor labeling also identified differences in the synaptic organization of FCs based on AN or PF connections, indicating an input-dependent organization in FCs. Among the four excitatory synapse types, the AN-BC synapses were the smallest and had the most densely packed intramembrane particles (IMPs), whereas the PF-CwC synapses were the largest and had sparsely packed IMPs. All four synapse types showed positive correlations between the IMP-cluster area and the AMPAR number, indicating a common intrasynapse-type relationship for glutamatergic synapses. Immunogold particles for AMPARs were distributed over the entire area of individual AN synapses; PF synapses often showed synaptic areas devoid of labeling. The gold-labeling for NMDARs occurred in a mosaic fashion, with less positive correlations between the IMP-cluster area and the NMDAR number. Our observations reveal target- and input-dependent features in the structure, number, and organization of AMPARs and NMDARs in AN and PF synapses.},
author = {Rubio, Maía and Fukazawa, Yugo and Kamasawa, Naomi and Clarkson, Cheryl and Molnár, Elek and Shigemoto, Ryuichi},
journal = {Journal of Comparative Neurology},
number = {18},
pages = {4023 -- 4042},
publisher = {Wiley-Blackwell},
title = {{Target- and input-dependent organization of AMPA and NMDA receptors in synaptic connections of the cochlear nucleus}},
doi = {10.1002/cne.23654},
volume = {522},
year = {2014},
}
@inproceedings{2082,
abstract = {NMAC is a mode of operation which turns a fixed input-length keyed hash function f into a variable input-length function. A practical single-key variant of NMAC called HMAC is a very popular and widely deployed message authentication code (MAC). Security proofs and attacks for NMAC can typically be lifted to HMAC. NMAC was introduced by Bellare, Canetti and Krawczyk [Crypto'96], who proved it to be a secure pseudorandom function (PRF), and thus also a MAC, assuming that (1) f is a PRF and (2) the function we get when cascading f is weakly collision-resistant. Unfortunately, HMAC is typically instantiated with cryptographic hash functions like MD5 or SHA-1 for which (2) has been found to be wrong. To restore the provable guarantees for NMAC, Bellare [Crypto'06] showed its security based solely on the assumption that f is a PRF, albeit via a non-uniform reduction. - Our first contribution is a simpler and uniform proof for this fact: If f is an ε-secure PRF (against q queries) and a δ-non-adaptively secure PRF (against q queries), then NMAC f is an (ε+ℓqδ)-secure PRF against q queries of length at most ℓ blocks each. - We then show that this ε+ℓqδ bound is basically tight. For the most interesting case where ℓqδ ≥ ε we prove this by constructing an f for which an attack with advantage ℓqδ exists. This also violates the bound O(ℓε) on the PRF-security of NMAC recently claimed by Koblitz and Menezes. - Finally, we analyze the PRF-security of a modification of NMAC called NI [An and Bellare, Crypto'99] that differs mainly by using a compression function with an additional keying input. This avoids the constant rekeying on multi-block messages in NMAC and allows for a security proof starting by the standard switch from a PRF to a random function, followed by an information-theoretic analysis. We carry out such an analysis, obtaining a tight ℓq2/2 c bound for this step, improving over the trivial bound of ℓ2q2/2c. The proof borrows combinatorial techniques originally developed for proving the security of CBC-MAC [Bellare et al., Crypto'05].},
author = {Gazi, Peter and Pietrzak, Krzysztof Z and Rybar, Michal},
editor = {Garay, Juan and Gennaro, Rosario},
location = {Santa Barbara, USA},
number = {1},
pages = {113 -- 130},
publisher = {Springer},
title = {{The exact PRF-security of NMAC and HMAC}},
doi = {10.1007/978-3-662-44371-2_7},
volume = {8616},
year = {2014},
}
@article{2084,
abstract = {Receptor tyrosine kinases (RTKs) are a large family of cell surface receptors that sense growth factors and hormones and regulate a variety of cell behaviours in health and disease. Contactless activation of RTKs with spatial and temporal precision is currently not feasible. Here, we generated RTKs that are insensitive to endogenous ligands but can be selectively activated by low-intensity blue light. We screened light-oxygen-voltage (LOV)-sensing domains for their ability to activate RTKs by light-activated dimerization. Incorporation of LOV domains found in aureochrome photoreceptors of stramenopiles resulted in robust activation of the fibroblast growth factor receptor 1 (FGFR1), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET). In human cancer and endothelial cells, light induced cellular signalling with spatial and temporal precision. Furthermore, light faithfully mimicked complex mitogenic and morphogenic cell behaviour induced by growth factors. RTKs under optical control (Opto-RTKs) provide a powerful optogenetic approach to actuate cellular signals and manipulate cell behaviour.},
author = {Grusch, Michael and Schelch, Karin and Riedler, Robert and Gschaider-Reichhart, Eva and Differ, Christopher and Berger, Walter and Inglés Prieto, Álvaro and Janovjak, Harald L},
journal = {EMBO Journal},
number = {15},
pages = {1713 -- 1726},
publisher = {Wiley-Blackwell},
title = {{Spatio-temporally precise activation of engineered receptor tyrosine kinases by light}},
doi = {10.15252/embj.201387695},
volume = {33},
year = {2014},
}
@article{2086,
abstract = {Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen - Nosema ceranae (Microsporidia) - on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed.},
author = {Wolf, Stephan and Mcmahon, Dino and Lim, Ka and Pull, Christopher and Clark, Suzanne and Paxton, Robert and Osborne, Juliet},
journal = {PLoS One},
number = {8},
publisher = {Public Library of Science},
title = {{So near and yet so far: Harmonic radar reveals reduced homing ability of Nosema infected honeybees}},
doi = {10.1371/journal.pone.0103989},
volume = {9},
year = {2014},
}
@article{2131,
abstract = {We study approximations to a class of vector-valued equations of Burgers type driven by a multiplicative space-time white noise. A solution theory for this class of equations has been developed recently in Probability Theory Related Fields by Hairer and Weber. The key idea was to use the theory of controlled rough paths to give definitions of weak/mild solutions and to set up a Picard iteration argument. In this article the limiting behavior of a rather large class of (spatial) approximations to these equations is studied. These approximations are shown to converge and convergence rates are given, but the limit may depend on the particular choice of approximation. This effect is a spatial analogue to the Itô-Stratonovich correction in the theory of stochastic ordinary differential equations, where it is well known that different approximation schemes may converge to different solutions.},
author = {Hairer, Martin M and Jan Maas and Weber, Hendrik},
journal = {Communications on Pure and Applied Mathematics},
number = {5},
pages = {776 -- 870},
publisher = {Wiley-Blackwell},
title = {{Approximating Rough Stochastic PDEs}},
doi = {10.1002/cpa.21495},
volume = {67},
year = {2014},
}
@article{2132,
abstract = {We consider discrete porous medium equations of the form ∂tρt=Δϕ(ρt), where Δ is the generator of a reversible continuous time Markov chain on a finite set χ, and ϕ is an increasing function. We show that these equations arise as gradient flows of certain entropy functionals with respect to suitable non-local transportation metrics. This may be seen as a discrete analogue of the Wasserstein gradient flow structure for porous medium equations in ℝn discovered by Otto. We present a one-dimensional counterexample to geodesic convexity and discuss Gromov-Hausdorff convergence to the Wasserstein metric.},
author = {Erbar, Matthias and Jan Maas},
journal = {Discrete and Continuous Dynamical Systems- Series A},
number = {4},
pages = {1355 -- 1374},
publisher = {Southwest Missouri State University},
title = {{Gradient flow structures for discrete porous medium equations}},
doi = {10.3934/dcds.2014.34.1355 },
volume = {34},
year = {2014},
}
@article{2133,
abstract = {Let ℭ denote the Clifford algebra over ℝ𝑛, which is the von Neumann algebra generated by n self-adjoint operators Q j , j = 1,…,n satisfying the canonical anticommutation relations, Q i Q j + Q j Q i = 2δ ij I, and let τ denote the normalized trace on ℭ. This algebra arises in quantum mechanics as the algebra of observables generated by n fermionic degrees of freedom. Let 𝔓 denote the set of all positive operators 𝜌∈ℭ such that τ(ρ) = 1; these are the non-commutative analogs of probability densities in the non-commutative probability space (ℭ,𝜏). The fermionic Fokker–Planck equation is a quantum-mechanical analog of the classical Fokker–Planck equation with which it has much in common, such as the same optimal hypercontractivity properties. In this paper we construct a Riemannian metric on 𝔓 that we show to be a natural analog of the classical 2-Wasserstein metric, and we show that, in analogy with the classical case, the fermionic Fokker–Planck equation is gradient flow in this metric for the relative entropy with respect to the ground state. We derive a number of consequences of this, such as a sharp Talagrand inequality for this metric, and we prove a number of results pertaining to this metric. Several open problems are raised.},
author = {Carlen, Eric and Maas, Jan},
journal = {Communications in Mathematical Physics},
number = {3},
pages = {887 -- 926},
publisher = {Springer},
title = {{An analog of the 2-Wasserstein metric in non-commutative probability under which the fermionic Fokker-Planck equation is gradient flow for the entropy}},
doi = {10.1007/s00220-014-2124-8},
volume = {331},
year = {2014},
}
@article{2140,
abstract = {We propose a technique for engineering momentum-dependent dissipation in Bose-Einstein condensates with non-local interactions. The scheme relies on the use of momentum-dependent dark-states in close analogy to velocity-selective coherent population trapping. During the short-time dissipative dynamics, the system is driven into a particular finite-momentum phonon mode, which in real space corresponds to an ordered structure with non-local density-density correlations. Dissipation-induced ordering can be observed and studied in present-day experiments using cold atoms with dipole-dipole or off-resonant Rydberg interactions. Due to its dissipative nature, the ordering does not require artificial breaking of translational symmetry by an opticallattice or harmonic trap. This opens up a perspective of direct cooling of quantum gases into strongly-interacting phases.},
author = {Otterbach, Johannes and Lemeshko, Mikhail},
journal = {Physical Review Letters},
number = {7},
publisher = {American Physical Society},
title = {{Dissipative preparation of spatial order in Rydberg-dressed Bose-Einstein condensates}},
doi = {10.1103/PhysRevLett.113.070401},
volume = {113},
year = {2014},
}
@article{2141,
abstract = {The computation of the winning set for Büchi objectives in alternating games on graphs is a central problem in computer-aided verification with a large number of applications. The long-standing best known upper bound for solving the problem is Õ(n ⋅ m), where n is the number of vertices and m is the number of edges in the graph. We are the first to break the Õ(n ⋅ m) boundary by presenting a new technique that reduces the running time to O(n2). This bound also leads to O(n2)-time algorithms for computing the set of almost-sure winning vertices for Büchi objectives (1) in alternating games with probabilistic transitions (improving an earlier bound of Õ(n ⋅ m)), (2) in concurrent graph games with constant actions (improving an earlier bound of O(n3)), and (3) in Markov decision processes (improving for m>n4/3 an earlier bound of O(m ⋅ √m)). We then show how to maintain the winning set for Büchi objectives in alternating games under a sequence of edge insertions or a sequence of edge deletions in O(n) amortized time per operation. Our algorithms are the first dynamic algorithms for this problem. We then consider another core graph theoretic problem in verification of probabilistic systems, namely computing the maximal end-component decomposition of a graph. We present two improved static algorithms for the maximal end-component decomposition problem. Our first algorithm is an O(m ⋅ √m)-time algorithm, and our second algorithm is an O(n2)-time algorithm which is obtained using the same technique as for alternating Büchi games. Thus, we obtain an O(min &lcu;m ⋅ √m,n2})-time algorithm improving the long-standing O(n ⋅ m) time bound. Finally, we show how to maintain the maximal end-component decomposition of a graph under a sequence of edge insertions or a sequence of edge deletions in O(n) amortized time per edge deletion, and O(m) worst-case time per edge insertion. Again, our algorithms are the first dynamic algorithms for this problem.},
author = {Chatterjee, Krishnendu and Henzinger, Monika},
journal = {Journal of the ACM},
number = {3},
publisher = {ACM},
title = {{Efficient and dynamic algorithms for alternating Büchi games and maximal end-component decomposition}},
doi = {10.1145/2597631},
volume = {61},
year = {2014},
}
@inproceedings{2153,
abstract = {We define a simple, explicit map sending a morphism f : M → N of pointwise finite dimensional persistence modules to a matching between the barcodes of M and N. Our main result is that, in a precise sense, the quality of this matching is tightly controlled by the lengths of the longest intervals in the barcodes of ker f and coker f . As an immediate corollary, we obtain a new proof of the algebraic stability theorem for persistence barcodes [5, 9], a fundamental result in the theory of persistent homology. In contrast to previous proofs, ours shows explicitly how a δ-interleaving morphism between two persistence modules induces a δ-matching between the barcodes of the two modules. Our main result also specializes to a structure theorem for submodules and quotients of persistence modules. Copyright is held by the owner/author(s).},
author = {Bauer, Ulrich and Lesnick, Michael},
booktitle = {Proceedings of the Annual Symposium on Computational Geometry},
location = {Kyoto, Japan},
pages = {355 -- 364},
publisher = {ACM},
title = {{Induced matchings of barcodes and the algebraic stability of persistence}},
doi = {10.1145/2582112.2582168},
year = {2014},
}
@article{2154,
abstract = {A result of Boros and Füredi (d = 2) and of Bárány (arbitrary d) asserts that for every d there exists cd > 0 such that for every n-point set P ⊂ ℝd, some point of ℝd is covered by at least (Formula presented.) of the d-simplices spanned by the points of P. The largest possible value of cd has been the subject of ongoing research. Recently Gromov improved the existing lower bounds considerably by introducing a new, topological proof method. We provide an exposition of the combinatorial component of Gromov's approach, in terms accessible to combinatorialists and discrete geometers, and we investigate the limits of his method. In particular, we give tighter bounds on the cofilling profiles for the (n - 1)-simplex. These bounds yield a minor improvement over Gromov's lower bounds on cd for large d, but they also show that the room for further improvement through the cofilling profiles alone is quite small. We also prove a slightly better lower bound for c3 by an approach using an additional structure besides the cofilling profiles. We formulate a combinatorial extremal problem whose solution might perhaps lead to a tight lower bound for cd.},
author = {Matoušek, Jiří and Wagner, Uli},
journal = {Discrete & Computational Geometry},
number = {1},
pages = {1 -- 33},
publisher = {Springer},
title = {{On Gromov's method of selecting heavily covered points}},
doi = {10.1007/s00454-014-9584-7},
volume = {52},
year = {2014},
}
@inproceedings{2155,
abstract = {Given a finite set of points in Rn and a positive radius, we study the Čech, Delaunay-Čech, alpha, and wrap complexes as instances of a generalized discrete Morse theory. We prove that the latter three complexes are simple-homotopy equivalent. Our results have applications in topological data analysis and in the reconstruction of shapes from sampled data. Copyright is held by the owner/author(s).},
author = {Bauer, Ulrich and Edelsbrunner, Herbert},
booktitle = {Proceedings of the Annual Symposium on Computational Geometry},
location = {Kyoto, Japan},
pages = {484 -- 490},
publisher = {ACM},
title = {{The morse theory of Čech and Delaunay filtrations}},
doi = {10.1145/2582112.2582167},
year = {2014},
}
@inproceedings{2156,
abstract = {We propose a metric for Reeb graphs, called the functional distortion distance. Under this distance, the Reeb graph is stable against small changes of input functions. At the same time, it remains discriminative at differentiating input functions. In particular, the main result is that the functional distortion distance between two Reeb graphs is bounded from below by the bottleneck distance between both the ordinary and extended persistence diagrams for appropriate dimensions. As an application of our results, we analyze a natural simplification scheme for Reeb graphs, and show that persistent features in Reeb graph remains persistent under simplification. Understanding the stability of important features of the Reeb graph under simplification is an interesting problem on its own right, and critical to the practical usage of Reeb graphs. Copyright is held by the owner/author(s).},
author = {Bauer, Ulrich and Ge, Xiaoyin and Wang, Yusu},
booktitle = {Proceedings of the Annual Symposium on Computational Geometry},
location = {Kyoto, Japan},
pages = {464 -- 473},
publisher = {ACM},
title = {{Measuring distance between Reeb graphs}},
doi = {10.1145/2582112.2582169},
year = {2014},
}
@inproceedings{2157,
abstract = {We show that the following algorithmic problem is decidable: given a 2-dimensional simplicial complex, can it be embedded (topologically, or equivalently, piecewise linearly) in ℝ3? By a known reduction, it suffices to decide the embeddability of a given triangulated 3-manifold X into the 3-sphere S3. The main step, which allows us to simplify X and recurse, is in proving that if X can be embedded in S3, then there is also an embedding in which X has a short meridian, i.e., an essential curve in the boundary of X bounding a disk in S3 nX with length bounded by a computable function of the number of tetrahedra of X.},
author = {Matoušek, Jiří and Sedgwick, Eric and Tancer, Martin and Wagner, Uli},
booktitle = {Proceedings of the Annual Symposium on Computational Geometry},
location = {Kyoto, Japan},
pages = {78 -- 84},
publisher = {ACM},
title = {{Embeddability in the 3 sphere is decidable}},
doi = {10.1145/2582112.2582137},
year = {2014},
}
@article{2158,
abstract = {Directional guidance of migrating cells is relatively well explored in the reductionist setting of cell culture experiments. Here spatial gradients of chemical cues as well as gradients of mechanical substrate characteristics prove sufficient to attract single cells as well as their collectives. How such gradients present and act in the context of an organism is far less clear. Here we review recent advances in understanding how guidance cues emerge and operate in the physiological context.},
author = {Majumdar, Ritankar and Sixt, Michael K and Parent, Carole},
journal = {Current Opinion in Cell Biology},
number = {1},
pages = {33 -- 40},
publisher = {Elsevier},
title = {{New paradigms in the establishment and maintenance of gradients during directed cell migration}},
doi = {10.1016/j.ceb.2014.05.010},
volume = {30},
year = {2014},
}
@inproceedings{2160,
abstract = {Transfer learning has received a lot of attention in the machine learning community over the last years, and several effective algorithms have been developed. However, relatively little is known about their theoretical properties, especially in the setting of lifelong learning, where the goal is to transfer information to tasks for which no data have been observed so far. In this work we study lifelong learning from a theoretical perspective. Our main result is a PAC-Bayesian generalization bound that offers a unified view on existing paradigms for transfer learning, such as the transfer of parameters or the transfer of low-dimensional representations. We also use the bound to derive two principled lifelong learning algorithms, and we show that these yield results comparable with existing methods.},
author = {Pentina, Anastasia and Lampert, Christoph},
editor = {Xing, Eric and Jebara, Tony},
location = {Beijing, China},
pages = {991 -- 999},
publisher = {Omnipress},
title = {{A PAC-Bayesian bound for Lifelong Learning}},
volume = {32},
year = {2014},
}
@inproceedings{2162,
abstract = {We study two-player (zero-sum) concurrent mean-payoff games played on a finite-state graph. We focus on the important sub-class of ergodic games where all states are visited infinitely often with probability 1. The algorithmic study of ergodic games was initiated in a seminal work of Hoffman and Karp in 1966, but all basic complexity questions have remained unresolved. Our main results for ergodic games are as follows: We establish (1) an optimal exponential bound on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy); (2) the approximation problem lies in FNP; (3) the approximation problem is at least as hard as the decision problem for simple stochastic games (for which NP ∩ coNP is the long-standing best known bound). We present a variant of the strategy-iteration algorithm by Hoffman and Karp; show that both our algorithm and the classical value-iteration algorithm can approximate the value in exponential time; and identify a subclass where the value-iteration algorithm is a FPTAS. We also show that the exact value can be expressed in the existential theory of the reals, and establish square-root sum hardness for a related class of games.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus},
location = {Copenhagen, Denmark},
number = {Part 2},
pages = {122 -- 133},
publisher = {Springer},
title = {{The complexity of ergodic mean payoff games}},
doi = {10.1007/978-3-662-43951-7_11},
volume = {8573},
year = {2014},
}
@inproceedings{2163,
abstract = {We consider multi-player graph games with partial-observation and parity objective. While the decision problem for three-player games with a coalition of the first and second players against the third player is undecidable in general, we present a decidability result for partial-observation games where the first and third player are in a coalition against the second player, thus where the second player is adversarial but weaker due to partial-observation. We establish tight complexity bounds in the case where player 1 is less informed than player 2, namely 2-EXPTIME-completeness for parity objectives. The symmetric case of player 1 more informed than player 2 is much more complicated, and we show that already in the case where player 1 has perfect observation, memory of size non-elementary is necessary in general for reachability objectives, and the problem is decidable for safety and reachability objectives. From our results we derive new complexity results for partial-observation stochastic games.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
booktitle = {Lecture Notes in Computer Science},
location = {Copenhagen, Denmark},
number = {Part 2},
pages = {110 -- 121},
publisher = {Springer},
title = {{Games with a weak adversary}},
doi = {10.1007/978-3-662-43951-7_10},
volume = {8573},
year = {2014},
}
@article{2165,
abstract = {In machine learning, the domain adaptation problem arrives when the test (tar-get) and the train (source) data are generated from different distributions. A key applied issue is thus the design of algorithms able to generalize on a new distribution, for which we have no label information. We focus on learning classification models defined as a weighted majority vote over a set of real-valued functions. In this context, Germain et al. (2013) have shown that a measure of disagreement between these functions is crucial to control. The core of this measure is a theoretical bound—the C-bound (Lacasse et al., 2007)—which involves the disagreement and leads to a well performing majority vote learn-ing algorithm in usual non-adaptative supervised setting: MinCq. In this work,we propose a framework to extend MinCq to a domain adaptation scenario.This procedure takes advantage of the recent perturbed variation divergence between distributions proposed by Harel and Mannor (2012). Justified by a theoretical bound on the target risk of the vote, we provide to MinCq a tar-get sample labeled thanks to a perturbed variation-based self-labeling focused on the regions where the source and target marginals appear similar. We also study the influence of our self-labeling, from which we deduce an original process for tuning the hyperparameters. Finally, our framework called PV-MinCq shows very promising results on a rotation and translation synthetic problem.},
author = {Morvant, Emilie},
journal = {Pattern Recognition Letters},
pages = {37--43},
publisher = {Elsevier},
title = {{Domain Adaptation of Weighted Majority Votes via Perturbed Variation-Based Self-Labeling}},
doi = {10.1016/j.patrec.2014.08.013},
volume = {51},
year = {2014},
}
@inproceedings{2167,
abstract = {Model-based testing is a promising technology for black-box software and hardware testing, in which test cases are generated automatically from high-level specifications. Nowadays, systems typically consist of multiple interacting components and, due to their complexity, testing presents a considerable portion of the effort and cost in the design process. Exploiting the compositional structure of system specifications can considerably reduce the effort in model-based testing. Moreover, inferring properties about the system from testing its individual components allows the designer to reduce the amount of integration testing. In this paper, we study compositional properties of the ioco-testing theory. We propose a new approach to composition and hiding operations, inspired by contract-based design and interface theories. These operations preserve behaviors that are compatible under composition and hiding, and prune away incompatible ones. The resulting specification characterizes the input sequences for which the unit testing of components is sufficient to infer the correctness of component integration without the need for further tests. We provide a methodology that uses these results to minimize integration testing effort, but also to detect potential weaknesses in specifications. While we focus on asynchronous models and the ioco conformance relation, the resulting methodology can be applied to a broader class of systems.},
author = {Daca, Przemyslaw and Henzinger, Thomas A and Krenn, Willibald and Nickovic, Dejan},
booktitle = {IEEE 7th International Conference on Software Testing, Verification and Validation},
isbn = {978-1-4799-2255-0},
issn = {2159-4848},
location = {Cleveland, USA},
publisher = {IEEE},
title = {{Compositional specifications for IOCO testing}},
doi = {10.1109/ICST.2014.50},
year = {2014},
}