@article{928,
abstract = {The actomyosin cytoskeleton is a primary force-generating mechanism in morphogenesis, thus a robust spatial control of cytoskeletal positioning is essential. In this report, we demonstrate that actomyosin contractility and planar cell polarity (PCP) interact in post-mitotic Ciona notochord cells to self-assemble and reposition actomyosin rings, which play an essential role for cell elongation. Intriguingly, rings always form at the cells′ anterior edge before migrating towards the center as contractility increases, reflecting a novel dynamical property of the cortex. Our drug and genetic manipulations uncover a tug-of-war between contractility, which localizes cortical flows toward the equator and PCP, which tries to reposition them. We develop a simple model of the physical forces underlying this tug-of-war, which quantitatively reproduces our results. We thus propose a quantitative framework for dissecting the relative contribution of contractility and PCP to the self-assembly and repositioning of cytoskeletal structures, which should be applicable to other morphogenetic events.},
author = {Sehring, Ivonne and Recho, Pierre and Denker, Elsa and Kourakis, Matthew and Mathiesen, Birthe and Hannezo, Edouard B and Dong, Bo and Jiang, Di},
journal = {eLife},
publisher = {eLife Sciences Publications},
title = {{Assembly and positioning of actomyosin rings by contractility and planar cell polarity}},
doi = {10.7554/eLife.09206},
volume = {4},
year = {2015},
}
@article{933,
abstract = {Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell-cell and cell-substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data.},
author = {García, Simón and Hannezo, Edouard B and Elgeti, Jens and Joanny, Jean and Silberzan, Pascal and Gov, Nir},
journal = {PNAS},
number = {50},
pages = {15314 -- 15319},
publisher = {National Academy of Sciences},
title = {{Physics of active jamming during collective cellular motion in a monolayer}},
doi = {10.1073/pnas.1510973112},
volume = {112},
year = {2015},
}
@article{981,
abstract = {The tunability of topological surface states and controllable opening of the Dirac gap are of fundamental and practical interest in the field of topological materials. In the newly discovered topological crystalline insulators (TCIs), theory predicts that the Dirac node is protected by a crystalline symmetry and that the surface state electrons can acquire a mass if this symmetry is broken. Recent studies have detected signatures of a spontaneously generated Dirac gap in TCIs; however, the mechanism of mass formation remains elusive. In this work, we present scanning tunnelling microscopy (STM) measurements of the TCI Pb 1â'x Sn x Se for a wide range of alloy compositions spanning the topological and non-topological regimes. The STM topographies reveal a symmetry-breaking distortion on the surface, which imparts mass to the otherwise massless Dirac electrons-a mechanism analogous to the long sought-after Higgs mechanism in particle physics. Interestingly, the measured Dirac gap decreases on approaching the trivial phase, whereas the magnitude of the distortion remains nearly constant. Our data and calculations reveal that the penetration depth of Dirac surface states controls the magnitude of the Dirac mass. At the limit of the critical composition, the penetration depth is predicted to go to infinity, resulting in zero mass, consistent with our measurements. Finally, we discover the existence of surface states in the non-topological regime, which have the characteristics of gapped, double-branched Dirac fermions and could be exploited in realizing superconductivity in these materials.},
author = {Zeljkovic, Ilija and Okada, Yoshinori and Maksym Serbyn and Sankar, Raman and Walkup, Daniel and Zhou, Wenwen and Liu, Junwei and Chang, Guoqing and Wang, Yungjui and Hasan, Md Z and Chou, Fangcheng and Lin, Hsin and Bansil, Arun and Fu, Liang and Madhavan, Vidya},
journal = {Nature Materials},
number = {3},
pages = {318 -- 324},
publisher = {Nature Publishing Group},
title = {{Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators}},
doi = {10.1038/nmat4215},
volume = {14},
year = {2015},
}
@article{982,
abstract = {We propose a new approach to probing ergodicity and its breakdown in one-dimensional quantum manybody systems based on their response to a local perturbation. We study the distribution of matrix elements of a local operator between the system's eigenstates, finding a qualitatively different behavior in the manybody localized (MBL) and ergodic phases. To characterize how strongly a local perturbation modifies the eigenstates, we introduce the parameter g(L) = (In (Vnm/δ)) which represents the disorder-averaged ratio of a typical matrix element of a local operator V to energy level spacing δ this parameter is reminiscent of the Thouless conductance in the single-particle localization. We show that the parameter g(L) decreases with system size L in the MBL phase and grows in the ergodic phase. We surmise that the delocalization transition occurs when g(L) is independent of system size, g(L)=gc ~ 1. We illustrate our approach by studying the many-body localization transition and resolving the many-body mobility edge in a disordered one-dimensional XXZ spin-1=2 chain using exact diagonalization and time-evolving block-decimation methods. Our criterion for the MBL transition gives insights into microscopic details of transition. Its direct physical consequences, in particular, logarithmically slow transport at the transition and extensive entanglement entropy of the eigenstates, are consistent with recent renormalization-group predictions.},
author = {Maksym Serbyn and Papić, Zlatko and Abanin, Dmitry A},
journal = {Physical Review X},
number = {4},
publisher = {American Physical Society},
title = {{Criterion for many-body localization-delocalization phase transition}},
doi = {10.1103/PhysRevX.5.041047},
volume = {5},
year = {2015},
}
@article{99,
abstract = {Quasiparticle excitations can compromise the performance of superconducting devices, causing high-frequency dissipation, decoherence in Josephson qubits, and braiding errors in proposed Majorana-based topological quantum computers. Quasiparticle dynamics have been studied in detail in metallic superconductors but remain relatively unexplored in semiconductor-superconductor structures, which are now being intensely pursued in the context of topological superconductivity. To this end, we use a system comprising a gate-confined semiconductor nanowire with an epitaxially grown superconductor layer, yielding an isolated, proximitized nanowire segment. We identify bound states in the semiconductor by means of bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound state in the semiconductor exceeding 10 ms.},
author = {Higginbotham, Andrew P and Albrecht, S M and Kiršanskas, Gediminas and Chang, W and Kuemmeth, Ferdinand and Krogstrup, Peter and Jespersen, Thomas and Nygård, Jesper and Flensberg, Karsten and Marcus, Charles},
journal = {Nature Physics},
number = {12},
pages = {1017 -- 1021},
publisher = {Nature Publishing Group},
title = {{Parity lifetime of bound states in a proximitized semiconductor nanowire}},
doi = {10.1038/nphys3461},
volume = {11},
year = {2015},
}
@article{388,
abstract = {We use ultrafast optical spectroscopy to observe binding of charged single-particle excitations (SE) in the magnetically frustrated Mott insulator Na2IrO3. Above the antiferromagnetic ordering temperature (TN) the system response is due to both Hubbard excitons (HE) and their constituent unpaired SE. The SE response becomes strongly suppressed immediately below TN. We argue that this increase in binding energy is due to a unique interplay between the frustrated Kitaev and the weak Heisenberg-type ordering term in the Hamiltonian, mediating an effective interaction between the spin-singlet SE. This interaction grows with distance causing the SE to become trapped in the HE, similar to quark confinement inside hadrons. This binding of charged particles, induced by magnetic ordering, is a result of a confinement-deconfinement transition of spin excitations. This observation provides evidence for spin liquid type behavior which is expected in Na2IrO3.},
author = {Alpichshev, Zhanybek and Mahmood, Fahad and Cao, Gang and Gedik, Nuh},
journal = {Physical Review Letters},
number = {1},
publisher = {American Physical Society},
title = {{Confinement deconfinement transition as an indication of spin liquid type behavior in Na2IrO3}},
doi = {10.1103/PhysRevLett.114.017203},
volume = {114},
year = {2015},
}
@phdthesis{1401,
abstract = {The human ability to recognize objects in complex scenes has driven research in the computer vision field over couple of decades. This thesis focuses on the object recognition task in images. That is, given the image, we want the computer system to be able to predict the class of the object that appears in the image. A recent succesful attempt to bridge semantic understanding of the image perceived by humans and by computers uses attribute-based models. Attributes are semantic properties of the objects shared across different categories, which humans and computers can decide on. To explore the attribute-based models we take a statistical machine learning approach, and address two key learning challenges in view of object recognition task: learning augmented attributes as mid-level discriminative feature representation, and learning with attributes as privileged information. Our main contributions are parametric and non-parametric models and algorithms to solve these frameworks. In the parametric approach, we explore an autoencoder model combined with the large margin nearest neighbor principle for mid-level feature learning, and linear support vector machines for learning with privileged information. In the non-parametric approach, we propose a supervised Indian Buffet Process for automatic augmentation of semantic attributes, and explore the Gaussian Processes classification framework for learning with privileged information. A thorough experimental analysis shows the effectiveness of the proposed models in both parametric and non-parametric views.},
author = {Sharmanska, Viktoriia},
pages = {144},
publisher = {IST Austria},
title = {{Learning with attributes for object recognition: Parametric and non-parametrics views}},
year = {2015},
}
@unpublished{8183,
abstract = {We study conditions under which a finite simplicial complex $K$ can be mapped to $\mathbb R^d$ without higher-multiplicity intersections. An almost $r$-embedding is a map $f: K\to \mathbb R^d$ such that the images of any $r$
pairwise disjoint simplices of $K$ do not have a common point. We show that if $r$ is not a prime power and $d\geq 2r+1$, then there is a counterexample to the topological Tverberg conjecture, i.e., there is an almost $r$-embedding of
the $(d+1)(r-1)$-simplex in $\mathbb R^d$. This improves on previous constructions of counterexamples (for $d\geq 3r$) based on a series of papers by M. \"Ozaydin, M. Gromov, P. Blagojevi\'c, F. Frick, G. Ziegler, and the second and fourth present authors. The counterexamples are obtained by proving the following algebraic criterion in codimension 2: If $r\ge3$ and if $K$ is a finite $2(r-1)$-complex then there exists an almost $r$-embedding $K\to \mathbb R^{2r}$ if and only if there exists a general position PL map $f:K\to \mathbb R^{2r}$ such that the algebraic intersection number of the $f$-images of any $r$ pairwise disjoint simplices of $K$ is zero. This result can be restated in terms of cohomological obstructions or equivariant maps, and extends an analogous codimension 3 criterion by the second and fourth authors. As another application we classify ornaments $f:S^3 \sqcup S^3\sqcup S^3\to \mathbb R^5$ up to ornament
concordance. It follows from work of M. Freedman, V. Krushkal and P. Teichner that the analogous criterion for $r=2$ is false. We prove a lemma on singular higher-dimensional Borromean rings, yielding an elementary proof of the counterexample.},
author = {Avvakumov, Sergey and Mabillard, Isaac and Skopenkov, A. and Wagner, Uli},
booktitle = {arXiv},
title = {{Eliminating higher-multiplicity intersections, III. Codimension 2}},
year = {2015},
}
@article{5749,
abstract = {Parasitism creates selection for resistance mechanisms in host populations and is hypothesized to promote increased host evolvability. However, the influence of these traits on host evolution when parasites are no longer present is unclear. We used experimental evolution and whole-genome sequencing of Escherichia coli to determine the effects of past and present exposure to parasitic viruses (phages) on the spread of mutator alleles, resistance, and bacterial competitive fitness. We found that mutator alleles spread rapidly during adaptation to any of four different phage species, and this pattern was even more pronounced with multiple phages present simultaneously. However, hypermutability did not detectably accelerate adaptation in the absence of phages and recovery of fitness costs associated with resistance. Several lineages evolved phage resistance through elevated mucoidy, and during subsequent evolution in phage-free conditions they rapidly reverted to nonmucoid, phage-susceptible phenotypes. Genome sequencing revealed that this phenotypic reversion was achieved by additional genetic changes rather than by genotypic reversion of the initial resistance mutations. Insertion sequence (IS) elements played a key role in both the acquisition of resistance and adaptation in the absence of parasites; unlike single nucleotide polymorphisms, IS insertions were not more frequent in mutator lineages. Our results provide a genetic explanation for rapid reversion of mucoidy, a phenotype observed in other bacterial species including human pathogens. Moreover, this demonstrates that the types of genetic change underlying adaptation to fitness costs, and consequently the impact of evolvability mechanisms such as increased point-mutation rates, depend critically on the mechanism of resistance.},
author = {Wielgoss, Sébastien and Bergmiller, Tobias and Bischofberger, Anna M. and Hall, Alex R.},
issn = {0737-4038},
journal = {Molecular Biology and Evolution},
number = {3},
pages = {770--782},
publisher = {Oxford University Press},
title = {{Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria}},
doi = {10.1093/molbev/msv270},
volume = {33},
year = {2015},
}
@inproceedings{1607,
abstract = {We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean-payoff property, the ratio property, and the minimum initial credit for energy property. The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with constant treewidth, and it is well-known that the control-flow graphs of most programs have constant treewidth. Let n denote the number of nodes of a graph, m the number of edges (for constant treewidth graphs m=O(n)) and W the largest absolute value of the weights. Our main theoretical results are as follows. First, for constant treewidth graphs we present an algorithm that approximates the mean-payoff value within a multiplicative factor of ϵ in time O(n⋅log(n/ϵ)) and linear space, as compared to the classical algorithms that require quadratic time. Second, for the ratio property we present an algorithm that for constant treewidth graphs works in time O(n⋅log(|a⋅b|))=O(n⋅log(n⋅W)), when the output is ab, as compared to the previously best known algorithm with running time O(n2⋅log(n⋅W)). Third, for the minimum initial credit problem we show that (i) for general graphs the problem can be solved in O(n2⋅m) time and the associated decision problem can be solved in O(n⋅m) time, improving the previous known O(n3⋅m⋅log(n⋅W)) and O(n2⋅m) bounds, respectively; and (ii) for constant treewidth graphs we present an algorithm that requires O(n⋅logn) time, improving the previous known O(n4⋅log(n⋅W)) bound. We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
location = {San Francisco, CA, USA},
pages = {140 -- 157},
publisher = {Springer},
title = {{Faster algorithms for quantitative verification in constant treewidth graphs}},
doi = {10.1007/978-3-319-21690-4_9},
volume = {9206},
year = {2015},
}
@article{9532,
abstract = {Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings.},
author = {Rodrigues, Jessica A. and ZILBERMAN, Daniel},
issn = {1549-5477},
journal = {Genes and Development},
number = {24},
pages = {2517–2531},
publisher = {Cold Spring Harbor Laboratory Press},
title = {{Evolution and function of genomic imprinting in plants}},
doi = {10.1101/gad.269902.115},
volume = {29},
year = {2015},
}
@article{9575,
abstract = {We give several results showing that different discrete structures typically gain certain spanning substructures (in particular, Hamilton cycles) after a modest random perturbation. First, we prove that adding linearly many random edges to a dense k-uniform hypergraph ensures the (asymptotically almost sure) existence of a perfect matching or a loose Hamilton cycle. The proof involves an interesting application of Szemerédi's Regularity Lemma, which might be independently useful. We next prove that digraphs with certain strong expansion properties are pancyclic, and use this to show that adding a linear number of random edges typically makes a dense digraph pancyclic. Finally, we prove that perturbing a certain (minimum-degree-dependent) number of random edges in a tournament typically ensures the existence of multiple edge-disjoint Hamilton cycles. All our results are tight.},
author = {Krivelevich, Michael and Kwan, Matthew Alan and Sudakov, Benny},
issn = {1571-0653},
journal = {Electronic Notes in Discrete Mathematics},
pages = {181--187},
publisher = {Elsevier},
title = {{Cycles and matchings in randomly perturbed digraphs and hypergraphs}},
doi = {10.1016/j.endm.2015.06.027},
volume = {49},
year = {2015},
}
@article{9688,
abstract = {The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equilibrium conditions at which the interfacial free energy is ill defined. Here we draw a connection between the atomistic description of a diffuse solid-liquid interface and its thermodynamic characterization. This framework resolves the ambiguities in defining the solid-liquid interfacial free energy above and below the melting temperature. In addition, we introduce a simulation protocol that allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant for experiments. We directly evaluate the value of the interfacial free energy away from the melting point for a simple but realistic atomic potential, and find a more complex temperature dependence than the constant positive slope that has been generally assumed based on phenomenological considerations and that has been used to interpret experiments. This methodology could be easily extended to the study of other phase transitions, from condensation to precipitation. Our analysis can help reconcile the textbook picture of classical nucleation theory with the growing body of atomistic studies and mesoscale models of solidification.},
author = {Cheng, Bingqing and Tribello, Gareth A. and Ceriotti, Michele},
issn = {1550-235X},
journal = {Physical Review B - Condensed Matter and Materials Physics},
number = {18},
publisher = {American Physical Society},
title = {{Solid-liquid interfacial free energy out of equilibrium}},
doi = {10.1103/physrevb.92.180102},
volume = {92},
year = {2015},
}
@article{1666,
abstract = {Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics.},
author = {Tugrul, Murat and Paixao, Tiago and Barton, Nicholas H and Tkacik, Gasper},
journal = {PLoS Genetics},
number = {11},
publisher = {Public Library of Science},
title = {{Dynamics of transcription factor binding site evolution}},
doi = {10.1371/journal.pgen.1005639},
volume = {11},
year = {2015},
}
@article{1566,
abstract = {Deposits of misfolded proteins in the human brain are associated with the development of many neurodegenerative diseases. Recent studies show that these proteins have common traits even at the monomer level. Among them, a polyglutamine region that is present in huntingtin is known to exhibit a correlation between the length of the chain and the severity as well as the earliness of the onset of Huntington disease. Here, we apply bias exchange molecular dynamics to generate structures of polyglutamine expansions of several lengths and characterize the resulting independent conformations. We compare the properties of these conformations to those of the standard proteins, as well as to other homopolymeric tracts. We find that, similar to the previously studied polyvaline chains, the set of possible transient folds is much broader than the set of known-to-date folds, although the conformations have different structures. We show that the mechanical stability is not related to any simple geometrical characteristics of the structures. We demonstrate that long polyglutamine expansions result in higher mechanical stability than the shorter ones. They also have a longer life span and are substantially more prone to form knotted structures. The knotted region has an average length of 35 residues, similar to the typical threshold for most polyglutamine-related diseases. Similarly, changes in shape and mechanical stability appear once the total length of the peptide exceeds this threshold of 35 glutamine residues. We suggest that knotted conformers may also harm the cellular machinery and thus lead to disease.},
author = {Gómez Sicilia, Àngel and Sikora, Mateusz K and Cieplak, Marek and Carrión Vázquez, Mariano},
journal = {PLoS Computational Biology},
number = {10},
publisher = {Public Library of Science},
title = {{An exploration of the universe of polyglutamine structures}},
doi = {10.1371/journal.pcbi.1004541},
volume = {11},
year = {2015},
}
@article{1809,
abstract = {Background: Indirect genetic effects (IGEs) occur when genes expressed in one individual alter the expression of traits in social partners. Previous studies focused on the evolutionary consequences and evolutionary dynamics of IGEs, using equilibrium solutions to predict phenotypes in subsequent generations. However, whether or not such steady states may be reached may depend on the dynamics of interactions themselves. Results: In our study, we focus on the dynamics of social interactions and indirect genetic effects and investigate how they modify phenotypes over time. Unlike previous IGE studies, we do not analyse evolutionary dynamics; rather we consider within-individual phenotypic changes, also referred to as phenotypic plasticity. We analyse iterative interactions, when individuals interact in a series of discontinuous events, and investigate the stability of steady state solutions and the dependence on model parameters, such as population size, strength, and the nature of interactions. We show that for interactions where a feedback loop occurs, the possible parameter space of interaction strength is fairly limited, affecting the evolutionary consequences of IGEs. We discuss the implications of our results for current IGE model predictions and their limitations.},
author = {Trubenova, Barbora and Novak, Sebastian and Hager, Reinmar},
journal = {PLoS One},
number = {5},
publisher = {Public Library of Science},
title = {{Indirect genetic effects and the dynamics of social interactions}},
doi = {10.1371/journal.pone.0126907},
volume = {10},
year = {2015},
}
@article{1619,
abstract = {The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE) of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the “morbidostat”, a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations—an almost paradoxical behavior since this drug causes DNA damage and increases the mutation rate. Overall, we identified novel quantitative characteristics of the evolutionary landscape that provide the conceptual foundation for predicting the dynamics of drug resistance evolution.},
author = {Chevereau, Guillaume and Dravecka, Marta and Batur, Tugce and Guvenek, Aysegul and Ayhan, Dilay and Toprak, Erdal and Bollenbach, Mark Tobias},
journal = {PLoS Biology},
number = {11},
publisher = {Public Library of Science},
title = {{Quantifying the determinants of evolutionary dynamics leading to drug resistance}},
doi = {10.1371/journal.pbio.1002299},
volume = {13},
year = {2015},
}
@article{2261,
abstract = {To reveal the full potential of human pluripotent stem cells, new methods for rapid, site-specific genomic engineering are needed. Here, we describe a system for precise genetic modification of human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We identified a novel human locus, H11, located in a safe, intergenic, transcriptionally active region of chromosome 22, as the recipient site, to provide robust, ubiquitous expression of inserted genes. Recipient cell lines were established by site-specific placement of a ‘landing pad’ cassette carrying attP sites for phiC31 and Bxb1 integrases at the H11 locus by spontaneous or TALEN-assisted homologous recombination. Dual integrase cassette exchange (DICE) mediated by phiC31 and Bxb1 integrases was used to insert genes of interest flanked by phiC31 and Bxb1 attB sites at the H11 locus, replacing the landing pad. This system provided complete control over content, direction and copy number of inserted genes, with a specificity of 100%. A series of genes, including mCherry and various combinations of the neural transcription factors LMX1a, FOXA2 and OTX2, were inserted in recipient cell lines derived from H9 ESC, as well as iPSC lines derived from a Parkinson’s disease patient and a normal sibling control. The DICE system offers rapid, efficient and precise gene insertion in ESC and iPSC and is particularly well suited for repeated modifications of the same locus.},
author = {Zhu, Fangfang and Gamboa, Matthew and Farruggio, Alfonso and Hippenmeyer, Simon and Tasic, Bosiljka and Schüle, Birgitt and Chen Tsai, Yanru and Calos, Michele},
journal = {Nucleic Acids Research},
number = {5},
publisher = {Oxford University Press},
title = {{DICE, an efficient system for iterative genomic editing in human pluripotent stem cells}},
doi = {10.1093/nar/gkt1290},
volume = {42},
year = {2014},
}
@inproceedings{2275,
abstract = {Energies with high-order non-submodular interactions have been shown to be very useful in vision due to their high modeling power. Optimization of such energies, however, is generally NP-hard. A naive approach that works for small problem instances is exhaustive search, that is, enumeration of all possible labelings of the underlying graph. We propose a general minimization approach for large graphs based on enumeration of labelings of certain small patches.
This partial enumeration technique reduces complex high-order energy formulations to pairwise Constraint Satisfaction Problems with unary costs (uCSP), which can be efficiently solved using standard methods like TRW-S. Our approach outperforms a number of existing state-of-the-art algorithms on well known difficult problems (e.g. curvature regularization, stereo, deconvolution); it gives near global minimum and better speed.
Our main application of interest is curvature regularization. In the context of segmentation, our partial enumeration technique allows to evaluate curvature directly on small patches using a novel integral geometry approach.
},
author = {Olsson, Carl and Ulen, Johannes and Boykov, Yuri and Kolmogorov, Vladimir},
location = {Sydney, Australia},
pages = {2936 -- 2943},
publisher = {IEEE},
title = {{Partial enumeration and curvature regularization}},
doi = {10.1109/ICCV.2013.365},
year = {2014},
}
@article{2281,
abstract = {We consider two-dimensional Bose-Einstein condensates with attractive interaction, described by the Gross-Pitaevskii functional. Minimizers of this functional exist only if the interaction strength a satisfies {Mathematical expression}, where Q is the unique positive radial solution of {Mathematical expression} in {Mathematical expression}. We present a detailed analysis of the behavior of minimizers as a approaches a*, where all the mass concentrates at a global minimum of the trapping potential.},
author = {Guo, Yujin and Seiringer, Robert},
journal = {Letters in Mathematical Physics},
number = {2},
pages = {141 -- 156},
publisher = {Springer},
title = {{On the mass concentration for Bose-Einstein condensates with attractive interactions}},
doi = {10.1007/s11005-013-0667-9},
volume = {104},
year = {2014},
}