@misc{9327, abstract = {This archive contains the missing sweater mesh animations and displacement models for the code of "Mechanics-Aware Deformation of Yarn Pattern Geometry" Code Repository: https://git.ist.ac.at/gsperl/MADYPG}, author = {Sperl, Georg and Narain, Rahul and Wojtan, Christopher J}, publisher = {IST Austria}, title = {{Mechanics-Aware Deformation of Yarn Pattern Geometry (Additional Animation/Model Data)}}, doi = {10.15479/AT:ISTA:9327}, year = {2021}, } @article{9770, abstract = {We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC), and show that the model exhibits spin polarization when both terms are finite. Most important, strong spin polarization can be observed even for moderate SOC, provided that the friction is strong. Our findings might help to explain the pronounced effect of chirality on spin distribution and transport in chiral molecules. In particular, our model implies static magnetic properties of a chiral molecule, which lead to Shiba-like states when a molecule is placed on a superconductor, in accordance with recent experimental data.}, author = {Volosniev, Artem and Alpern, Hen and Paltiel, Yossi and Millo, Oded and Lemeshko, Mikhail and Ghazaryan, Areg}, issn = {2469-9969}, journal = {Physical Review B}, number = {2}, publisher = {American Physical Society}, title = {{Interplay between friction and spin-orbit coupling as a source of spin polarization}}, doi = {10.1103/physrevb.104.024430}, volume = {104}, year = {2021}, } @article{9827, abstract = {The Nearest neighbour search (NNS) is a fundamental problem in many application domains dealing with multidimensional data. In a concurrent setting, where dynamic modifications are allowed, a linearizable implementation of the NNS is highly desirable.This paper introduces the LockFree-kD-tree (LFkD-tree ): a lock-free concurrent kD-tree, which implements an abstract data type (ADT) that provides the operations Add, Remove, Contains, and NNS. Our implementation is linearizable. The operations in the LFkD-tree use single-word read and compare-and-swap (Image 1 ) atomic primitives, which are readily supported on available multi-core processors. We experimentally evaluate the LFkD-tree using several benchmarks comprising real-world and synthetic datasets. The experiments show that the presented design is scalable and achieves significant speed-up compared to the implementations of an existing sequential kD-tree and a recently proposed multidimensional indexing structure, PH-tree.}, author = {Chatterjee, Bapi and Walulya, Ivan and Tsigas, Philippas}, issn = {0304-3975}, journal = {Theoretical Computer Science}, keywords = {Concurrent data structure, kD-tree, Nearest neighbor search, Similarity search, Lock-free, Linearizability}, pages = {27--48}, publisher = {Elsevier}, title = {{Concurrent linearizable nearest neighbour search in LockFree-kD-tree}}, doi = {10.1016/j.tcs.2021.06.041}, volume = {886}, year = {2021}, } @article{9877, abstract = {Parent-of-origin–dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin–specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA–producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions—the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.}, author = {Rodrigues, Jessica A. and Hsieh, Ping-Hung and Ruan, Deling and Nishimura, Toshiro and Sharma, Manoj K. and Sharma, Rita and Ye, XinYi and Nguyen, Nicholas D. and Nijjar, Sukhranjan and Ronald, Pamela C. and Fischer, Robert L. and Zilberman, Daniel}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {29}, publisher = {National Academy of Sciences}, title = {{Divergence among rice cultivars reveals roles for transposition and epimutation in ongoing evolution of genomic imprinting}}, doi = {10.1073/pnas.2104445118}, volume = {118}, year = {2021}, } @article{9874, abstract = {Myocardial regeneration is restricted to early postnatal life, when mammalian cardiomyocytes still retain the ability to proliferate. The molecular cues that induce cell cycle arrest of neonatal cardiomyocytes towards terminally differentiated adult heart muscle cells remain obscure. Here we report that the miR-106b~25 cluster is higher expressed in the early postnatal myocardium and decreases in expression towards adulthood, especially under conditions of overload, and orchestrates the transition of cardiomyocyte hyperplasia towards cell cycle arrest and hypertrophy by virtue of its targetome. In line, gene delivery of miR-106b~25 to the mouse heart provokes cardiomyocyte proliferation by targeting a network of negative cell cycle regulators including E2f5, Cdkn1c, Ccne1 and Wee1. Conversely, gene-targeted miR-106b~25 null mice display spontaneous hypertrophic remodeling and exaggerated remodeling to overload by derepression of the prohypertrophic transcription factors Hand2 and Mef2d. Taking advantage of the regulatory function of miR-106b~25 on cardiomyocyte hyperplasia and hypertrophy, viral gene delivery of miR-106b~25 provokes nearly complete regeneration of the adult myocardium after ischemic injury. Our data demonstrate that exploitation of conserved molecular programs can enhance the regenerative capacity of the injured heart.}, author = {Raso, Andrea and Dirkx, Ellen and Sampaio-Pinto, Vasco and el Azzouzi, Hamid and Cubero, Ryan J and Sorensen, Daniel W. and Ottaviani, Lara and Olieslagers, Servé and Huibers, Manon M. and de Weger, Roel and Siddiqi, Sailay and Moimas, Silvia and Torrini, Consuelo and Zentillin, Lorena and Braga, Luca and Nascimento, Diana S. and da Costa Martins, Paula A. and van Berlo, Jop H. and Zacchigna, Serena and Giacca, Mauro and De Windt, Leon J.}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration}}, doi = {10.1038/s41467-021-25211-4}, volume = {12}, year = {2021}, } @article{9769, abstract = {A few years ago, flow equations were introduced as a technique for calculating the ground-state energies of cold Bose gases with and without impurities. In this paper, we extend this approach to compute observables other than the energy. As an example, we calculate the densities, and phase fluctuations of one-dimensional Bose gases with one and two impurities. For a single mobile impurity, we use flow equations to validate the mean-field results obtained upon the Lee-Low-Pines transformation. We show that the mean-field approximation is accurate for all values of the boson-impurity interaction strength as long as the phase coherence length is much larger than the healing length of the condensate. For two static impurities, we calculate impurity-impurity interactions induced by the Bose gas. We find that leading order perturbation theory fails when boson-impurity interactions are stronger than boson-boson interactions. The mean-field approximation reproduces the flow equation results for all values of the boson-impurity interaction strength as long as boson-boson interactions are weak.}, author = {Brauneis, Fabian and Hammer, Hans-Werner and Lemeshko, Mikhail and Volosniev, Artem}, issn = {2542-4653}, journal = {SciPost Physics}, number = {1}, publisher = {SciPost}, title = {{Impurities in a one-dimensional Bose gas: The flow equation approach}}, doi = {10.21468/scipostphys.11.1.008}, volume = {11}, year = {2021}, } @article{9746, abstract = {Evolutionary adaptation is a major source of antibiotic resistance in bacterial pathogens. Evolution-informed therapy aims to constrain resistance by accounting for bacterial evolvability. Sequential treatments with antibiotics that target different bacterial processes were previously shown to limit adaptation through genetic resistance trade-offs and negative hysteresis. Treatment with homogeneous sets of antibiotics is generally viewed to be disadvantageous, as it should rapidly lead to cross-resistance. We here challenged this assumption by determining the evolutionary response of Pseudomonas aeruginosa to experimental sequential treatments involving both heterogenous and homogeneous antibiotic sets. To our surprise, we found that fast switching between only β-lactam antibiotics resulted in increased extinction of bacterial populations. We demonstrate that extinction is favored by low rates of spontaneous resistance emergence and low levels of spontaneous cross-resistance among the antibiotics in sequence. The uncovered principles may help to guide the optimized use of available antibiotics in highly potent, evolution-informed treatment designs.}, author = {Batra, Aditi and Römhild, Roderich and Rousseau, Emilie and Franzenburg, Sören and Niemann, Stefan and Schulenburg, Hinrich}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{High potency of sequential therapy with only beta-lactam antibiotics}}, doi = {10.7554/elife.68876}, volume = {10}, year = {2021}, } @article{9911, abstract = {A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.}, author = {Nelson, Glyn and Boehm, Ulrike and Bagley, Steve and Bajcsy, Peter and Bischof, Johanna and Brown, Claire M. and Dauphin, Aurélien and Dobbie, Ian M. and Eriksson, John E. and Faklaris, Orestis and Fernandez-Rodriguez, Julia and Ferrand, Alexia and Gelman, Laurent and Gheisari, Ali and Hartmann, Hella and Kukat, Christian and Laude, Alex and Mitkovski, Miso and Munck, Sebastian and North, Alison J. and Rasse, Tobias M. and Resch-Genger, Ute and Schuetz, Lucas C. and Seitz, Arne and Strambio-De-Castillia, Caterina and Swedlow, Jason R. and Alexopoulos, Ioannis and Aumayr, Karin and Avilov, Sergiy and Bakker, Gert Jan and Bammann, Rodrigo R. and Bassi, Andrea and Beckert, Hannes and Beer, Sebastian and Belyaev, Yury and Bierwagen, Jakob and Birngruber, Konstantin A. and Bosch, Manel and Breitlow, Juergen and Cameron, Lisa A. and Chalfoun, Joe and Chambers, James J. and Chen, Chieh Li and Conde-Sousa, Eduardo and Corbett, Alexander D. and Cordelieres, Fabrice P. and Nery, Elaine Del and Dietzel, Ralf and Eismann, Frank and Fazeli, Elnaz and Felscher, Andreas and Fried, Hans and Gaudreault, Nathalie and Goh, Wah Ing and Guilbert, Thomas and Hadleigh, Roland and Hemmerich, Peter and Holst, Gerhard A. and Itano, Michelle S. and Jaffe, Claudia B. and Jambor, Helena K. and Jarvis, Stuart C. and Keppler, Antje and Kirchenbuechler, David and Kirchner, Marcel and Kobayashi, Norio and Krens, Gabriel and Kunis, Susanne and Lacoste, Judith and Marcello, Marco and Martins, Gabriel G. and Metcalf, Daniel J. and Mitchell, Claire A. and Moore, Joshua and Mueller, Tobias and Nelson, Michael S. and Ogg, Stephen and Onami, Shuichi and Palmer, Alexandra L. and Paul-Gilloteaux, Perrine and Pimentel, Jaime A. and Plantard, Laure and Podder, Santosh and Rexhepaj, Elton and Royon, Arnaud and Saari, Markku A. and Schapman, Damien and Schoonderwoert, Vincent and Schroth-Diez, Britta and Schwartz, Stanley and Shaw, Michael and Spitaler, Martin and Stoeckl, Martin T. and Sudar, Damir and Teillon, Jeremie and Terjung, Stefan and Thuenauer, Roland and Wilms, Christian D. and Wright, Graham D. and Nitschke, Roland}, issn = {1365-2818}, journal = {Journal of Microscopy}, number = {1}, pages = {56--73}, publisher = {Wiley}, title = {{QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy}}, doi = {10.1111/jmi.13041}, volume = {284}, year = {2021}, } @article{9906, abstract = {Endometriosis is a common gynecological disorder characterized by ectopic growth of endometrium outside the uterus and is associated with chronic pain and infertility. We investigated the role of the long intergenic noncoding RNA 01133 (LINC01133) in endometriosis, an lncRNA that has been implicated in several types of cancer. We found that LINC01133 is upregulated in ectopic endometriotic lesions. As expression appeared higher in the epithelial endometrial layer, we performed a siRNA knockdown of LINC01133 in an endometriosis epithelial cell line. Phenotypic assays indicated that LINC01133 may promote proliferation and suppress cellular migration, and affect the cytoskeleton and morphology of the cells. Gene ontology analysis of differentially expressed genes indicated that cell proliferation and migration pathways were affected in line with the observed phenotype. We validated upregulation of p21 and downregulation of Cyclin A at the protein level, which together with the quantification of the DNA content using fluorescence-activated cell sorting (FACS) analysis indicated that the observed effects on cellular proliferation may be due to changes in cell cycle. Further, we found testis-specific protein kinase 1 (TESK1) kinase upregulation corresponding with phosphorylation and inactivation of actin severing protein Cofilin, which could explain changes in the cytoskeleton and cellular migration. These results indicate that endometriosis is associated with LINC01133 upregulation, which may affect pathogenesis via the cellular proliferation and migration pathways.}, author = {Yotova, Iveta and Hudson, Quanah J. and Pauler, Florian and Proestling, Katharina and Haslinger, Isabella and Kuessel, Lorenz and Perricos, Alexandra and Husslein, Heinrich and Wenzl, René}, issn = {14220067}, journal = {International Journal of Molecular Sciences}, number = {16}, publisher = {MDPI}, title = {{LINC01133 inhibits invasion and promotes proliferation in an endometriosis epithelial cell line}}, doi = {10.3390/ijms22168385}, volume = {22}, year = {2021}, } @article{9910, abstract = {Adult height inspired the first biometrical and quantitative genetic studies and is a test-case trait for understanding heritability. The studies of height led to formulation of the classical polygenic model, that has a profound influence on the way we view and analyse complex traits. An essential part of the classical model is an assumption of additivity of effects and normality of the distribution of the residuals. However, it may be expected that the normal approximation will become insufficient in bigger studies. Here, we demonstrate that when the height of hundreds of thousands of individuals is analysed, the model complexity needs to be increased to include non-additive interactions between sex, environment and genes. Alternatively, the use of log-normal approximation allowed us to still use the additive effects model. These findings are important for future genetic and methodologic studies that make use of adult height as an exemplar trait.}, author = {Slavskii, Sergei A. and Kuznetsov, Ivan A. and Shashkova, Tatiana I. and Bazykin, Georgii A. and Axenovich, Tatiana I. and Kondrashov, Fyodor and Aulchenko, Yurii S.}, issn = {14765438}, journal = {European Journal of Human Genetics}, number = {7}, pages = {1082--1091}, publisher = {Springer Nature}, title = {{The limits of normal approximation for adult height}}, doi = {10.1038/s41431-021-00836-7}, volume = {29}, year = {2021}, } @article{9912, abstract = {In the customary random matrix model for transport in quantum dots with M internal degrees of freedom coupled to a chaotic environment via 𝑁≪𝑀 channels, the density 𝜌 of transmission eigenvalues is computed from a specific invariant ensemble for which explicit formula for the joint probability density of all eigenvalues is available. We revisit this problem in the large N regime allowing for (i) arbitrary ratio 𝜙:=𝑁/𝑀≤1; and (ii) general distributions for the matrix elements of the Hamiltonian of the quantum dot. In the limit 𝜙→0, we recover the formula for the density 𝜌 that Beenakker (Rev Mod Phys 69:731–808, 1997) has derived for a special matrix ensemble. We also prove that the inverse square root singularity of the density at zero and full transmission in Beenakker’s formula persists for any 𝜙<1 but in the borderline case 𝜙=1 an anomalous 𝜆−2/3 singularity arises at zero. To access this level of generality, we develop the theory of global and local laws on the spectral density of a large class of noncommutative rational expressions in large random matrices with i.i.d. entries.}, author = {Erdös, László and Krüger, Torben H and Nemish, Yuriy}, issn = {1424-0661}, journal = {Annales Henri Poincaré }, pages = {4205–4269}, publisher = {Springer Nature}, title = {{Scattering in quantum dots via noncommutative rational functions}}, doi = {10.1007/s00023-021-01085-6}, volume = {22}, year = {2021}, } @article{9891, abstract = {Extending on ideas of Lewin, Lieb, and Seiringer [Phys. Rev. B 100, 035127 (2019)], we present a modified “floating crystal” trial state for jellium (also known as the classical homogeneous electron gas) with density equal to a characteristic function. This allows us to show that three definitions of the jellium energy coincide in dimensions d ≥ 2, thus extending the result of Cotar and Petrache [“Equality of the Jellium and uniform electron gas next-order asymptotic terms for Coulomb and Riesz potentials,” arXiv: 1707.07664 (2019)] and Lewin, Lieb, and Seiringer [Phys. Rev. B 100, 035127 (2019)] that the three definitions coincide in dimension d ≥ 3. We show that the jellium energy is also equivalent to a “renormalized energy” studied in a series of papers by Serfaty and others, and thus, by the work of Bétermin and Sandier [Constr. Approximation 47, 39–74 (2018)], we relate the jellium energy to the order n term in the logarithmic energy of n points on the unit 2-sphere. We improve upon known lower bounds for this renormalized energy. Additionally, we derive formulas for the jellium energy of periodic configurations.}, author = {Lauritsen, Asbjørn Bækgaard}, issn = {1089-7658}, journal = {Journal of Mathematical Physics}, keywords = {Mathematical Physics, Statistical and Nonlinear Physics}, number = {8}, publisher = {AIP Publishing}, title = {{Floating Wigner crystal and periodic jellium configurations}}, doi = {10.1063/5.0053494}, volume = {62}, year = {2021}, } @article{9909, abstract = {Roots are composed of different root types and, in the dicotyledonous Arabidopsis, typically consist of a primary root that branches into lateral roots. Adventitious roots emerge from non-root tissue and are formed upon wounding or other types of abiotic stress. Here, we investigated adventitious root (AR) formation in Arabidopsis hypocotyls under conditions of altered abscisic acid (ABA) signaling. Exogenously applied ABA suppressed AR formation at 0.25 µM or higher doses. AR formation was less sensitive to the synthetic ABA analog pyrabactin (PB). However, PB was a more potent inhibitor at concentrations above 1 µM, suggesting that it was more selective in triggering a root inhibition response. Analysis of a series of phosphonamide and phosphonate pyrabactin analogs suggested that adventitious root formation and lateral root branching are differentially regulated by ABA signaling. ABA biosynthesis and signaling mutants affirmed a general inhibitory role of ABA and point to PYL1 and PYL2 as candidate ABA receptors that regulate AR inhibition.}, author = {Zeng, Yinwei and Verstraeten, Inge and Trinh, Hoang Khai and Heugebaert, Thomas and Stevens, Christian V. and Garcia-Maquilon, Irene and Rodriguez, Pedro L. and Vanneste, Steffen and Geelen, Danny}, issn = {20734425}, journal = {Genes}, number = {8}, publisher = {MDPI}, title = {{Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling}}, doi = {10.3390/genes12081141}, volume = {12}, year = {2021}, } @article{9907, abstract = {DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane. }, author = {Labajová, Naďa and Baranova, Natalia S. and Jurásek, Miroslav and Vácha, Robert and Loose, Martin and Barák, Imrich}, issn = {14220067}, journal = {International Journal of Molecular Sciences}, number = {15}, publisher = {MDPI}, title = {{Cardiolipin-containing lipid membranes attract the bacterial cell division protein diviva}}, doi = {10.3390/ijms22158350}, volume = {22}, year = {2021}, } @article{9905, abstract = {Vaccines are thought to be the best available solution for controlling the ongoing SARS-CoV-2 pandemic. However, the emergence of vaccine-resistant strains may come too rapidly for current vaccine developments to alleviate the health, economic and social consequences of the pandemic. To quantify and characterize the risk of such a scenario, we created a SIR-derived model with initial stochastic dynamics of the vaccine-resistant strain to study the probability of its emergence and establishment. Using parameters realistically resembling SARS-CoV-2 transmission, we model a wave-like pattern of the pandemic and consider the impact of the rate of vaccination and the strength of non-pharmaceutical intervention measures on the probability of emergence of a resistant strain. As expected, we found that a fast rate of vaccination decreases the probability of emergence of a resistant strain. Counterintuitively, when a relaxation of non-pharmaceutical interventions happened at a time when most individuals of the population have already been vaccinated the probability of emergence of a resistant strain was greatly increased. Consequently, we show that a period of transmission reduction close to the end of the vaccination campaign can substantially reduce the probability of resistant strain establishment. Our results suggest that policymakers and individuals should consider maintaining non-pharmaceutical interventions and transmission-reducing behaviours throughout the entire vaccination period.}, author = {Rella, Simon and Kulikova, Yuliya A. and Dermitzakis, Emmanouil T. and Kondrashov, Fyodor}, issn = {20452322}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, title = {{Rates of SARS-CoV-2 transmission and vaccination impact the fate of vaccine-resistant strains}}, doi = {10.1038/s41598-021-95025-3}, volume = {11}, year = {2021}, } @article{9903, abstract = {Eigenstate thermalization in quantum many-body systems implies that eigenstates at high energy are similar to random vectors. Identifying systems where at least some eigenstates are nonthermal is an outstanding question. In this Letter we show that interacting quantum models that have a nullspace—a degenerate subspace of eigenstates at zero energy (zero modes), which corresponds to infinite temperature, provide a route to nonthermal eigenstates. We analytically show the existence of a zero mode which can be represented as a matrix product state for a certain class of local Hamiltonians. In the more general case we use a subspace disentangling algorithm to generate an orthogonal basis of zero modes characterized by increasing entanglement entropy. We show evidence for an area-law entanglement scaling of the least-entangled zero mode in the broad parameter regime, leading to a conjecture that all local Hamiltonians with the nullspace feature zero modes with area-law entanglement scaling and, as such, break the strong thermalization hypothesis. Finally, we find zero modes in constrained models and propose a setup for observing their experimental signatures.}, author = {Karle, Volker and Serbyn, Maksym and Michailidis, Alexios}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {6}, publisher = {American Physical Society}, title = {{Area-law entangled eigenstates from nullspaces of local Hamiltonians}}, doi = {10.1103/physrevlett.127.060602}, volume = {127}, year = {2021}, } @article{9952, abstract = {Proper control of division orientation and symmetry, largely determined by spindle positioning, is essential to development and homeostasis. Spindle positioning has been extensively studied in cells dividing in two-dimensional (2D) environments and in epithelial tissues, where proteins such as NuMA (also known as NUMA1) orient division along the interphase long axis of the cell. However, little is known about how cells control spindle positioning in three-dimensional (3D) environments, such as early mammalian embryos and a variety of adult tissues. Here, we use mouse embryonic stem cells (ESCs), which grow in 3D colonies, as a model to investigate division in 3D. We observe that, at the periphery of 3D colonies, ESCs display high spindle mobility and divide asymmetrically. Our data suggest that enhanced spindle movements are due to unequal distribution of the cell–cell junction protein E-cadherin between future daughter cells. Interestingly, when cells progress towards differentiation, division becomes more symmetric, with more elongated shapes in metaphase and enhanced cortical NuMA recruitment in anaphase. Altogether, this study suggests that in 3D contexts, the geometry of the cell and its contacts with neighbors control division orientation and symmetry.}, author = {Chaigne, Agathe and Smith, Matthew B. and Cavestany, R. L. and Hannezo, Edouard B and Chalut, Kevin J. and Paluch, Ewa K.}, issn = {14779137}, journal = {Journal of Cell Science}, number = {14}, publisher = {The Company of Biologists}, title = {{Three-dimensional geometry controls division symmetry in stem cell colonies}}, doi = {10.1242/jcs.255018}, volume = {134}, year = {2021}, } @article{9908, abstract = {About eight million animal species are estimated to live on Earth, and all except those belonging to one subphylum are invertebrates. Invertebrates are incredibly diverse in their morphologies, life histories, and in the range of the ecological niches that they occupy. A great variety of modes of reproduction and sex determination systems is also observed among them, and their mosaic-distribution across the phylogeny shows that transitions between them occur frequently and rapidly. Genetic conflict in its various forms is a long-standing theory to explain what drives those evolutionary transitions. Here, we review (1) the different modes of reproduction among invertebrate species, highlighting sexual reproduction as the probable ancestral state; (2) the paradoxical diversity of sex determination systems; (3) the different types of genetic conflicts that could drive the evolution of such different systems.}, author = {Picard, Marion A L and Vicoso, Beatriz and Bertrand, Stéphanie and Escriva, Hector}, issn = {20734425}, journal = {Genes}, number = {8}, publisher = {MDPI}, title = {{Diversity of modes of reproduction and sex determination systems in invertebrates, and the putative contribution of genetic conflict}}, doi = {10.3390/genes12081136}, volume = {12}, year = {2021}, } @article{9829, abstract = {In 2020, many in-person scientific events were canceled due to the COVID-19 pandemic, creating a vacuum in networking and knowledge exchange between scientists. To fill this void in scientific communication, a group of early career nanocrystal enthusiasts launched the virtual seminar series, News in Nanocrystals, in the summer of 2020. By the end of the year, the series had attracted over 850 participants from 46 countries. In this Nano Focus, we describe the process of organizing the News in Nanocrystals seminar series; discuss its growth, emphasizing what the organizers have learned in terms of diversity and accessibility; and provide an outlook for the next steps and future opportunities. This summary and analysis of experiences and learned lessons are intended to inform the broader scientific community, especially those who are looking for avenues to continue fostering discussion and scientific engagement virtually, both during the pandemic and after.}, author = {Baranov, Dmitry and Šverko, Tara and Moot, Taylor and Keller, Helena R. and Klein, Megan D. and Vishnu, E. K. and Balazs, Daniel and Shulenberger, Katherine E.}, issn = {1936086X}, journal = {ACS Nano}, number = {7}, pages = {10743–10747}, publisher = {American Chemical Society}, title = {{News in Nanocrystals seminar: Self-assembly of early career researchers toward globally accessible nanoscience}}, doi = {10.1021/acsnano.1c03276}, volume = {15}, year = {2021}, } @misc{13057, abstract = {This dataset comprises all data shown in the figures of the submitted article "Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction". Additional raw data are available from the corresponding author on reasonable request.}, author = {Peruzzo, Matilda and Hassani, Farid and Szep, Grisha and Trioni, Andrea and Redchenko, Elena and Zemlicka, Martin and Fink, Johannes M}, publisher = {Zenodo}, title = {{Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction}}, doi = {10.5281/ZENODO.5592103}, year = {2021}, }