@article{3315,
abstract = {We consider two-player games played in real time on game structures with clocks where the objectives of players are described using parity conditions. The games are concurrent in that at each turn, both players independently propose a time delay and an action, and the action with the shorter delay is chosen. To prevent a player from winning by blocking time, we restrict each player to play strategies that ensure that the player cannot be responsible for causing a zeno run. First, we present an efficient reduction of these games to turn-based (i.e., not concurrent) finite-state (i.e., untimed) parity games. Our reduction improves the best known complexity for solving timed parity games. Moreover, the rich class of algorithms for classical parity games can now be applied to timed parity games. The states of the resulting game are based on clock regions of the original game, and the state space of the finite game is linear in the size of the region graph. Second, we consider two restricted classes of strategies for the player that represents the controller in a real-time synthesis problem, namely, limit-robust and bounded-robust winning strategies. Using a limit-robust winning strategy, the controller cannot choose an exact real-valued time delay but must allow for some nonzero jitter in each of its actions. If there is a given lower bound on the jitter, then the strategy is bounded-robust winning. We show that exact strategies are more powerful than limit-robust strategies, which are more powerful than bounded-robust winning strategies for any bound. For both kinds of robust strategies, we present efficient reductions to standard timed automaton games. These reductions provide algorithms for the synthesis of robust real-time controllers.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Prabhu, Vinayak},
journal = {Logical Methods in Computer Science},
number = {4},
publisher = {International Federation of Computational Logic},
title = {{Timed parity games: Complexity and robustness}},
doi = {10.2168/LMCS-7(4:8)2011},
volume = {7},
year = {2011},
}
@inproceedings{3316,
abstract = {In addition to being correct, a system should be robust, that is, it should behave reasonably even after receiving unexpected inputs. In this paper, we summarize two formal notions of robustness that we have introduced previously for reactive systems. One of the notions is based on assigning costs for failures on a user-provided notion of incorrect transitions in a specification. Here, we define a system to be robust if a finite number of incorrect inputs does not lead to an infinite number of incorrect outputs. We also give a more refined notion of robustness that aims to minimize the ratio of output failures to input failures. The second notion is aimed at liveness. In contrast to the previous notion, it has no concept of recovery from an error. Instead, it compares the ratio of the number of liveness constraints that the system violates to the number of liveness constraints that the environment violates.},
author = {Bloem, Roderick and Chatterjee, Krishnendu and Greimel, Karin and Henzinger, Thomas A and Jobstmann, Barbara},
booktitle = {6th IEEE International Symposium on Industrial and Embedded Systems},
location = {Vasteras, Sweden},
pages = {176 -- 185},
publisher = {IEEE},
title = {{Specification-centered robustness}},
doi = {10.1109/SIES.2011.5953660},
year = {2011},
}
@article{3318,
abstract = {Parvalbumin is thought to act in a manner similar to EGTA, but how a slow Ca2+ buffer affects nanodomain-coupling regimes at GABAergic synapses is unclear. Direct measurements of parvalbumin concentration and paired recordings in rodent hippocampus and cerebellum revealed that parvalbumin affects synaptic dynamics only when expressed at high levels. Modeling suggests that, in high concentrations, parvalbumin may exert BAPTA-like effects, modulating nanodomain coupling via competition with local saturation of endogenous fixed buffers.},
author = {Eggermann, Emmanuel and Jonas, Peter M},
journal = {Nature Neuroscience},
pages = {20 -- 22},
publisher = {Nature Publishing Group},
title = {{How the “slow” Ca(2+) buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses}},
doi = {10.1038/nn.3002},
volume = {15},
year = {2011},
}
@article{3320,
abstract = {Powerful statistical models that can be learned efficiently from large amounts of data are currently revolutionizing computer vision. These models possess a rich internal structure reflecting task-specific relations and constraints. This monograph introduces the reader to the most popular classes of structured models in computer vision. Our focus is discrete undirected graphical models which we cover in detail together with a description of algorithms for both probabilistic inference and maximum a posteriori inference. We discuss separately recently successful techniques for prediction in general structured models. In the second part of this monograph we describe methods for parameter learning where we distinguish the classic maximum likelihood based methods from the more recent prediction-based parameter learning methods. We highlight developments to enhance current models and discuss kernelized models and latent variable models. To make the monograph more practical and to provide links to further study we provide examples of successful application of many methods in the computer vision literature.},
author = {Nowozin, Sebastian and Lampert, Christoph},
journal = {Foundations and Trends in Computer Graphics and Vision},
number = {3-4},
pages = {185 -- 365},
publisher = {now},
title = {{Structured learning and prediction in computer vision}},
doi = {10.1561/0600000033},
volume = {6},
year = {2011},
}
@inproceedings{3324,
abstract = {Automated termination provers often use the following schema to prove that a program terminates: construct a relational abstraction of the program's transition relation and then show that the relational abstraction is well-founded. The focus of current tools has been on developing sophisticated techniques for constructing the abstractions while relying on known decidable logics (such as linear arithmetic) to express them. We believe we can significantly increase the class of programs that are amenable to automated termination proofs by identifying more expressive decidable logics for reasoning about well-founded relations. We therefore present a new decision procedure for reasoning about multiset orderings, which are among the most powerful orderings used to prove termination. We show that, using our decision procedure, one can automatically prove termination of natural abstractions of programs.},
author = {Piskac, Ruzica and Wies, Thomas},
editor = {Jhala, Ranjit and Schmidt, David},
location = {Texas, USA},
pages = {371 -- 386},
publisher = {Springer},
title = {{Decision procedures for automating termination proofs}},
doi = {10.1007/978-3-642-18275-4_26},
volume = {6538},
year = {2011},
}
@inproceedings{3326,
abstract = {Weighted automata map input words to numerical values. Ap- plications of weighted automata include formal verification of quantitative properties, as well as text, speech, and image processing. A weighted au- tomaton is defined with respect to a semiring. For the tropical semiring, the weight of a run is the sum of the weights of the transitions taken along the run, and the value of a word is the minimal weight of an accepting run on it. In the 90’s, Krob studied the decidability of problems on rational series defined with respect to the tropical semiring. Rational series are strongly related to weighted automata, and Krob’s results apply to them. In par- ticular, it follows from Krob’s results that the universality problem (that is, deciding whether the values of all words are below some threshold) is decidable for weighted automata defined with respect to the tropical semir- ing with domain ∪ {∞}, and that the equality problem is undecidable when the domain is ∪ {∞}. In this paper we continue the study of the borders of decidability in weighted automata, describe alternative and direct proofs of the above results, and tighten them further. Unlike the proofs of Krob, which are algebraic in their nature, our proofs stay in the terrain of state machines, and the reduction is from the halting problem of a two-counter machine. This enables us to significantly simplify Krob’s reasoning, make the un- decidability result accessible to the automata-theoretic community, and strengthen it to apply already to a very simple class of automata: all the states are accepting, there are no initial nor final weights, and all the weights on the transitions are from the set {−1, 0, 1}. The fact we work directly with the automata enables us to tighten also the decidability re- sults and to show that the universality problem for weighted automata defined with respect to the tropical semiring with domain ∪ {∞}, and in fact even with domain ≥0 ∪ {∞}, is PSPACE-complete. Our results thus draw a sharper picture about the decidability of decision problems for weighted automata, in both the front of containment vs. universality and the front of the ∪ {∞} vs. the ∪ {∞} domains.},
author = {Almagor, Shaull and Boker, Udi and Kupferman, Orna},
location = {Taipei, Taiwan},
pages = {482 -- 491},
publisher = {Springer},
title = {{What’s decidable about weighted automata }},
doi = {10.1007/978-3-642-24372-1_37},
volume = {6996},
year = {2011},
}
@inproceedings{3328,
abstract = {We report on a generic uni- and bivariate algebraic kernel that is publicly available with CGAL 3.7. It comprises complete, correct, though efficient state-of-the-art implementations on polynomials, roots of polynomial systems, and the support to analyze algebraic curves defined by bivariate polynomials. The kernel design is generic, that is, various number types and substeps can be exchanged. It is accompanied with a ready-to-use interface to enable arrangements induced by algebraic curves, that have already been used as basis for various geometric applications, as arrangements on Dupin cyclides or the triangulation of algebraic surfaces. We present two novel applications: arrangements of rotated algebraic curves and Boolean set operations on polygons bounded by segments of algebraic curves. We also provide experiments showing that our general implementation is competitive and even often clearly outperforms existing implementations that are explicitly tailored for specific types of non-linear curves that are available in CGAL.},
author = {Berberich, Eric and Hemmer, Michael and Kerber, Michael},
location = {Paris, France},
pages = {179 -- 186},
publisher = {ACM},
title = {{A generic algebraic kernel for non linear geometric applications}},
doi = {10.1145/1998196.1998224},
year = {2011},
}
@inproceedings{3329,
abstract = {We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance µ in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution shape P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. An alternative algorithm, based purely on rational arithmetic, answers the same deconstruction problem, up to an uncertainty parameter, and its running time depends on the parameter δ (in addition to the other input parameters: n, δ and the radius of the disk). If the input shape is found to be approximable, the rational-arithmetic algorithm also computes an approximate solution shape for the problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one. Our study is motivated by applications from two different domains. However, since the offset operation has numerous uses, we anticipate that the reverse question that we study here will be still more broadly applicable. We present results obtained with our implementation of the rational-arithmetic algorithm.},
author = {Berberich, Eric and Halperin, Dan and Kerber, Michael and Pogalnikova, Roza},
booktitle = {Proceedings of the twenty-seventh annual symposium on Computational geometry},
location = {Paris, France},
pages = {187 -- 196},
publisher = {ACM},
title = {{Deconstructing approximate offsets}},
doi = {10.1145/1998196.1998225},
year = {2011},
}
@inproceedings{3330,
abstract = {We consider the problem of approximating all real roots of a square-free polynomial f. Given isolating intervals, our algorithm refines each of them to a width at most 2-L, that is, each of the roots is approximated to L bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only requiring finite approximations of the polynomial coefficient and choosing a suitable working precision adaptively. In this way, we get a correct algorithm that is simple to implement and practically efficient. Our algorithm uses the quadratic interval refinement method; we adapt that method to be able to cope with inaccuracies when evaluating f, without sacrificing its quadratic convergence behavior. We prove a bound on the bit complexity of our algorithm in terms of degree, coefficient size and discriminant. Our bound improves previous work on integer polynomials by a factor of deg f and essentially matches best known theoretical bounds on root approximation which are obtained by very sophisticated algorithms.},
author = {Kerber, Michael and Sagraloff, Michael},
location = {California, USA},
pages = {209 -- 216},
publisher = {Springer},
title = {{Root refinement for real polynomials}},
doi = {10.1145/1993886.1993920},
year = {2011},
}
@article{3332,
abstract = {Given an algebraic hypersurface O in ℝd, how many simplices are necessary for a simplicial complex isotopic to O? We address this problem and the variant where all vertices of the complex must lie on O. We give asymptotically tight worst-case bounds for algebraic plane curves. Our results gradually improve known bounds in higher dimensions; however, the question for tight bounds remains unsolved for d ≥ 3.},
author = {Kerber, Michael and Sagraloff, Michael},
journal = {Graphs and Combinatorics},
number = {3},
pages = {419 -- 430},
publisher = {Springer},
title = {{A note on the complexity of real algebraic hypersurfaces}},
doi = {10.1007/s00373-011-1020-7},
volume = {27},
year = {2011},
}
@inbook{3335,
abstract = {We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them. For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. These can be tuned to consist of specific morphological elements of the Cosmic Web, i.e. clusters, filaments, or sheets. To elucidate the relative prominence of the various Betti numbers in different stages of morphological evolution, we introduce the concept of alpha tracks. Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web. We also demonstrate that the scale-dependence of the Betti numbers yields a promising measure of cosmological parameters, with a potential to help in determining the nature of dark energy and to probe primordial non-Gaussianities. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field. Finally, we introduce the concept of persistent homology. It measures scale levels of the mass distribution and allows us to separate small from large scale features. Within the context of the hierarchical cosmic structure formation, persistence provides a natural formalism for a multiscale topology study of the Cosmic Web.},
author = {Van De Weygaert, Rien and Vegter, Gert and Edelsbrunner, Herbert and Jones, Bernard and Pranav, Pratyush and Park, Changbom and Hellwing, Wojciech and Eldering, Bob and Kruithof, Nico and Bos, Patrick and Hidding, Johan and Feldbrugge, Job and Ten Have, Eline and Van Engelen, Matti and Caroli, Manuel and Teillaud, Monique},
booktitle = {Transactions on Computational Science XIV},
editor = {Gavrilova, Marina and Tan, Kenneth and Mostafavi, Mir},
pages = {60 -- 101},
publisher = {Springer},
title = {{Alpha, Betti and the Megaparsec Universe: On the topology of the Cosmic Web}},
doi = {10.1007/978-3-642-25249-5_3},
volume = {6970},
year = {2011},
}
@unpublished{3338,
abstract = {We consider 2-player games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves inde- pendently and simultaneously; the current state and the two moves determine the successor state. We study concurrent games with ω-regular winning conditions specified as parity objectives. We consider the qualitative analysis problems: the computation of the almost-sure and limit-sure winning set of states, where player 1 can ensure to win with probability 1 and with probability arbitrarily close to 1, respec- tively. In general the almost-sure and limit-sure winning strategies require both infinite-memory as well as infinite-precision (to describe probabilities). We study the bounded-rationality problem for qualitative analysis of concurrent parity games, where the strategy set for player 1 is restricted to bounded-resource strategies. In terms of precision, strategies can be deterministic, uniform, finite-precision or infinite- precision; and in terms of memory, strategies can be memoryless, finite-memory or infinite-memory. We present a precise and complete characterization of the qualitative winning sets for all combinations of classes of strategies. In particular, we show that uniform memoryless strategies are as powerful as finite-precision infinite-memory strategies, and infinite-precision memoryless strategies are as power- ful as infinite-precision finite-memory strategies. We show that the winning sets can be computed in O(n2d+3) time, where n is the size of the game structure and 2d is the number of priorities (or colors), and our algorithms are symbolic. The membership problem of whether a state belongs to a winning set can be decided in NP ∩ coNP. While this complexity is the same as for the simpler class of turn-based parity games, where in each state only one of the two players has a choice of moves, our algorithms, that are obtained by characterization of the winning sets as μ-calculus formulas, are considerably more involved than those for turn-based games.},
author = {Chatterjee, Krishnendu},
booktitle = {arXiv},
pages = {1 -- 51},
publisher = {ArXiv},
title = {{Bounded rationality in concurrent parity games}},
year = {2011},
}
@unpublished{3339,
abstract = {Turn-based stochastic games and its important subclass Markov decision processes (MDPs) provide models for systems with both probabilistic and nondeterministic behaviors. We consider turn-based stochastic games with two classical quantitative objectives: discounted-sum and long-run average objectives. The game models and the quantitative objectives are widely used in probabilistic verification, planning, optimal inventory control, network protocol and performance analysis. Games and MDPs that model realistic systems often have very large state spaces, and probabilistic abstraction techniques are necessary to handle the state-space explosion. The commonly used full-abstraction techniques do not yield space-savings for systems that have many states with similar value, but does not necessarily have similar transition structure. A semi-abstraction technique, namely Magnifying-lens abstractions (MLA), that clusters states based on value only, disregarding differences in their transition relation was proposed for qualitative objectives (reachability and safety objectives). In this paper we extend the MLA technique to solve stochastic games with discounted-sum and long-run average objectives. We present the MLA technique based abstraction-refinement algorithm for stochastic games and MDPs with discounted-sum objectives. For long-run average objectives, our solution works for all MDPs and a sub-class of stochastic games where every state has the same value. },
author = {Chatterjee, Krishnendu and De Alfaro, Luca and Pritam, Roy},
booktitle = {arXiv},
pages = {17},
publisher = {ArXiv},
title = {{Magnifying lens abstraction for stochastic games with discounted and long-run average objectives}},
year = {2011},
}
@inproceedings{3342,
abstract = {We consider Markov decision processes (MDPs) with ω-regular specifications given as parity objectives. We consider the problem of computing the set of almost-sure winning states from where the objective can be ensured with probability 1. The algorithms for the computation of the almost-sure winning set for parity objectives iteratively use the solutions for the almost-sure winning set for Büchi objectives (a special case of parity objectives). Our contributions are as follows: First, we present the first subquadratic symbolic algorithm to compute the almost-sure winning set for MDPs with Büchi objectives; our algorithm takes O(nm) symbolic steps as compared to the previous known algorithm that takes O(n 2) symbolic steps, where n is the number of states and m is the number of edges of the MDP. In practice MDPs often have constant out-degree, and then our symbolic algorithm takes O(nn) symbolic steps, as compared to the previous known O(n 2) symbolic steps algorithm. Second, we present a new algorithm, namely win-lose algorithm, with the following two properties: (a) the algorithm iteratively computes subsets of the almost-sure winning set and its complement, as compared to all previous algorithms that discover the almost-sure winning set upon termination; and (b) requires O(nK) symbolic steps, where K is the maximal number of edges of strongly connected components (scc’s) of the MDP. The win-lose algorithm requires symbolic computation of scc’s. Third, we improve the algorithm for symbolic scc computation; the previous known algorithm takes linear symbolic steps, and our new algorithm improves the constants associated with the linear number of steps. In the worst case the previous known algorithm takes 5·n symbolic steps, whereas our new algorithm takes 4 ·n symbolic steps.},
author = {Chatterjee, Krishnendu and Henzinger, Monika and Joglekar, Manas and Nisarg, Shah},
editor = {Gopalakrishnan, Ganesh and Qadeer, Shaz},
location = {Snowbird, USA},
pages = {260 -- 276},
publisher = {Springer},
title = {{Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives}},
doi = {10.1007/978-3-642-22110-1_21},
volume = {6806},
year = {2011},
}
@inproceedings{3343,
abstract = {We present faster and dynamic algorithms for the following problems arising in probabilistic verification: Computation of the maximal end-component (mec) decomposition of Markov decision processes (MDPs), and of the almost sure winning set for reachability and parity objectives in MDPs. We achieve the following running time for static algorithms in MDPs with graphs of n vertices and m edges: (1) O(m · min{ √m, n2/3 }) for the mec decomposition, improving the longstanding O(m·n) bound; (2) O(m·n2/3) for reachability objectives, improving the previous O(m · √m) bound for m > n4/3; and (3) O(m · min{ √m, n2/3 } · log(d)) for parity objectives with d priorities, improving the previous O(m · √m · d) bound. We also give incremental and decremental algorithms in linear time for mec decomposition and reachability objectives and O(m · log d) time for parity ob jectives.},
author = {Chatterjee, Krishnendu and Henzinger, Monika},
location = {San Francisco, USA},
pages = {1318 -- 1336},
publisher = {SIAM},
title = {{Faster and dynamic algorithms for maximal end component decomposition and related graph problems in probabilistic verification}},
doi = {10.1137/1.9781611973082.101},
year = {2011},
}
@inproceedings{3345,
abstract = {We consider Markov Decision Processes (MDPs) with mean-payoff parity and energy parity objectives. In system design, the parity objective is used to encode ω-regular specifications, and the mean-payoff and energy objectives can be used to model quantitative resource constraints. The energy condition re- quires that the resource level never drops below 0, and the mean-payoff condi- tion requires that the limit-average value of the resource consumption is within a threshold. While these two (energy and mean-payoff) classical conditions are equivalent for two-player games, we show that they differ for MDPs. We show that the problem of deciding whether a state is almost-sure winning (i.e., winning with probability 1) in energy parity MDPs is in NP ∩ coNP, while for mean- payoff parity MDPs, the problem is solvable in polynomial time, improving a recent PSPACE bound.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
location = {Warsaw, Poland},
pages = {206 -- 218},
publisher = {Springer},
title = {{Energy and mean-payoff parity Markov Decision Processes}},
doi = {10.1007/978-3-642-22993-0_21},
volume = {6907},
year = {2011},
}
@inproceedings{3346,
abstract = {We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with k reward functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the single-objective case, both randomization and memory are necessary for strategies, and that finite-memory randomized strategies are sufficient. Under the satisfaction objective, in contrast to the single-objective case, infinite memory is necessary for strategies, and that randomized memoryless strategies are sufficient for epsilon-approximation, for all epsilon>;0. We further prove that the decision problems for both expectation and satisfaction objectives can be solved in polynomial time and the trade-off curve (Pareto curve) can be epsilon-approximated in time polynomial in the size of the MDP and 1/epsilon, and exponential in the number of reward functions, for all epsilon>;0. Our results also reveal flaws in previous work for MDPs with multiple mean-payoff functions under the expectation objective, correct the flaws and obtain improved results.},
author = {Brázdil, Tomáš and Brožek, Václav and Chatterjee, Krishnendu and Forejt, Vojtěch and Kučera, Antonín},
location = {Toronto, Canada},
publisher = {IEEE},
title = {{Two views on multiple mean payoff objectives in Markov Decision Processes}},
doi = {10.1109/LICS.2011.10},
year = {2011},
}
@inproceedings{3347,
abstract = {The class of omega-regular languages provides a robust specification language in verification. Every omega-regular condition can be decomposed into a safety part and a liveness part. The liveness part ensures that something good happens "eventually". Finitary liveness was proposed by Alur and Henzinger as a stronger formulation of liveness. It requires that there exists an unknown, fixed bound b such that something good happens within b transitions. In this work we consider automata with finitary acceptance conditions defined by finitary Buchi, parity and Streett languages. We study languages expressible by such automata: we give their topological complexity and present a regular-expression characterization. We compare the expressive power of finitary automata and give optimal algorithms for classical decisions questions. We show that the finitary languages are Sigma 2-complete; we present a complete picture of the expressive power of various classes of automata with finitary and infinitary acceptance conditions; we show that the languages defined by finitary parity automata exactly characterize the star-free fragment of omega B-regular languages; and we show that emptiness is NLOGSPACE-complete and universality as well as language inclusion are PSPACE-complete for finitary parity and Streett automata.},
author = {Chatterjee, Krishnendu and Fijalkow, Nathanaël},
location = {Tarragona, Spain},
pages = {216 -- 226},
publisher = {Springer},
title = {{Finitary languages}},
doi = {10.1007/978-3-642-21254-3_16},
volume = {6638},
year = {2011},
}
@inproceedings{3348,
abstract = {We study synthesis of controllers for real-time systems, where the objective is to stay in a given safe set. The problem is solved by obtaining winning strategies in the setting of concurrent two-player timed automaton games with safety objectives. To prevent a player from winning by blocking time, we restrict each player to strategies that ensure that the player cannot be responsible for causing a zeno run. We construct winning strategies for the controller which require access only to (1) the system clocks (thus, controllers which require their own internal infinitely precise clocks are not necessary), and (2) a linear (in the number of clocks) number of memory bits. Precisely, we show that for safety objectives, a memory of size (3 · |C|+lg(|C|+1)) bits suffices for winning controller strategies, where C is the set of clocks of the timed automaton game, significantly improving the previous known exponential bound. We also settle the open question of whether winning region controller strategies require memory for safety objectives by showing with an example the necessity of memory for region strategies to win for safety objectives.},
author = {Chatterjee, Krishnendu and Prabhu, Vinayak},
location = {Chicago, USA},
pages = {221 -- 230},
publisher = {Springer},
title = {{Synthesis of memory efficient real time controllers for safety objectives}},
doi = {10.1145/1967701.1967734},
year = {2011},
}
@inproceedings{3349,
abstract = {Games on graphs provide a natural model for reactive non-terminating systems. In such games, the interaction of two players on an arena results in an infinite path that describes a run of the system. Different settings are used to model various open systems in computer science, as for instance turn-based or concurrent moves, and deterministic or stochastic transitions. In this paper, we are interested in turn-based games, and specifically in deterministic parity games and stochastic reachability games (also known as simple stochastic games). We present a simple, direct and efficient reduction from deterministic parity games to simple stochastic games: it yields an arena whose size is linear up to a logarithmic factor in size of the original arena.},
author = {Chatterjee, Krishnendu and Fijalkow, Nathanaël},
location = {Minori, Italy},
pages = {74 -- 86},
publisher = {EPTCS},
title = {{A reduction from parity games to simple stochastic games}},
doi = {10.4204/EPTCS.54.6},
volume = {54},
year = {2011},
}
@inproceedings{3351,
abstract = {In two-player games on graph, the players construct an infinite path through the game graph and get a reward computed by a payoff function over infinite paths. Over weighted graphs, the typical and most studied payoff functions compute the limit-average or the discounted sum of the rewards along the path. Besides their simple definition, these two payoff functions enjoy the property that memoryless optimal strategies always exist. In an attempt to construct other simple payoff functions, we define a class of payoff functions which compute an (infinite) weighted average of the rewards. This new class contains both the limit-average and the discounted sum functions, and we show that they are the only members of this class which induce memoryless optimal strategies, showing that there is essentially no other simple payoff functions.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Singh, Rohit},
editor = {Owe, Olaf and Steffen, Martin and Telle, Jan Arne},
location = {Oslo, Norway},
pages = {148 -- 159},
publisher = {Springer},
title = {{On memoryless quantitative objectives}},
doi = {10.1007/978-3-642-22953-4_13},
volume = {6914},
year = {2011},
}
@article{3353,
abstract = {Compositional theories are crucial when designing large and complex systems from smaller components. In this work we propose such a theory for synchronous concurrent systems. Our approach follows so-called interface theories, which use game-theoretic interpretations of composition and refinement. These are appropriate for systems with distinct inputs and outputs, and explicit conditions on inputs that must be enforced during composition. Our interfaces model systems that execute in an infinite sequence of synchronous rounds. At each round, a contract must be satisfied. The contract is simply a relation specifying the set of valid input/output pairs. Interfaces can be composed by parallel, serial or feedback composition. A refinement relation between interfaces is defined, and shown to have two main properties: (1) it is preserved by composition, and (2) it is equivalent to substitutability, namely, the ability to replace an interface by another one in any context. Shared refinement and abstraction operators, corresponding to greatest lower and least upper bounds with respect to refinement, are also defined. Input-complete interfaces, that impose no restrictions on inputs, and deterministic interfaces, that produce a unique output for any legal input, are discussed as special cases, and an interesting duality between the two classes is exposed. A number of illustrative examples are provided, as well as algorithms to compute compositions, check refinement, and so on, for finite-state interfaces.},
author = {Tripakis, Stavros and Lickly, Ben and Henzinger, Thomas A and Lee, Edward},
journal = {ACM Transactions on Programming Languages and Systems (TOPLAS)},
number = {4},
publisher = {ACM},
title = {{A theory of synchronous relational interfaces}},
doi = {10.1145/1985342.1985345},
volume = {33},
year = {2011},
}
@inproceedings{3355,
abstract = {Byzantine Fault Tolerant (BFT) protocols aim to improve the reliability of distributed systems. They enable systems to tolerate arbitrary failures in a bounded number of nodes. BFT protocols are usually proven correct for certain safety and liveness properties. However, recent studies have shown that the performance of state-of-the-art BFT protocols decreases drastically in the presence of even a single malicious node. This motivates a formal quantitative analysis of BFT protocols to investigate their performance characteristics under different scenarios. We present HyPerf, a new hybrid methodology based on model checking and simulation techniques for evaluating the performance of BFT protocols. We build a transition system corresponding to a BFT protocol and systematically explore the set of behaviors allowed by the protocol. We associate certain timing information with different operations in the protocol, like cryptographic operations and message transmission. After an elaborate state exploration, we use the time information to evaluate the performance characteristics of the protocol using simulation techniques. We integrate our framework in Mace, a tool for building and verifying distributed systems. We evaluate the performance of PBFT using our framework. We describe two different use-cases of our methodology. For the benign operation of the protocol, we use the time information as random variables to compute the probability distribution of the execution times. In the presence of faults, we estimate the worst-case performance of the protocol for various attacks that can be employed by malicious nodes. Our results show the importance of hybrid techniques in systematically analyzing the performance of large-scale systems.},
author = {Halalai, Raluca and Henzinger, Thomas A and Singh, Vasu},
location = {Aachen, Germany},
pages = {255 -- 264},
publisher = {IEEE},
title = {{Quantitative evaluation of BFT protocols}},
doi = {10.1109/QEST.2011.40},
year = {2011},
}
@inproceedings{3356,
abstract = {There is recently a significant effort to add quantitative objectives to formal verification and synthesis. We introduce and investigate the extension of temporal logics with quantitative atomic assertions, aiming for a general and flexible framework for quantitative-oriented specifications. In the heart of quantitative objectives lies the accumulation of values along a computation. It is either the accumulated summation, as with the energy objectives, or the accumulated average, as with the mean-payoff objectives. We investigate the extension of temporal logics with the prefix-accumulation assertions Sum(v) ≥ c and Avg(v) ≥ c, where v is a numeric variable of the system, c is a constant rational number, and Sum(v) and Avg(v) denote the accumulated sum and average of the values of v from the beginning of the computation up to the current point of time. We also allow the path-accumulation assertions LimInfAvg(v) ≥ c and LimSupAvg(v) ≥ c, referring to the average value along an entire computation. We study the border of decidability for extensions of various temporal logics. In particular, we show that extending the fragment of CTL that has only the EX, EF, AX, and AG temporal modalities by prefix-accumulation assertions and extending LTL with path-accumulation assertions, result in temporal logics whose model-checking problem is decidable. The extended logics allow to significantly extend the currently known energy and mean-payoff objectives. Moreover, the prefix-accumulation assertions may be refined with "controlled-accumulation", allowing, for example, to specify constraints on the average waiting time between a request and a grant. On the negative side, we show that the fragment we point to is, in a sense, the maximal logic whose extension with prefix-accumulation assertions permits a decidable model-checking procedure. Extending a temporal logic that has the EG or EU modalities, and in particular CTL and LTL, makes the problem undecidable.},
author = {Boker, Udi and Chatterjee, Krishnendu and Henzinger, Thomas A and Kupferman, Orna},
location = {Toronto, Canada},
publisher = {IEEE},
title = {{Temporal specifications with accumulative values}},
doi = {10.1109/LICS.2011.33},
year = {2011},
}
@inproceedings{3358,
abstract = {The static scheduling problem often arises as a fundamental problem in real-time systems and grid computing. We consider the problem of statically scheduling a large job expressed as a task graph on a large number of computing nodes, such as a data center. This paper solves the large-scale static scheduling problem using abstraction refinement, a technique commonly used in formal verification to efficiently solve computationally hard problems. A scheduler based on abstraction refinement first attempts to solve the scheduling problem with abstract representations of the job and the computing resources. As abstract representations are generally small, the scheduling can be done reasonably fast. If the obtained schedule does not meet specified quality conditions (like data center utilization or schedule makespan) then the scheduler refines the job and data center abstractions and, again solves the scheduling problem. We develop different schedulers based on abstraction refinement. We implemented these schedulers and used them to schedule task graphs from various computing domains on simulated data centers with realistic topologies. We compared the speed of scheduling and the quality of the produced schedules with our abstraction refinement schedulers against a baseline scheduler that does not use any abstraction. We conclude that abstraction refinement techniques give a significant speed-up compared to traditional static scheduling heuristics, at a reasonable cost in the quality of the produced schedules. We further used our static schedulers in an actual system that we deployed on Amazon EC2 and compared it against the Hadoop dynamic scheduler for large MapReduce jobs. Our experiments indicate that there is great potential for static scheduling techniques.},
author = {Henzinger, Thomas A and Singh, Vasu and Wies, Thomas and Zufferey, Damien},
location = {Salzburg, Austria},
pages = {329 -- 342},
publisher = {ACM},
title = {{Scheduling large jobs by abstraction refinement}},
doi = {10.1145/1966445.1966476},
year = {2011},
}
@inproceedings{3360,
abstract = {A discounted-sum automaton (NDA) is a nondeterministic finite automaton with edge weights, which values a run by the discounted sum of visited edge weights. More precisely, the weight in the i-th position of the run is divided by lambda^i, where the discount factor lambda is a fixed rational number greater than 1. Discounted summation is a common and useful measuring scheme, especially for infinite sequences, which reflects the assumption that earlier weights are more important than later weights. Determinizing automata is often essential, for example, in formal verification, where there are polynomial algorithms for comparing two deterministic NDAs, while the equivalence problem for NDAs is not known to be decidable. Unfortunately, however, discounted-sum automata are, in general, not determinizable: it is currently known that for every rational discount factor 1 < lambda < 2, there is an NDA with lambda (denoted lambda-NDA) that cannot be determinized. We provide positive news, showing that every NDA with an integral factor is determinizable. We also complete the picture by proving that the integers characterize exactly the discount factors that guarantee determinizability: we show that for every non-integral rational factor lambda, there is a nondeterminizable lambda-NDA. Finally, we prove that the class of NDAs with integral discount factors enjoys closure under the algebraic operations min, max, addition, and subtraction, which is not the case for general NDAs nor for deterministic NDAs. This shows that for integral discount factors, the class of NDAs forms an attractive specification formalism in quantitative formal verification. All our results hold equally for automata over finite words and for automata over infinite words. },
author = {Boker, Udi and Henzinger, Thomas A},
location = {Bergen, Norway},
pages = {82 -- 96},
publisher = {Springer},
title = {{Determinizing discounted-sum automata}},
doi = {10.4230/LIPIcs.CSL.2011.82},
volume = {12},
year = {2011},
}
@inproceedings{3361,
abstract = {In this paper, we investigate the computational complexity of quantitative information flow (QIF) problems. Information-theoretic quantitative relaxations of noninterference (based on Shannon entropy)have been introduced to enable more fine-grained reasoning about programs in situations where limited information flow is acceptable. The QIF bounding problem asks whether the information flow in a given program is bounded by a constant $d$. Our first result is that the QIF bounding problem is PSPACE-complete. The QIF memoryless synthesis problem asks whether it is possible to resolve nondeterministic choices in a given partial program in such a way that in the resulting deterministic program, the quantitative information flow is bounded by a given constant $d$. Our second result is that the QIF memoryless synthesis problem is also EXPTIME-complete. The QIF memoryless synthesis problem generalizes to QIF general synthesis problem which does not impose the memoryless requirement (that is, by allowing the synthesized program to have more variables then the original partial program). Our third result is that the QIF general synthesis problem is EXPTIME-hard.},
author = {Cerny, Pavol and Chatterjee, Krishnendu and Henzinger, Thomas A},
location = {Cernay-la-Ville, France},
pages = {205 -- 217},
publisher = {IEEE},
title = {{The complexity of quantitative information flow problems}},
doi = {10.1109/CSF.2011.21},
year = {2011},
}
@inproceedings{3362,
abstract = {State-transition systems communicating by shared variables have been the underlying model of choice for applications of model checking. Such formalisms, however, have difficulty with modeling process creation or death and communication reconfigurability. Here, we introduce “dynamic reactive modules” (DRM), a state-transition modeling formalism that supports dynamic reconfiguration and creation/death of processes. The resulting formalism supports two types of variables, data variables and reference variables. Reference variables enable changing the connectivity between processes and referring to instances of processes. We show how this new formalism supports parallel composition and refinement through trace containment. DRM provide a natural language for modeling (and ultimately reasoning about) biological systems and multiple threads communicating through shared variables.},
author = {Fisher, Jasmin and Henzinger, Thomas A and Nickovic, Dejan and Piterman, Nir and Singh, Anmol and Vardi, Moshe},
location = {Aachen, Germany},
pages = {404 -- 418},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Dynamic reactive modules}},
doi = {10.1007/978-3-642-23217-6_27},
volume = {6901},
year = {2011},
}
@unpublished{3363,
abstract = {We consider probabilistic automata on infinite words with acceptance defined by safety, reachability, Büchi, coBüchi, and limit-average conditions. We consider quantitative and qualitative decision problems. We present extensions and adaptations of proofs for probabilistic finite automata and present a complete characterization of the decidability and undecidability frontier of the quantitative and qualitative decision problems for probabilistic automata on infinite words.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Tracol, Mathieu},
pages = {19},
publisher = {ArXiv},
title = {{The decidability frontier for probabilistic automata on infinite words}},
year = {2011},
}
@article{3364,
abstract = {Molecular noise, which arises from the randomness of the discrete events in the cell, significantly influences fundamental biological processes. Discrete-state continuous-time stochastic models (CTMC) can be used to describe such effects, but the calculation of the probabilities of certain events is computationally expensive. We present a comparison of two analysis approaches for CTMC. On one hand, we estimate the probabilities of interest using repeated Gillespie simulation and determine the statistical accuracy that we obtain. On the other hand, we apply a numerical reachability analysis that approximates the probability distributions of the system at several time instances. We use examples of cellular processes to demonstrate the superiority of the reachability analysis if accurate results are required.},
author = {Didier, Frédéric and Henzinger, Thomas A and Mateescu, Maria and Wolf, Verena},
journal = {Theoretical Computer Science},
number = {21},
pages = {2128 -- 2141},
publisher = {Elsevier},
title = {{Approximation of event probabilities in noisy cellular processes}},
doi = {10.1016/j.tcs.2010.10.022},
volume = {412},
year = {2011},
}
@inproceedings{3365,
abstract = {We present the tool Quasy, a quantitative synthesis tool. Quasy takes qualitative and quantitative specifications and automatically constructs a system that satisfies the qualitative specification and optimizes the quantitative specification, if such a system exists. The user can choose between a system that satisfies and optimizes the specifications (a) under all possible environment behaviors or (b) under the most-likely environment behaviors given as a probability distribution on the possible input sequences. Quasy solves these two quantitative synthesis problems by reduction to instances of 2-player games and Markov Decision Processes (MDPs) with quantitative winning objectives. Quasy can also be seen as a game solver for quantitative games. Most notable, it can solve lexicographic mean-payoff games with 2 players, MDPs with mean-payoff objectives, and ergodic MDPs with mean-payoff parity objectives.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Jobstmann, Barbara and Singh, Rohit},
location = {Saarbrucken, Germany},
pages = {267 -- 271},
publisher = {Springer},
title = {{QUASY: quantitative synthesis tool}},
doi = {10.1007/978-3-642-19835-9_24},
volume = {6605},
year = {2011},
}
@inproceedings{3366,
abstract = {We present an algorithmic method for the quantitative, performance-aware synthesis of concurrent programs. The input consists of a nondeterministic partial program and of a parametric performance model. The nondeterminism allows the programmer to omit which (if any) synchronization construct is used at a particular program location. The performance model, specified as a weighted automaton, can capture system architectures by assigning different costs to actions such as locking, context switching, and memory and cache accesses. The quantitative synthesis problem is to automatically resolve the nondeterminism of the partial program so that both correctness is guaranteed and performance is optimal. As is standard for shared memory concurrency, correctness is formalized "specification free", in particular as race freedom or deadlock freedom. For worst-case (average-case) performance, we show that the problem can be reduced to 2-player graph games (with probabilistic transitions) with quantitative objectives. While we show, using game-theoretic methods, that the synthesis problem is Nexp-complete, we present an algorithmic method and an implementation that works efficiently for concurrent programs and performance models of practical interest. We have implemented a prototype tool and used it to synthesize finite-state concurrent programs that exhibit different programming patterns, for several performance models representing different architectures. },
author = {Cerny, Pavol and Chatterjee, Krishnendu and Henzinger, Thomas A and Radhakrishna, Arjun and Singh, Rohit},
editor = {Gopalakrishnan, Ganesh and Qadeer, Shaz},
location = {Snowbird, USA},
pages = {243 -- 259},
publisher = {Springer},
title = {{Quantitative synthesis for concurrent programs}},
doi = {10.1007/978-3-642-22110-1_20},
volume = {6806},
year = {2011},
}
@article{3368,
abstract = {Tissue surface tension (TST) is an important mechanical property influencing cell sorting and tissue envelopment. The study by Manning et al. (1) reported on a mathematical model describing TST on the basis of the balance between adhesive and tensile properties of the constituent cells. The model predicts that, in high-adhesion cell aggregates, surface cells will be stretched to maintain the same area of cell–cell contact as interior bulk cells, resulting in an elongated and flattened cell shape. The authors (1) observed flat and elongated cells at the surface of high-adhesion zebrafish germ-layer explants, which they argue are undifferentiated stretched germ-layer progenitor cells, and they use this observation as a validation of their model.},
author = {Krens, Gabriel and Möllmert, Stephanie and Heisenberg, Carl-Philipp J},
journal = {PNAS},
number = {3},
pages = {E9 -- E10},
publisher = {National Academy of Sciences},
title = {{Enveloping cell layer differentiation at the surface of zebrafish germ layer tissue explants}},
doi = {10.1073/pnas.1010767108},
volume = {108},
year = {2011},
}
@article{3370,
abstract = {Supertree methods are widely applied and give rise to new conclusions about phylogenies (e.g., Bininda-Emonds et al. 2007). Although several desiderata for supertree methods exist (Wilkinson, Thorley, et al. 2004), only few of them have been studied in greater detail, examples include shape bias (Wilkinson et al. 2005) or pareto properties (Wilkinson et al. 2007). Here I look more closely at two matrix representation methods, matrix representation with compatibility (MRC) and matrix representation with parsimony (MRP). Different null models of random data are studied and the resulting tree shapes are investigated. Thereby I consider unrooted trees and a bias in tree shape is determined by a tree balance measure. The measure for unrooted trees is a modification of a tree balance measure for rooted trees. I observe that depending on the underlying null model of random data, the methods may resolve conflict in favor of more balanced tree shapes. The analyses refer only to trees with the same taxon set, also known as the consensus setting (e.g., Wilkinson et al. 2007), but I will be able to draw conclusions on how to deal with missing data.},
author = {Kupczok, Anne},
journal = {Systematic Biology},
number = {2},
pages = {218 -- 225},
publisher = {Oxford University Press},
title = {{Consequences of different null models on the tree shape bias of supertree methods}},
doi = {10.1093/sysbio/syq086},
volume = {60},
year = {2011},
}
@article{3371,
abstract = {The Minisymposium “Cell Migration and Motility” was attended by approximately 500 visitors and covered a broad range of questions in the field using diverse model systems. Topics comprised actin dynamics, cell polarity, force transduction, signal transduction, bar- rier transmigration, and chemotactic guidance.},
author = {Sixt, Michael K and Parent, Carole},
journal = {Molecular Biology and Evolution},
number = {6},
pages = {724},
publisher = {Oxford University Press},
title = {{Cells on the move in Philadelphia}},
doi = {10.1091/mbc.E10-12-0958},
volume = {22},
year = {2011},
}
@article{3372,
abstract = {Nowak et al.1 argue that inclusive fitness theory has been of little value in explaining the natural world, and that it has led to negligible progress in explaining the evolution of eusociality. However, we believe that their arguments are based upon a misunderstanding of evolutionary theory and a misrepresentation of the empirical literature. We will focus our comments on three general issues.},
author = {Abbot, Patrick and Abe, Jun and Alcock, John and Alizon, Samuel and Alpedrinha, Joao and Andersson, Malte and Andre, Jean and Van Baalen, Minus and Balloux, Francois and Balshine, Sigal and Barton, Nicholas H and Beukeboom, Leo and Biernaskie, Jay and Bilde, Trine and Borgia, Gerald and Breed, Michael and Brown, Sam and Bshary, Redouan and Buckling, Angus and Burley, Nancy and Burton Chellew, Max and Cant, Michael and Chapuisat, Michel and Charnov, Eric and Clutton Brock, Tim and Cockburn, Andrew and Cole, Blaine and Colegrave, Nick and Cosmides, Leda and Couzin, Iain and Coyne, Jerry and Creel, Scott and Crespi, Bernard and Curry, Robert and Dall, Sasha and Day, Troy and Dickinson, Janis and Dugatkin, Lee and El Mouden, Claire and Emlen, Stephen and Evans, Jay and Ferriere, Regis and Field, Jeremy and Foitzik, Susanne and Foster, Kevin and Foster, William and Fox, Charles and Gadau, Juergen and Gandon, Sylvain and Gardner, Andy and Gardner, Michael and Getty, Thomas and Goodisman, Michael and Grafen, Alan and Grosberg, Rick and Grozinger, Christina and Gouyon, Pierre and Gwynne, Darryl and Harvey, Paul and Hatchwell, Ben and Heinze, Jürgen and Helantera, Heikki and Helms, Ken and Hill, Kim and Jiricny, Natalie and Johnstone, Rufus and Kacelnik, Alex and Kiers, E Toby and Kokko, Hanna and Komdeur, Jan and Korb, Judith and Kronauer, Daniel and Kümmerli, Rolf and Lehmann, Laurent and Linksvayer, Timothy and Lion, Sébastien and Lyon, Bruce and Marshall, James and Mcelreath, Richard and Michalakis, Yannis and Michod, Richard and Mock, Douglas and Monnin, Thibaud and Montgomerie, Robert and Moore, Allen and Mueller, Ulrich and Noë, Ronald and Okasha, Samir and Pamilo, Pekka and Parker, Geoff and Pedersen, Jes and Pen, Ido and Pfennig, David and Queller, David and Rankin, Daniel and Reece, Sarah and Reeve, Hudson and Reuter, Max and Roberts, Gilbert and Robson, Simon and Roze, Denis and Rousset, Francois and Rueppell, Olav and Sachs, Joel and Santorelli, Lorenzo and Schmid Hempel, Paul and Schwarz, Michael and Scott Phillips, Tom and Shellmann Sherman, Janet and Sherman, Paul and Shuker, David and Smith, Jeff and Spagna, Joseph and Strassmann, Beverly and Suarez, Andrew and Sundström, Liselotte and Taborsky, Michael and Taylor, Peter and Thompson, Graham and Tooby, John and Tsutsui, Neil and Tsuji, Kazuki and Turillazzi, Stefano and Úbeda, Francisco and Vargo, Edward and Voelkl, Bernard and Wenseleers, Tom and West, Stuart and West Eberhard, Mary and Westneat, David and Wiernasz, Diane and Wild, Geoff and Wrangham, Richard and Young, Andrew and Zeh, David and Zeh, Jeanne and Zink, Andrew},
journal = {Nature},
number = {7339},
pages = {E1 -- E4},
publisher = {Nature Publishing Group},
title = {{Inclusive fitness theory and eusociality}},
doi = {10.1038/nature09831},
volume = {471},
year = {2011},
}
@article{3373,
abstract = {The use of optical traps to measure or apply forces on the molecular level requires a precise knowledge of the trapping force field. Close to the trap center, this field is typically approximated as linear in the displacement of the trapped microsphere. However, applications demanding high forces at low laser intensities can probe the light-microsphere interaction beyond the linear regime. Here, we measured the full nonlinear force and displacement response of an optical trap in two dimensions using a dual-beam optical trap setup with back-focal-plane photodetection. We observed a substantial stiffening of the trap beyond the linear regime that depends on microsphere size, in agreement with Mie theory calculations. Surprisingly, we found that the linear detection range for forces exceeds the one for displacement by far. Our approach allows for a complete calibration of an optical trap.},
author = {Jahnel, Marcus and Behrndt, Martin and Jannasch, Anita and Schaeffer, Erik and Grill, Stephan},
journal = {Optics Letters},
number = {7},
pages = {1260 -- 1262},
publisher = {OSA},
title = {{Measuring the complete force field of an optical trap}},
doi = {10.1364/OL.36.001260},
volume = {36},
year = {2011},
}
@article{3374,
abstract = {Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.},
author = {Tkacik, Gasper and Walczak, Aleksandra},
journal = {Journal of Physics: Condensed Matter},
number = {15},
publisher = {IOP Publishing Ltd.},
title = {{Information transmission in genetic regulatory networks a review}},
doi = {10.1088/0953-8984/23/15/153102},
volume = {23},
year = {2011},
}
@article{3375,
abstract = {By exploiting an analogy between population genetics and statistical mechanics, we study the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. This requires us to track only four macroscopic variables, instead of the distribution of all the allele frequencies that influence the trait. These macroscopic variables are the expectations of: the trait mean and its square, the genetic variance, and of a measure of heterozygosity, and are derived from a generating function that is in turn derived by maximizing an entropy measure. These four macroscopics are enough to accurately describe the dynamics of the trait mean and of its genetic variance (and in principle of any other quantity). Unlike previous approaches that were based on an infinite series of moments or cumulants, which had to be truncated arbitrarily, our calculations provide a well-defined approximation procedure. We apply the framework to abrupt and gradual changes in the optimum, as well as to changes in the strength of stabilizing selection. Our approximations are surprisingly accurate, even for systems with as few as five loci. We find that when the effects of drift are included, the expected genetic variance is hardly altered by directional selection, even though it fluctuates in any particular instance. We also find hysteresis, showing that even after averaging over the microscopic variables, the macroscopic trajectories retain a memory of the underlying genetic states.},
author = {de Vladar, Harold and Barton, Nicholas H},
journal = {Journal of the Royal Society Interface},
number = {58},
pages = {720 -- 739},
publisher = {Royal Society of London},
title = {{The statistical mechanics of a polygenic character under stabilizing selection mutation and drift}},
doi = {10.1098/rsif.2010.0438},
volume = {8},
year = {2011},
}
@article{3376,
abstract = {Regulatory conflicts occur when two signals that individually trigger opposite cellular responses are present simultaneously. Here, we investigate regulatory conflicts in the bacterial response to antibiotic combinations. We use an Escherichia coli promoter-GFP library to study the transcriptional response of many promoters to either additive or antagonistic drug pairs at fine two-dimensional (2D) resolution of drug concentration. Surprisingly, we find that this data set can be characterized as a linear sum of only two principal components. Component one, accounting for over 70% of the response, represents the response to growth inhibition by the drugs. Component two describes how regulatory conflicts are resolved. For the additive drug pair, conflicts are resolved by linearly interpolating the single drug responses, while for the antagonistic drug pair, the growth-limiting drug dominates the response. Importantly, for a given drug pair, the same conflict resolution strategy applies to almost all genes. These results provide a recipe for predicting gene expression responses to antibiotic combinations.},
author = {Bollenbach, Mark Tobias and Kishony, Roy},
journal = {Molecular Cell},
number = {4},
pages = {413 -- 425},
publisher = {Cell Press},
title = {{Resolution of gene regulatory conflicts caused by combinations of antibiotics}},
doi = {10.1016/j.molcel.2011.04.016},
volume = {42},
year = {2011},
}
@article{3377,
abstract = {By definition, transverse intersections are stable under in- finitesimal perturbations. Using persistent homology, we ex- tend this notion to sizeable perturbations. Specifically, we assign to each homology class of the intersection its robust- ness, the magnitude of a perturbation necessary to kill it, and prove that robustness is stable. Among the applications of this result is a stable notion of robustness for fixed points of continuous mappings and a statement of stability for con- tours of smooth mappings.},
author = {Edelsbrunner, Herbert and Morozov, Dmitriy and Patel, Amit},
journal = {Foundations of Computational Mathematics},
number = {3},
pages = {345 -- 361},
publisher = {Springer},
title = {{Quantifying transversality by measuring the robustness of intersections}},
doi = {10.1007/s10208-011-9090-8},
volume = {11},
year = {2011},
}
@article{3379,
abstract = {The process of gastrulation is highly conserved across vertebrates on both the genetic and morphological levels, despite great variety in embryonic shape and speed of development. This mechanism spatially separates the germ layers and establishes the organizational foundation for future development. Mesodermal identity is specified in a superficial layer of cells, the epiblast, where cells maintain an epithelioid morphology. These cells involute to join the deeper hypoblast layer where they adopt a migratory, mesenchymal morphology. Expression of a cascade of related transcription factors orchestrates the parallel genetic transition from primitive to mature mesoderm. Although the early and late stages of this process are increasingly well understood, the transition between them has remained largely mysterious. We present here the first high resolution in vivo observations of the blebby transitional morphology of involuting mesodermal cells in a vertebrate embryo. We further demonstrate that the zebrafish spadetail mutation creates a reversible block in the maturation program, stalling cells in the transition state. This mutation creates an ideal system for dissecting the specific properties of cells undergoing the morphological transition of maturing mesoderm, as we demonstrate with a direct measurement of cell–cell adhesion.},
author = {Row, Richard and Maître, Jean-Léon and Martin, Benjamin and Stockinger, Petra and Heisenberg, Carl-Philipp J and Kimelman, David},
journal = {Developmental Biology},
number = {1},
pages = {102 -- 110},
publisher = {Elsevier},
title = {{Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail}},
doi = {10.1016/j.ydbio.2011.03.025},
volume = {354},
year = {2011},
}
@article{3380,
abstract = {Linkage between markers and genes that affect a phenotype of interest may be determined by examining differences in marker allele frequency in the extreme progeny of a cross between two inbred lines. This strategy is usually employed when pooling is used to reduce genotyping costs. When the cross progeny are asexual, the extreme progeny may be selected by multiple generations of asexual reproduction and selection. We analyse this method of measuring phenotype in asexual progeny and examine the changes in marker allele frequency due to selection over many generations. Stochasticity in marker frequency in the selected population arises due to the finite initial population size. We derive the distribution of marker frequency as a result of selection at a single major locus, and show that in order to avoid spurious changes in marker allele frequency in the selected population, the initial population size should be in the low to mid hundreds.},
author = {Logeswaran, Sayanthan and Barton, Nicholas H},
journal = {Genetical Research},
number = {3},
pages = {221 -- 232},
publisher = {Cambridge University Press},
title = {{Mapping Mendelian traits in asexual progeny using changes in marker allele frequency}},
doi = {10.1017/S0016672311000115},
volume = {93},
year = {2011},
}
@article{3381,
abstract = {In this survey, we compare several languages for specifying Markovian population models such as queuing networks and chemical reaction networks. All these languages — matrix descriptions, stochastic Petri nets, stoichiometric equations, stochastic process algebras, and guarded command models — describe continuous-time Markov chains, but they differ according to important properties, such as compositionality, expressiveness and succinctness, executability, and ease of use. Moreover, they provide different support for checking the well-formedness of a model and for analyzing a model.},
author = {Henzinger, Thomas A and Jobstmann, Barbara and Wolf, Verena},
journal = {IJFCS: International Journal of Foundations of Computer Science},
number = {4},
pages = {823 -- 841},
publisher = {World Scientific Publishing},
title = {{Formalisms for specifying Markovian population models}},
doi = {10.1142/S0129054111008441},
volume = {22},
year = {2011},
}
@article{3384,
abstract = {Here we introduce a database of calibrated natural images publicly available through an easy-to-use web interface. Using a Nikon D70 digital SLR camera, we acquired about six-megapixel images of Okavango Delta of Botswana, a tropical savanna habitat similar to where the human eye is thought to have evolved. Some sequences of images were captured unsystematically while following a baboon troop, while others were designed to vary a single parameter such as aperture, object distance, time of day or position on the horizon. Images are available in the raw RGB format and in grayscale. Images are also available in units relevant to the physiology of human cone photoreceptors, where pixel values represent the expected number of photoisomerizations per second for cones sensitive to long (L), medium (M) and short (S) wavelengths. This database is distributed under a Creative Commons Attribution-Noncommercial Unported license to facilitate research in computer vision, psychophysics of perception, and visual neuroscience.},
author = {Tkacik, Gasper and Garrigan, Patrick and Ratliff, Charles and Milcinski, Grega and Klein, Jennifer and Seyfarth, Lucia and Sterling, Peter and Brainard, David and Balasubramanian, Vijay},
journal = {PLoS One},
number = {6},
publisher = {Public Library of Science},
title = {{Natural images from the birthplace of the human eye}},
doi = {10.1371/journal.pone.0020409},
volume = {6},
year = {2011},
}
@article{3387,
abstract = {Background: Supertree methods combine overlapping input trees into a larger supertree. Here, I consider split-based supertree methods that first extract the split information of the input trees and subsequently combine this split information into a phylogeny. Well known split-based supertree methods are matrix representation with parsimony and matrix representation with compatibility. Combining input trees on the same taxon set, as in the consensus setting, is a well-studied task and it is thus desirable to generalize consensus methods to supertree methods. Results: Here, three variants of majority-rule (MR) supertrees that generalize majority-rule consensus trees are investigated. I provide simple formulas for computing the respective score for bifurcating input- and supertrees. These score computations, together with a heuristic tree search minmizing the scores, were implemented in the python program PluMiST (Plus- and Minus SuperTrees) available from http://www.cibiv.at/software/ plumist. The different MR methods were tested by simulation and on real data sets. The search heuristic was successful in combining compatible input trees. When combining incompatible input trees, especially one variant, MR(-) supertrees, performed well. Conclusions: The presented framework allows for an efficient score computation of three majority-rule supertree variants and input trees. I combined the score computation with a heuristic search over the supertree space. The implementation was tested by simulation and on real data sets and showed promising results. Especially the MR(-) variant seems to be a reasonable score for supertree reconstruction. Generalizing these computations to multifurcating trees is an open problem, which may be tackled using this framework.},
author = {Kupczok, Anne},
journal = {BMC Evolutionary Biology},
number = {205},
publisher = {BioMed Central},
title = {{Split based computation of majority rule supertrees}},
doi = {10.1186/1471-2148-11-205},
volume = {11},
year = {2011},
}
@article{3388,
abstract = {Background: Fragmentation of terrestrial ecosystems has had detrimental effects on metapopulations of habitat specialists. Maculinea butterflies have been particularly affected because of their specialized lifecycles, requiring both specific food-plants and host-ants. However, the interaction between dispersal, effective population size, and long-term genetic erosion of these endangered butterflies remains unknown. Using non-destructive sampling, we investigated the genetic diversity of the last extant population of M. arion in Denmark, which experienced critically low numbers in the 1980s. Results: Using nine microsatellite markers, we show that the population is genetically impoverished compared to nearby populations in Sweden, but less so than monitoring programs suggested. Ten additional short repeat microsatellites were used to reconstruct changes in genetic diversity and population structure over the last 77 years from museum specimens. We also tested amplification efficiency in such historical samples as a function of repeat length and sample age. Low population numbers in the 1980s did not affect genetic diversity, but considerable turnover of alleles has characterized this population throughout the time-span of our analysis. Conclusions: Our results suggest that M. arion is less sensitive to genetic erosion via population bottlenecks than previously thought, and that managing clusters of high quality habitat may be key for long-term conservation.},
author = {Ugelvig, Line V and Nielsen, Per and Boomsma, Jacobus and Nash, David},
journal = {BMC Evolutionary Biology},
number = {201},
publisher = {BioMed Central},
title = {{Reconstructing eight decades of genetic variation in an isolated Danish population of the large blue butterfly Maculinea arion}},
doi = {10.1186/1471-2148-11-201},
volume = {11},
year = {2011},
}
@article{3390,
abstract = {What determines the genetic contribution that an individual makes to future generations? With biparental reproduction, each individual leaves a 'pedigree' of descendants, determined by the biparental relationships in the population. The pedigree of an individual constrains the lines of descent of each of its genes. An individual's reproductive value is the expected number of copies of each of its genes that is passed on to distant generations conditional on its pedigree. For the simplest model of biparental reproduction analogous to the Wright-Fisher model, an individual's reproductive value is determined within ~10 generations, independent of population size. Partial selfing and subdivision do not greatly slow this convergence. Our central result is that the probability that a gene will survive is proportional to the reproductive value of the individual that carries it, and that conditional on survival, after a few tens of generations, the distribution of the number of surviving copies is the same for all individuals, whatever their reproductive value. These results can be generalized to the joint distribution of surviving blocks of ancestral genome. Selection on unlinked loci in the genetic background may greatly increase the variance in reproductive value, but the above results nevertheless still hold. The almost linear relationship between survival probability and reproductive value also holds for weakly favored alleles. Thus, the influence of the complex pedigree of descendants on an individual's genetic contribution to the population can be summarized through a single number: its reproductive value.},
author = {Barton, Nicholas H and Etheridge, Alison},
journal = {Genetics},
number = {4},
pages = {953 -- 973},
publisher = {Genetics Society of America},
title = {{The relation between reproductive value and genetic contribution}},
doi = {10.1534/genetics.111.127555},
volume = {188},
year = {2011},
}
@article{3391,
abstract = {Evolutionary biology shares many concepts with statistical physics: both deal with populations, whether of molecules or organisms, and both seek to simplify evolution in very many dimensions. Often, methodologies have undergone parallel and independent development, as with stochastic methods in population genetics. Here, we discuss aspects of population genetics that have embraced methods from physics: non-equilibrium statistical mechanics, travelling waves and Monte-Carlo methods, among others, have been used to study polygenic evolution, rates of adaptation and range expansions. These applications indicate that evolutionary biology can further benefit from interactions with other areas of statistical physics; for example, by following the distribution of paths taken by a population through time},
author = {de Vladar, Harold and Barton, Nicholas H},
journal = {Trends in Ecology and Evolution},
number = {8},
pages = {424 -- 432},
publisher = {Cell Press},
title = {{The contribution of statistical physics to evolutionary biology}},
doi = {10.1016/j.tree.2011.04.002},
volume = {26},
year = {2011},
}
@article{3393,
abstract = {Unlike unconditionally advantageous “Fisherian” variants that tend to spread throughout a species range once introduced anywhere, “bistable” variants, such as chromosome translocations, have two alternative stable frequencies, absence and (near) fixation. Analogous to populations with Allee effects, bistable variants tend to increase locally only once they become sufficiently common, and their spread depends on their rate of increase averaged over all frequencies. Several proposed manipulations of insect populations, such as using Wolbachia or “engineered underdominance” to suppress vector-borne diseases, produce bistable rather than Fisherian dynamics. We synthesize and extend theoretical analyses concerning three features of their spatial behavior: rate of spread, conditions to initiate spread from a localized introduction, and wave stopping caused by variation in population densities or dispersal rates. Unlike Fisherian variants, bistable variants tend to spread spatially only for particular parameter combinations and initial conditions. Wave initiation requires introduction over an extended region, while subsequent spatial spread is slower than for Fisherian waves and can easily be halted by local spatial inhomogeneities. We present several new results, including robust sufficient conditions to initiate (and stop) spread, using a one-parameter cubic approximation applicable to several models. The results have both basic and applied implications.},
author = {Barton, Nicholas H and Turelli, Michael},
journal = {American Naturalist},
number = {3},
pages = {E48 -- E75},
publisher = {University of Chicago Press},
title = {{Spatial waves of advance with bistable dynamics: Cytoplasmic and genetic analogues of Allee effects}},
doi = {10.1086/661246},
volume = {178},
year = {2011},
}
@article{3394,
abstract = {Random genetic drift shifts clines in space, alters their width, and distorts their shape. Such random fluctuations complicate inferences from cline width and position. Notably, the effect of genetic drift on the expected shape of the cline is opposite to the naive (but quite common) misinterpretation of classic results on the expected cline. While random drift on average broadens the overall cline in expected allele frequency, it narrows the width of any particular cline. The opposing effects arise because locally, drift drives alleles to fixation—but fluctuations in position widen the expected cline. The effect of genetic drift can be predicted from standardized variance in allele frequencies, averaged across the habitat: 〈F〉. A cline maintained by spatially varying selection (step change) is expected to be narrower by a factor of relative to the cline in the absence of drift. The expected cline is broader by the inverse of this factor. In a tension zone maintained by underdominance, the expected cline width is narrower by about 1 – 〈F〉relative to the width in the absence of drift. Individual clines can differ substantially from the expectation, and we give quantitative predictions for the variance in cline position and width. The predictions apply to clines in almost one-dimensional circumstances such as hybrid zones in rivers, deep valleys, or along a coast line and give a guide to what patterns to expect in two dimensions.},
author = {Polechova, Jitka and Barton, Nicholas H},
journal = {Genetics},
number = {1},
pages = {227 -- 235},
publisher = {Genetics Society of America},
title = {{Genetic drift widens the expected cline but narrows the expected cline width}},
doi = {10.1534/genetics.111.129817},
volume = {189},
year = {2011},
}
@article{3396,
abstract = {Facial branchiomotor neurons (FBMNs) in zebrafish and mouse embryonic hindbrain undergo a characteristic tangential migration from rhombomere (r) 4, where they are born, to r6/7. Cohesion among neuroepithelial cells (NCs) has been suggested to function in FBMN migration by inhibiting FBMNs positioned in the basal neuroepithelium such that they move apically between NCs towards the midline of the neuroepithelium instead of tangentially along the basal side of the neuroepithelium towards r6/7. However, direct experimental evaluation of this hypothesis is still lacking. Here, we have used a combination of biophysical cell adhesion measurements and high-resolution time-lapse microscopy to determine the role of NC cohesion in FBMN migration. We show that reducing NC cohesion by interfering with Cadherin 2 (Cdh2) activity results in FBMNs positioned at the basal side of the neuroepithelium moving apically towards the neural tube midline instead of tangentially towards r6/7. In embryos with strongly reduced NC cohesion, ectopic apical FBMN movement frequently results in fusion of the bilateral FBMN clusters over the apical midline of the neural tube. By contrast, reducing cohesion among FBMNs by interfering with Contactin 2 (Cntn2) expression in these cells has little effect on apical FBMN movement, but reduces the fusion of the bilateral FBMN clusters in embryos with strongly diminished NC cohesion. These data provide direct experimental evidence that NC cohesion functions in tangential FBMN migration by restricting their apical movement.},
author = {Stockinger, Petra and Heisenberg, Carl-Philipp J and Maître, Jean-Léon},
journal = {Development},
number = {21},
pages = {4673 -- 4683},
publisher = {Company of Biologists},
title = {{Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube}},
doi = {10.1242/dev.071233},
volume = {138},
year = {2011},
}
@article{3397,
abstract = {Recent advances in microscopy techniques and biophysical measurements have provided novel insight into the molecular, cellular and biophysical basis of cell adhesion. However, comparably little is known about a core element of cell–cell adhesion—the energy of adhesion at the cell–cell contact. In this review, we discuss approaches to understand the nature and regulation of adhesion energy, and propose strategies to determine adhesion energy between cells in vitro and in vivo.},
author = {Maître, Jean-Léon and Heisenberg, Carl-Philipp J},
journal = {Current Opinion in Cell Biology},
number = {5},
pages = {508 -- 514},
publisher = {Elsevier},
title = {{The role of adhesion energy in controlling cell-cell contacts}},
doi = {10.1016/j.ceb.2011.07.004},
volume = {23},
year = {2011},
}
@article{3399,
abstract = {Context-dependent adjustment of mating tactics can drastically increase the mating success of behaviourally flexible animals. We used the ant Cardiocondyla obscurior as a model system to study adaptive adjustment of male mating tactics. This species shows a male diphenism of wingless fighter males and peaceful winged males. Whereas the wingless males stay and exclusively mate in the maternal colony, the mating behaviour of winged males is plastic. They copulate with female sexuals in their natal nests early in life but later disperse in search for sexuals outside. In this study, we observed the nest-leaving behaviour of winged males under different conditions and found that they adaptively adjust the timing of their dispersal to the availability of mating partners, as well as the presence, and even the type of competitors in their natal nests. In colonies with virgin female queens winged males stayed longest when they were the only male in the nest. They left earlier when mating partners were not available or when other males were present. In the presence of wingless, locally mating fighter males, winged males dispersed earlier than in the presence of docile, winged competitors. This suggests that C. obscurior males are capable of estimating their local breeding chances and adaptively adjust their dispersal behaviour in both an opportunistic and a risk-sensitive way, thus showing hitherto unknown behavioural plasticity in social insect males.},
author = {Cremer, Sylvia and Schrempf, Alexandra and Heinze, Jürgen},
journal = {PLoS One},
number = {3},
publisher = {Public Library of Science},
title = {{Competition and opportunity shape the reproductive tactics of males in the ant Cardiocondyla obscurior}},
doi = {10.1371/journal.pone.0017323},
volume = {6},
year = {2011},
}
@article{3405,
abstract = {Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and gates non-selective cation channels. The origins of glutamate receptors are not well understood as they differ structurally and functionally from simple bacterial ligand-gated ion channels. Here we report the discovery of an ionotropic glutamate receptor that combines the typical eukaryotic domain architecture with the 'TXVGYG' signature sequence of the selectivity filter found in K+ channels. This receptor exhibits functional properties intermediate between bacterial and eukaryotic glutamate-gated ion channels, suggesting a link in the evolution of ionotropic glutamate receptors.},
author = {Janovjak, Harald L and Sandoz, Guillaume and Isacoff, Ehud},
journal = {Nature Communications},
number = {232},
pages = {1 -- 6},
publisher = {Nature Publishing Group},
title = {{Modern ionotropic glutamate receptor with a K+ selectivity signature sequence}},
doi = {10.1038/ncomms1231},
volume = {2},
year = {2011},
}
@article{3505,
abstract = {Cell migration on two-dimensional (2D) substrates follows entirely different rules than cell migration in three-dimensional (3D) environments. This is especially relevant for leukocytes that are able to migrate in the absence of adhesion receptors within the confined geometry of artificial 3D extracellular matrix scaffolds and within the interstitial space in vivo. Here, we describe in detail a simple and economical protocol to visualize dendritic cell migration in 3D collagen scaffolds along chemotactic gradients. This method can be adapted to other cell types and may serve as a physiologically relevant paradigm for the directed locomotion of most amoeboid cells.},
author = {Sixt, Michael K and Lämmermann, Tim},
journal = {Cell Migration},
pages = {149 -- 165},
publisher = {Springer},
title = {{In vitro analysis of chemotactic leukocyte migration in 3D environments}},
doi = {10.1007/978-1-61779-207-6_11},
volume = {769},
year = {2011},
}
@phdthesis{3275,
abstract = {Chemokines organize immune cell trafficking by inducing either directed (tactic) or random (kinetic) migration and by activating integrins in order to support surface adhesion (haptic). Beyond that the same chemokines can establish clearly defined functional areas in secondary lymphoid organs. Until now it is unclear how chemokines can fulfill such diverse functions. One decisive prerequisite to explain these capacities is to know how chemokines are presented in tissue. In theory chemokines could occur either soluble or immobilized, and could be distributed either homogenously or as a concentration gradient. To dissect if and how the presenting mode of chemokines influences immune cells, I tested the response of dendritic cells (DCs) to differentially displayed chemokines. DCs are antigen presenting cells that reside in the periphery and migrate into draining lymph nodes (LNs) once exposed to inflammatory stimuli to activate naïve T cells. DCs are guided to and within the LN by the chemokine receptor CCR7, which has two ligands, the chemokines CCL19 and CCL21. Both CCR7 ligands are expressed by fibroblastic reticular cells in the LN, but differ in their ability to bind to heparan sulfate residues. CCL21 has a highly charged C-terminal extension, which mediates binding to anionic surfaces, whereas CCL19 is lacking such residues and likely distributes as a soluble molecule. This study shows that surface-bound CCL21 causes random, haptokinetic DC motility, which is confined to the chemokine coated area by insideout activation of β2 integrins that mediate cell binding to the surface. CCL19 on the other hand forms concentration gradients which trigger directional, chemotactic movement, but no surface adhesion. In addition DCs can actively manipulate this system by recruiting and activating serine proteases on their surfaces, which create - by proteolytically removing the adhesive C-terminus - a solubilized variant of CCL21 that functionally resembles CCL19. By generating a CCL21 concentration gradient DCs establish a positive feedback loop to recruit further DCs from the periphery to the CCL21 coated region. In addition DCs can sense chemotactic gradients as well as immobilized haptokinetic fields at the same time and integrate these signals. The result is chemotactically biased haptokinesis - directional migration confined to a chemokine coated track or area - which could explain the dynamic but spatially tightly controlled swarming leukocyte locomotion patterns that have been observed in lymphatic organs by intravital microscopists. The finding that DCs can approach soluble cues in a non-adhesive manner while they attach to surfaces coated with immobilized cues raises the question how these cells transmit intracellular forces to the environment, especially in the non-adherent migration mode. In order to migrate, cells have to generate and transmit force to the extracellular substrate. Force transmission is the prerequisite to procure an expansion of the leading edge and a forward motion of the whole cell body. In the current conceptions actin polymerization at the leading edge is coupled to extracellular ligands via the integrin family of transmembrane receptors, which allows the transmission of intracellular force. Against the paradigm of force transmission during migration, leukocytes, like DCs, are able to migrate in threedimensional environments without using integrin transmembrane receptors (Lämmermann et al., 2008). This reflects the biological function of leukocytes, as they can invade almost all tissues, whereby their migration has to be independent from the extracellular environment. How the cells can achieve this is unclear. For this study I examined DC migration in a defined threedimensional environment and highlighted actin-dynamics with the probe Lifeact-GFP. The result was that chemotactic DCs can switch between integrin-dependent and integrin- independent locomotion and can thereby adapt to the adhesive properties of their environment. If the cells are able to couple their actin cytoskeleton to the substrate, actin polymerization is entirely converted into protrusion. Without coupling the actin cortex undergoes slippage and retrograde actin flow can be observed. But retrograde actin flow can be completely compensated by higher actin polymerization rate keeping the migration velocity and the shape of the cells unaltered. Mesenchymal cells like fibroblast cannot balance the loss of adhesive interaction, cannot protrude into open space and, therefore, strictly depend on integrinmediated force coupling. This leukocyte specific phenomenon of “adaptive force transmission” endows these cells with the unique ability to transit and invade almost every type of tissue. },
author = {Schumann, Kathrin},
pages = {141},
publisher = {IST Austria},
title = {{The role of chemotactic gradients in dendritic cell migration}},
year = {2011},
}
@article{6496,
abstract = {We report the switching behavior of the full bacterial flagellum system that includes the filament and the motor in wild-type Escherichia coli cells. In sorting the motor behavior by the clockwise bias, we find that the distributions of the clockwise (CW) and counterclockwise (CCW) intervals are either exponential or nonexponential with long tails. At low bias, CW intervals are exponentially distributed and CCW intervals exhibit long tails. At intermediate CW bias (0.5) both CW and CCW intervals are mainly exponentially distributed. A simple model suggests that these two distinct switching behaviors are governed by the presence of signaling noise within the chemotaxis network. Low noise yields exponentially distributed intervals, whereas large noise yields nonexponential behavior with long tails. These drastically different motor statistics may play a role in optimizing bacterial behavior for a wide range of environmental conditions.},
author = {Park, Heungwon and Oikonomou, Panos and Guet, Calin C and Cluzel, Philippe},
issn = {0006-3495},
journal = {Biophysical Journal},
number = {10},
pages = {2336--2340},
publisher = {Elsevier},
title = {{Noise underlies switching behavior of the bacterial flagellum}},
doi = {10.1016/j.bpj.2011.09.040},
volume = {101},
year = {2011},
}
@article{9483,
abstract = {Imprinted genes are expressed primarily or exclusively from either the maternal or paternal allele, a phenomenon that occurs in flowering plants and mammals. Flowering plant imprinted gene expression has been described primarily in endosperm, a terminal nutritive tissue consumed by the embryo during seed development or after germination. Imprinted expression in Arabidopsis thaliana endosperm is orchestrated by differences in cytosine DNA methylation between the paternal and maternal genomes as well as by Polycomb group proteins. Currently, only 11 imprinted A. thaliana genes are known. Here, we use extensive sequencing of cDNA libraries to identify 9 paternally expressed and 34 maternally expressed imprinted genes in A. thaliana endosperm that are regulated by the DNA-demethylating glycosylase DEMETER, the DNA methyltransferase MET1, and/or the core Polycomb group protein FIE. These genes encode transcription factors, proteins involved in hormone signaling, components of the ubiquitin protein degradation pathway, regulators of histone and DNA methylation, and small RNA pathway proteins. We also identify maternally expressed genes that may be regulated by unknown mechanisms or deposited from maternal tissues. We did not detect any imprinted genes in the embryo. Our results show that imprinted gene expression is an extensive mechanistically complex phenomenon that likely affects multiple aspects of seed development.},
author = {Hsieh, Tzung-Fu and Shin, Juhyun and Uzawa, Rie and Silva, Pedro and Cohen, Stephanie and Bauer, Matthew J. and Hashimoto, Meryl and Kirkbride, Ryan C. and Harada, John J. and ZILBERMAN, Daniel and Fischer, Robert L.},
issn = {1091-6490},
journal = {Proceedings of the National Academy of Sciences},
number = {5},
pages = {1755--1762},
publisher = {National Academy of Sciences},
title = {{Regulation of imprinted gene expression in Arabidopsis endosperm}},
doi = {10.1073/pnas.1019273108},
volume = {108},
year = {2011},
}
@misc{9522,
abstract = {Little is known about chromatin remodeling events immediately after fertilization. A recent report by Autran et al. (2011) in Cell now shows that chromatin regulatory pathways that silence transposable elements are responsible for global delayed activation of gene expression in the early Arabidopsis embryo.},
author = {ZILBERMAN, Daniel},
booktitle = {Developmental Cell},
issn = {1878-1551},
number = {6},
pages = {735--736},
publisher = {Elsevier},
title = {{Balancing parental contributions in plant embryonic gene activation}},
doi = {10.1016/j.devcel.2011.05.018},
volume = {20},
year = {2011},
}
@article{232,
abstract = {We study the average order of the divisor function, as it ranges over the values of binary quartic forms that are reducible over ℚ.},
author = {De La Bretèche, Régis and Browning, Timothy D},
journal = {Journal fur die Reine und Angewandte Mathematik},
number = {646},
pages = {1 -- 44},
publisher = {Walter de Gruyter},
title = {{Le problème des diviseurs pour des formes binaires de degré 4}},
doi = {10.1515/CRELLE.2010.064},
year = {2010},
}
@inproceedings{2322,
author = {Frank, Rupert L and Lieb, Élliott H and Robert Seiringer},
pages = {523 -- 535},
publisher = {World Scientific Publishing},
title = {{ Equivalence of Sobolev inequalities and Lieb-Thirring inequalities}},
doi = {10.1142/9789814304634_0045 },
year = {2010},
}
@inproceedings{2323,
abstract = {Since the first experimental realization of Bose-Einstein condensation in cold atomic gases in 1995 there has been a surge of activity in this field. Ingenious experiments have allowed us to probe matter close to zero temperature and reveal some of the fascinating effects quantum mechanics has bestowed on nature. It is a challenge for mathematical physicists to understand these various phenomena from first principles, that is, starting from the underlying many-body Schrödinger equation. Recent progress in this direction concerns mainly equilibrium properties of dilute, cold quantum gases. We shall explain some of the results in this article, and describe the mathematics involved in understanding these phenomena. Topics include the ground state energy and the free energy at positive temperature, the effect of interparticle interaction on the critical temperature for Bose-Einstein condensation, as well as the occurrence of superfluidity and quantized vortices in rapidly rotating gases.},
author = {Robert Seiringer},
pages = {231 -- 245},
publisher = {World Scientific Publishing},
title = {{Hot topics on cold gases}},
doi = {10.1142/9789814304634_0013},
year = {2010},
}
@inbook{2324,
abstract = {We determine the sharp constant in the Hardy inequality for fractional Sobolev spaces on half-spaces. Our proof relies on a nonlinear and nonlocal version of the ground state representation.},
author = {Frank, Rupert L and Robert Seiringer},
booktitle = {Around the Research of Vladimir Maz'ya I},
pages = {161 -- 167},
publisher = {Springer},
title = {{Sharp fractional Hardy inequalities in half-spaces}},
doi = {10.1007/978-1-4419-1341-8_6},
volume = {11},
year = {2010},
}
@article{2389,
abstract = {We study the eigenvalues of Schrödinger type operators T + λV and their asymptotic behavior in the small coupling limit λ → 0, in the case where the symbol of the kinetic energy, T (p), strongly degenerates on a non-trivial manifold of codimension one.},
author = {Hainzl, Christian and Robert Seiringer},
journal = {Mathematische Nachrichten},
number = {3},
pages = {489 -- 499},
publisher = {Wiley-Blackwell},
title = {{Asymptotic behavior of eigenvalues of Schrödinger type operators with degenerate kinetic energy}},
doi = {10.1002/mana.200810195},
volume = {283},
year = {2010},
}
@article{2392,
abstract = {The binding of polarons, or its absence, is an old and subtle topic. Here we prove two things rigorously. First, the transition from many-body collapse to the existence of a thermodynamic limit for N polarons occurs precisely at U=2α, where U is the electronic Coulomb repulsion and α is the polaron coupling constant. Second, if U is large enough, there is no multipolaron binding of any kind. Considering the known fact that there is binding for some U>2α, these conclusions are not obvious and their proof has been an open problem for some time.},
author = {Frank, Rupert L and Lieb, Élliott H and Robert Seiringer and Thomas, Lawrence E},
journal = {Physical Review Letters},
number = {21},
publisher = {American Physical Society},
title = {{Bipolaron and N-polaron binding energies}},
doi = {10.1103/PhysRevLett.104.210402},
volume = {104},
year = {2010},
}
@article{2409,
abstract = {Background: The availability of many gene alignments with overlapping taxon sets raises the question of which strategy is the best to infer species phylogenies from multiple gene information. Methods and programs abound that use the gene alignment in different ways to reconstruct the species tree. In particular, different methods combine the original data at different points along the way from the underlying sequences to the final tree. Accordingly, they are classified into superalignment, supertree and medium-level approaches. Here, we present a simulation study to compare different methods from each of these three approaches.
Results: We observe that superalignment methods usually outperform the other approaches over a wide range of parameters including sparse data and gene-specific evolutionary parameters. In the presence of high incongruency among gene trees, however, other combination methods show better performance than the superalignment approach. Surprisingly, some supertree and medium-level methods exhibit, on average, worse results than a single gene phylogeny with complete taxon information.
Conclusions: For some methods, using the reconstructed gene tree as an estimation of the species tree is superior to the combination of incomplete information. Superalignment usually performs best since it is less susceptible to stochastic error. Supertree methods can outperform superalignment in the presence of gene-tree conflict.},
author = {Kupczok, Anne and Schmidt, Heiko and Von Haeseler, Arndt},
journal = {Algorithms for Molecular Biology},
number = {1},
publisher = {BioMed Central},
title = {{Accuracy of phylogeny reconstruction methods combining overlapping gene data sets }},
doi = {10.1186/1748-7188-5-37},
volume = {5},
year = {2010},
}
@article{2442,
abstract = {In a new study published in this issue of Developmental Cell, Krouk et al. reveal a surprising mechanism by which plant root systems adapt their architecture for soil exploitation. The dual transporter NRT1.1 uses both nitrate and the plant hormone auxin as substrates, enabling soil nitrate availability to regulate auxin-driven lateral root development.},
author = {Beeckman, Tom and Friml, Jirí},
journal = {Developmental Cell},
number = {6},
pages = {877 -- 878},
publisher = {Cell Press},
title = {{Nitrate Contra Auxin: Nutrient Sensing by roots}},
doi = {10.1016/j.devcel.2010.05.020},
volume = {18},
year = {2010},
}
@article{2701,
abstract = {We consider N × N Hermitian random matrices with independent identically distributed entries (Wigner matrices). The matrices are normalized so that the average spacing between consecutive eigenvalues is of order 1/ N. Under suitable assumptions on the distribution of the single matrix element, we first prove that, away from the spectral edges, the empirical density of eigenvalues concentrates around the Wigner semicircle law on energy scales η ≫ N -1. This result establishes the semicircle law on the optimal scale and it removes a logarithmic factor from our previous result [6]. We then show a Wegner estimate, i.e., that the averaged density of states is bounded. Finally, we prove that the eigenvalues of a Wigner matrix repel each other, in agreement with the universality conjecture.},
author = {László Erdös and Schlein, Benjamin and Yau, Horng-Tzer},
journal = {International Mathematics Research Notices},
number = {3},
pages = {436 -- 479},
publisher = {Oxford University Press},
title = {{Wegner estimate and level repulsion for Wigner random matrices}},
doi = {10.1093/imrn/rnp136},
year = {2010},
}
@inproceedings{2978,
abstract = {Efficient zero-knowledge proofs of knowledge for group homomorphisms are essential for numerous systems in applied cryptography. Especially, Σ-protocols for proving knowledge of discrete logarithms in known and hidden order groups are of prime importance. Yet, while these proofs can be performed very efficiently within groups of known order, for hidden order groups the respective proofs are far less efficient.
This paper shows strong evidence that this efficiency gap cannot be bridged. Namely, while there are efficient protocols allowing a prover to cheat only with negligibly small probability in the case of known order groups, we provide strong evidence that for hidden order groups this probability is bounded below by 1/2 for all efficient Σ-protocols not using common reference strings or the like.
We prove our results for a comprehensive class of Σ-protocols in the generic group model, and further strengthen them by investigating certain instantiations in the plain model.},
author = {Bangerter, Endre and Camenisch, Jan and Stephan Krenn},
editor = {Micciancio, Daniele},
pages = {553 -- 571},
publisher = {Springer},
title = {{Efficiency Limitations for Σ-Protocols for Group Homomorphisms}},
doi = {10.1007/978-3-642-11799-2},
volume = {5978},
year = {2010},
}
@inproceedings{2979,
abstract = {Zero-knowledge proofs of knowledge (ZK-PoK) are important building blocks for numerous cryptographic applications. Although ZK-PoK have a high potential impact, their real world deployment is typically hindered by their significant complexity compared to other (non-interactive) crypto primitives. Moreover, their design and implementation are time-consuming and error-prone.
We contribute to overcoming these challenges as follows: We present a comprehensive specification language and a compiler for ZK-PoK protocols based on Σ-protocols. The compiler allows the fully automatic translation of an abstract description of a proof goal into an executable implementation. Moreover, the compiler overcomes various restrictions of previous approaches, e.g., it supports the important class of exponentiation homomorphisms with hidden-order co-domain, needed for privacy-preserving applications such as DAA. Finally, our compiler is certifying, in the sense that it automatically produces a formal proof of the soundness of the compiled protocol for a large class of protocols using the Isabelle/HOL theorem prover.
},
author = {Almeida, José Bacelar and Bangerter, Endre and Barbosa, Manuel and Stephan Krenn and Sadeghi, Ahmad-Reza and Schneider, Thomas},
editor = {Gritzalis, Dimitris and Preneel, Bart and Theoharidou, Marianthi},
pages = {151 -- 167},
publisher = {Springer},
title = {{A Certifying Compiler for Zero-Knowledge Proofs of Knowledge Based on Sigma-Protocols}},
doi = {10.1007/978-3-642-15497-3},
volume = {6345},
year = {2010},
}
@article{1752,
abstract = {The epitaxial growth of germanium on silicon leads to the self-assembly of SiGe nanocrystals by a process that allows the size, composition and position of the nanocrystals to be controlled. This level of control, combined with an inherent compatibility with silicon technology, could prove useful in nanoelectronic applications. Here, we report the confinement of holes in quantum-dot devices made by directly contacting individual SiGe nanocrystals with aluminium electrodes, and the production of hybrid superconductor- semiconductor devices, such as resonant supercurrent transistors, when the quantum dot is strongly coupled to the electrodes. Charge transport measurements on weakly coupled quantum dots reveal discrete energy spectra, with the confined hole states displaying anisotropic gyromagnetic factors and strong spin-orbit coupling with pronounced dependences on gate voltage and magnetic field.},
author = {Georgios Katsaros and Spathis, Panayotis N and Stoffel, Mathieu and Fournel, Frank and Mongillo, Massimo and Bouchiat, Vincent and Lefloch, François and Rastelli, Armando and Schmidt, Oliver G and De Franceschi, Silvano},
journal = {Nature Nanotechnology},
number = {6},
pages = {458 -- 464},
publisher = {Nature Publishing Group},
title = {{Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon}},
doi = {10.1038/nnano.2010.84},
volume = {5},
year = {2010},
}
@article{1753,
abstract = {We investigate electronic transport in n-i-n GaN nanowires with and without AlN double barriers. The nanowires are grown by catalyst-free, plasma-assisted molecular beam epitaxy enabling abrupt GaN/AlN interfaces as well as longitudinal n-type doping modulation. At low temperature, transport in n-i-n GaN nanowires is dominated by the Coulomb blockade effect. Carriers are confined in the undoped middle region, forming single or multiple islands with a characteristic length of ∼100 nm. The incorporation of two AlN tunnel barriers causes confinement to occur within the GaN dot in between. In the case of a 6 nm thick dot and 2 nm thick barriers, we observe characteristic signatures of Coulomb-blockaded transport in single quantum dots with discrete energy states. For thinner dots and barriers, Coulomb-blockade effects do not play a significant role while the onset of resonant tunneling via the confined quantum levels is accompanied by a negative differential resistance surviving up to ∼150 K.},
author = {Songmuang, Rudeeson and Georgios Katsaros and Monroy, Eva and Spathis, Panayotis N and Bougerol, Catherine and Mongillo, Massimo and De Franceschi, Silvano},
journal = {Nano Letters},
number = {9},
pages = {3545 -- 3550},
publisher = {American Chemical Society},
title = {{Quantum transport in GaN/AlN double-barrier heterostructure nanowires}},
doi = {10.1021/nl1017578},
volume = {10},
year = {2010},
}
@article{1773,
abstract = {The quantum properties of electromagnetic, mechanical or other harmonic oscillators can be revealed by investigating their strong coherent coupling to a single quantum two level system in an approach known as cavity quantum electrodynamics (QED). At temperatures much lower than the characteristic energy level spacing the observation of vacuum Rabi oscillations or mode splittings with one or a few quanta asserts the quantum nature of the oscillator. Here, we study how the classical response of a cavity QED system emerges from the quantum one when its thermal occupation-or effective temperature-is raised gradually over 5 orders of magnitude. In this way we explore in detail the continuous quantum-to-classical crossover and demonstrate how to extract effective cavity field temperatures from both spectroscopic and time-resolved vacuum Rabi measurements.},
author = {Johannes Fink and Steffen, L. Kraig and Studer, Peter and Bishop, Lev S and Baur, Matthias P and Bianchetti, R and Bozyigit, Deniz and Lang, C and Filipp, Stefan and Leek, Peter J and Wallraff, Andreas},
journal = {Physical Review Letters},
number = {16},
publisher = {American Physical Society},
title = {{Quantum-to-classical transition in cavity quantum electrodynamics}},
doi = {10.1103/PhysRevLett.105.163601},
volume = {105},
year = {2010},
}
@article{1774,
abstract = {A number of superconducting qubits, such as the transmon or the phase qubit, have an energy level structure with small anharmonicity. This allows for convenient access of higher excited states with similar frequencies. However, special care has to be taken to avoid unwanted higher-level populations when using short control pulses. Here we demonstrate the preparation of arbitrary three level superposition states using optimal control techniques in a transmon. Performing dispersive readout, we extract the populations of all three levels of the qutrit and study the coherence of its excited states. Finally we demonstrate full quantum state tomography of the prepared qutrit states and evaluate the fidelities of a set of states, finding on average 95%.},
author = {Bianchetti, R and Filipp, Stefan and Baur, Matthias P and Johannes Fink and Lang, C and Steffen, L. Kraig and Boissonneault, Maxime and Blais, Alexandre and Wallraff, Andreas},
journal = {Physical Review Letters},
number = {22},
publisher = {American Physical Society},
title = {{Control and tomography of a three level superconducting artificial atom}},
doi = {10.1103/PhysRevLett.105.223601},
volume = {105},
year = {2010},
}
@article{2095,
abstract = {This paper describes a passive stereo system for capturing the 3D geometry of a face in a single-shot under standard light sources. The system is low-cost and easy to deploy. Results are submillimeter accurate and commensurate with those from state-ofthe-art systems based on active lighting, and the models meet the quality requirements of a demanding domain like the movie industry. Recovered models are shown for captures from both high-end cameras in a studio setting and from a consumer binocular-stereo camera, demonstrating scalability across a spectrum of camera deployments, and showing the potential for 3D face modeling to move beyond the professional arena and into the emerging consumer market in stereoscopic photography. Our primary technical contribution is a modification of standard stereo refinement methods to capture pore-scale geometry, using a qualitative approach that produces visually realistic results. The second technical contribution is a calibration method suited to face capture systems. The systemic contribution includes multiple demonstrations of system robustness and quality. These include capture in a studio setup, capture off a consumer binocular-stereo camera, scanning of faces of varying gender and ethnicity and age, capture of highly-transient facial expression, and scanning a physical mask to provide ground-truth validation.},
author = {Beeler, Thabo and Bernd Bickel and Beardsley, Paul A and Sumner, Bob and Groß, Markus S},
journal = {ACM Transactions on Graphics},
number = {4},
publisher = {ACM},
title = {{High-quality single-shot capture of facial geometry}},
doi = {10.1145/1778765.1778777},
volume = {29},
year = {2010},
}
@article{2124,
abstract = {We develop a theory of Malliavin calculus for Banach space-valued random variables. Using radonifying operators instead of symmetric tensor products we extend the Wiener-Itô isometry to Banach spaces. In the white noise case we obtain two sided Lp-estimates for multiple stochastic integrals in arbitrary Banach spaces. It is shown that the Malliavin derivative is bounded on vector-valued Wiener-Itô chaoses. Our main tools are decoupling inequalities for vector-valued random variables. In the opposite direction we use Meyer's inequalities to give a new proof of a decoupling result for Gaussian chaoses in UMD Banach spaces.},
author = {Jan Maas},
journal = {Journal of Mathematical Analysis and Applications},
number = {2},
pages = {383 -- 398},
publisher = {Academic Press},
title = {{Malliavin calculus and decoupling inequalities in Banach spaces}},
doi = {10.1016/j.jmaa.2009.08.041},
volume = {363},
year = {2010},
}
@article{2194,
abstract = {We develop an analytic model of vector correlations in rotationally inelastic atom-diatom collisions and test it against the much examined Ar-NO (X2Π) system. Based on the Fraunhofer scattering of matter waves, the model furnishes complex scattering amplitudes needed to evaluate the polarization moments characterizing the quantum stereodynamics. The analytic polarization moments are found to be in an excellent agreement with experimental results and with close-coupling calculations available at thermal energies. The model reveals that the stereodynamics is governed by diffraction from the repulsive core of the Ar-NO potential, which can be characterized by a single Legendre moment.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Physical Chemistry Chemical Physics},
number = {5},
pages = {1038 -- 1041},
publisher = {Royal Society of Chemistry},
title = {{An analytic model of the stereodynamics of rotationally inelastic molecular collisions}},
doi = {10.1039/B920899B },
volume = {12},
year = {2010},
}
@article{2195,
abstract = {Following upon our recent work on vector correlations in the Ar-NO collisions [Lemeshko and Friedrich, Phys. Chem. Chem. Phys. 12, 1038 (2010)], we compare model results with close-coupling calculations for a range of channels and collision energies for the He-NO system. The striking agreement between the model and exact polarization moments indicates that the stereodynamics of rotationally inelastic atom-molecule collisions at thermal energies is governed by diffraction of matter waves from a two-dimensional repulsive core of the atom-molecule potential. Furthermore, the model polarization moments characterizing the He-NO, He- O2, He-OH, and He-CaH stereodynamics are found to coalesce into a single, distinctive pattern, which can serve as a "fingerprint" to identify diffraction-driven stereodynamics in future work. },
author = {Mikhail Lemeshko and Jambrina, Pablo G and De Miranda, Marcelo P and Friedrich, Břetislav},
journal = {Journal of Chemical Physics},
number = {16},
publisher = {American Institute of Physics},
title = {{Communications: When diffraction rules the stereodynamics of rotationally inelastic collisions}},
doi = {10.1063/1.3386530},
volume = {132},
year = {2010},
}
@article{2196,
abstract = {We evaluate the shifts imparted to vibrational and rotational levels of a linear molecule by a nonresonant laser field at intensities of up to 10 12 W/cm2. Both types of shift are found to be either positive or negative, depending on the initial rotational state acted upon by the field. An adiabatic field-molecule interaction imparts a rotational energy shift which is negative and exceeds the concomitant positive vibrational shift by a few orders of magnitude. The rovibrational states are thus pushed downward in such a field. A nonresonant pulsed laser field that interacts nonadiabatically with the molecule is found to impart rotational and vibrational shifts of the same order of magnitude. The nonadiabatic energy transfer occurs most readily at a pulse duration which amounts to about a tenth of the molecule's rotational period and vanishes when the sudden regime is attained for shorter pulses. We applied our treatment to the much-studied 87Rb2 molecule in the last bound vibrational levels of its lowest singlet and triplet electronic states. Our calculations indicate that 15 and 1.5 ns laser pulses of an intensity in excess of 5 × 109 W/cm2 are capable of dissociating the molecule due to the vibrational shift. Lesser shifts can be used to fine-tune the rovibrational levels and thereby affect collisional resonances by the nonresonant light. The energy shifts due to laser intensities of 109 W/cm2 may be discernible spectroscopically, with a 10 MHz resolution.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Journal of Physical Chemistry A},
number = {36},
pages = {9848 -- 9854},
publisher = {American Chemical Society},
title = {{Fine-tuning molecular energy levels by nonresonant laser pulses}},
doi = {10.1021/jp1032299},
volume = {114},
year = {2010},
}
@article{2197,
abstract = {We present an analytic model of the refractive index for matter waves propagating through atomic or molecular gases. The model, which combines the Wentzel-Kramers-Brillouin (WKB) treatment of the long-range attraction with the Fraunhofer model treatment of the short-range repulsion, furnishes a refractive index in compelling agreement with recent experiments of Jacquey [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.240405 98, 240405 (2007)] on Li atom matter waves passing through dilute noble gases. We show that the diffractive contribution, which arises from scattering by a two-dimensional "hard core" of the potential, is essential for obtaining a correct imaginary part of the refractive index.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {2},
publisher = {American Physical Society},
title = {{Multiple scattering of matter waves: An analytic model of the refractive index for atomic and molecular gases}},
doi = {10.1103/PhysRevA.82.022711},
volume = {82},
year = {2010},
}
@inproceedings{488,
abstract = {Streaming string transducers [1] define (partial) functions from input strings to output strings. A streaming string transducer makes a single pass through the input string and uses a finite set of variables that range over strings from the output alphabet. At every step, the transducer processes an input symbol, and updates all the variables in parallel using assignments whose right-hand-sides are concatenations of output symbols and variables with the restriction that a variable can be used at most once in a right-hand-side expression. It has been shown that streaming string transducers operating on strings over infinite data domains are of interest in algorithmic verification of list-processing programs, as they lead to PSPACE decision procedures for checking pre/post conditions and for checking semantic equivalence, for a well-defined class of heap-manipulating programs. In order to understand the theoretical expressiveness of streaming transducers, we focus on streaming transducers processing strings over finite alphabets, given the existence of a robust and well-studied class of "regular" transductions for this case. Such regular transductions can be defined either by two-way deterministic finite-state transducers, or using a logical MSO-based characterization. Our main result is that the expressiveness of streaming string transducers coincides exactly with this class of regular transductions. },
author = {Alur, Rajeev and Cerny, Pavol},
location = {Chennai, India},
pages = {1 -- 12},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Expressiveness of streaming string transducers}},
doi = {10.4230/LIPIcs.FSTTCS.2010.1},
volume = {8},
year = {2010},
}
@inproceedings{489,
abstract = {Graph games of infinite length are a natural model for open reactive processes: one player represents the controller, trying to ensure a given specification, and the other represents a hostile environment. The evolution of the system depends on the decisions of both players, supplemented by chance. In this work, we focus on the notion of randomised strategy. More specifically, we show that three natural definitions may lead to very different results: in the most general cases, an almost-surely winning situation may become almost-surely losing if the player is only allowed to use a weaker notion of strategy. In more reasonable settings, translations exist, but they require infinite memory, even in simple cases. Finally, some traditional problems becomes undecidable for the strongest type of strategies.},
author = {Cristau, Julien and David, Claire and Horn, Florian},
booktitle = {Proceedings of GandALF 2010},
location = {Minori, Amalfi Coast, Italy},
pages = {30 -- 39},
publisher = {Open Publishing Association},
title = {{How do we remember the past in randomised strategies? }},
doi = {10.4204/EPTCS.25.7},
volume = {25},
year = {2010},
}
@misc{5388,
abstract = {We present an algorithmic method for the synthesis of concurrent programs that are optimal with respect to quantitative performance measures. The input consists of a sequential sketch, that is, a program that does not contain synchronization constructs, and of a parametric performance model that assigns costs to actions such as locking, context switching, and idling. The quantitative synthesis problem is to automatically introduce synchronization constructs into the sequential sketch so that both correctness is guaranteed and worst-case (or average-case) performance is optimized. Correctness is formalized as race freedom or linearizability.
We show that for worst-case performance, the problem can be modeled
as a 2-player graph game with quantitative (limit-average) objectives, and
for average-case performance, as a 2 1/2 -player graph game (with probabilistic transitions). In both cases, the optimal correct program is derived from an optimal strategy in the corresponding quantitative game. We prove that the respective game problems are computationally expensive (NP-complete), and present several techniques that overcome the theoretical difficulty in cases of concurrent programs of practical interest.
We have implemented a prototype tool and used it for the automatic syn- thesis of programs that access a concurrent list. For certain parameter val- ues, our method automatically synthesizes various classical synchronization schemes for implementing a concurrent list, such as fine-grained locking or a lazy algorithm. For other parameter values, a new, hybrid synchronization style is synthesized, which uses both the lazy approach and coarse-grained locks (instead of standard fine-grained locks). The trade-off occurs because while fine-grained locking tends to decrease the cost that is due to waiting for locks, it increases cache size requirements.},
author = {Chatterjee, Krishnendu and Cerny, Pavol and Henzinger, Thomas A and Radhakrishna, Arjun and Singh, Rohit},
issn = {2664-1690},
pages = {17},
publisher = {IST Austria},
title = {{Quantitative synthesis for concurrent programs}},
doi = {10.15479/AT:IST-2010-0004},
year = {2010},
}
@misc{5389,
abstract = {Boolean notions of correctness are formalized by preorders on systems. Quantitative measures of correctness can be formalized by real-valued distance functions between systems, where the distance between implementation and specification provides a measure of “fit” or “desirability.” We extend the simulation preorder to the quantitative setting, by making each player of a simulation game pay a certain price for her choices. We use the resulting games with quantitative objectives to define three different simulation distances. The correctness distance measures how much the specification must be changed in order to be satisfied by the implementation. The coverage distance measures how much the im- plementation restricts the degrees of freedom offered by the specification. The robustness distance measures how much a system can deviate from the implementation description without violating the specification. We consider these distances for safety as well as liveness specifications. The distances can be computed in polynomial time for safety specifications, and for liveness specifications given by weak fairness constraints. We show that the distance functions satisfy the triangle inequality, that the distance between two systems does not increase under parallel composition with a third system, and that the distance between two systems can be bounded from above and below by distances between abstractions of the two systems. These properties suggest that our simulation distances provide an appropriate basis for a quantitative theory of discrete systems. We also demonstrate how the robustness distance can be used to measure how many transmission errors are tolerated by error correcting codes.},
author = {Cerny, Pavol and Henzinger, Thomas A and Radhakrishna, Arjun},
issn = {2664-1690},
pages = {24},
publisher = {IST Austria},
title = {{Simulation distances}},
doi = {10.15479/AT:IST-2010-0003},
year = {2010},
}
@misc{5390,
abstract = {The class of ω regular languages provide a robust specification language in verification. Every ω-regular condition can be decomposed into a safety part and a liveness part. The liveness part ensures that something good happens “eventually.” Two main strengths of the classical, infinite-limit formulation of liveness are robustness (independence from the granularity of transitions) and simplicity (abstraction of complicated time bounds). However, the classical liveness formulation suffers from the drawback that the time until something good happens may be unbounded. A stronger formulation of liveness, so-called finitary liveness, overcomes this drawback, while still retaining robustness and simplicity. Finitary liveness requires that there exists an unknown, fixed bound b such that something good happens within b transitions. In this work we consider the finitary parity and Streett (fairness) conditions. We present the topological, automata-theoretic and logical characterization of finitary languages defined by finitary parity and Streett conditions. We (a) show that the finitary parity and Streett languages are Σ2-complete; (b) present a complete characterization of the expressive power of various classes of automata with finitary and infinitary conditions (in particular we show that non-deterministic finitary parity and Streett automata cannot be determinized to deterministic finitary parity or Streett automata); and (c) show that the languages defined by non-deterministic finitary parity automata exactly characterize the star-free fragment of ωB-regular languages.},
author = {Chatterjee, Krishnendu and Fijalkow, Nathanaël},
issn = {2664-1690},
pages = {21},
publisher = {IST Austria},
title = {{Topological, automata-theoretic and logical characterization of finitary languages}},
doi = {10.15479/AT:IST-2010-0002},
year = {2010},
}
@misc{5391,
abstract = {Concurrent data structures with fine-grained synchronization are notoriously difficult to implement correctly. The difficulty of reasoning about these implementations does not stem from the number of variables or the program size, but rather from the large number of possible interleavings. These implementations are therefore prime candidates for model checking. We introduce an algorithm for verifying linearizability of singly-linked heap-based concurrent data structures. We consider a model consisting of an unbounded heap where each node consists an element from an unbounded data domain, with a restricted set of operations for testing and updating pointers and data elements. Our main result is that linearizability is decidable for programs that invoke a fixed number of methods, possibly in parallel. This decidable fragment covers many of the common implementation techniques — fine-grained locking, lazy synchronization, and lock-free synchronization. We also show how the technique can be used to verify optimistic implementations with the help of programmer annotations. We developed a verification tool CoLT and evaluated it on a representative sample of Java implementations of the concurrent set data structure. The tool verified linearizability of a number of implementations, found a known error in a lock-free imple- mentation and proved that the corrected version is linearizable.},
author = {Cerny, Pavol and Radhakrishna, Arjun and Zufferey, Damien and Chaudhuri, Swarat and Alur, Rajeev},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{Model checking of linearizability of concurrent list implementations}},
doi = {10.15479/AT:IST-2010-0001},
year = {2010},
}
@article{598,
abstract = {It is not well understood how the human Mediator complex, transcription factor IIH and RNA polymerase II (Pol II) work together with activators to initiate transcription. Activator binding alters Mediator structure, yet the functional consequences of such structural shifts remain unknown. The p53 C terminus and its activation domain interact with different Mediator subunits, and we find that each interaction differentially affects Mediator structure; strikingly, distinct p53-Mediator structures differentially affect Pol II activity. Only the p53 activation domain induces the formation of a large pocket domain at the Mediator-Pol II interaction site, and this correlates with activation of stalled Pol II to a productively elongating state. Moreover, we define a Mediator requirement for TFIIH-dependent Pol II C-terminal domain phosphorylation and identify substantial differences in Pol II C-terminal domain processing that correspond to distinct p53-Mediator structural states. Our results define a fundamental mechanism by which p53 activates transcription and suggest that Mediator structural shifts trigger activation of stalled Pol II complexes.},
author = {Meyer, Krista and Lin, Shih and Bernecky, Carrie A and Gao, Yuefeng and Taatjes, Dylan},
journal = {Nature Structural and Molecular Biology},
number = {6},
pages = {753 -- 760},
publisher = {Nature Publishing Group},
title = {{P53 activates transcription by directing structural shifts in Mediator}},
doi = {10.1038/nsmb.1816},
volume = {17},
year = {2010},
}
@article{6142,
abstract = {Defining the mutational landscape when individuals of a species grow separately and diverge over many generations can provide insights into trait evolution. A specific example of this involves studying changes associated with domestication where different lines of the same wild stock have been cultivated independently in different standard environments. Whole genome sequence comparison of such lines permits estimation of mutation rates, inference of genes' ancestral states and ancestry of existing strains, and correction of sequencing errors in genome databases. Here we study domestication of the C. elegans Bristol strain as a model, and report the genome sequence of LSJ1 (Bristol), a sibling of the standard C. elegans reference wild type N2 (Bristol). The LSJ1 and N2 lines were cultivated separately from shortly after the Bristol strain was isolated until methods to freeze C. elegans were developed. We find that during this time the two strains have accumulated 1208 genetic differences. We describe phenotypic variation between N2 and LSJ1 in the rate at which embryos develop, the rate of production of eggs, the maturity of eggs at laying, and feeding behavior, all the result of post-isolation changes. We infer the ancestral alleles in the original Bristol isolate and highlight 2038 likely sequencing errors in the original N2 reference genome sequence. Many of these changes modify genome annotation. Our study provides a starting point to further investigate genotype-phenotype association and offers insights into the process of selection as a result of laboratory domestication.},
author = {Weber, Katherine P. and De, Subhajyoti and Kozarewa, Iwanka and Turner, Daniel J. and Babu, M. Madan and de Bono, Mario},
issn = {1932-6203},
journal = {PLoS ONE},
number = {11},
publisher = {Public Library of Science},
title = {{Whole genome sequencing highlights genetic changes associated with laboratory domestication of C. elegans}},
doi = {10.1371/journal.pone.0013922},
volume = {5},
year = {2010},
}
@article{6320,
abstract = {We study the average order of the divisor function, as it ranges over the values of binary quartic forms that are reducible over ℚ.},
author = {Bretèche, Régis de la and Browning, Timothy D},
journal = {Crelles Journal},
number = {646},
pages = {1--44},
publisher = {Walter de Gruyter GmbH},
title = {{Le problème des diviseurs pour des formes binaires de degré 4}},
doi = {10.1515/crelle.2010.064},
volume = {2010},
year = {2010},
}
@article{7078,
abstract = {We report resonant ultrasound spectroscopy (RUS), dilatometry/magnetostriction, magnetotransport, magnetization, specific-heat, and 119Sn Mössbauer spectroscopy measurements on SnTe and Sn0.995Cr0.005Te. Hall measurements at T=77 K indicate that our Bridgman-grown single crystals have a p-type carrier concentration of 3.4×1019 cm−3 and that our Cr-doped crystals have an n-type concentration of 5.8×1022 cm−3. Although our SnTe crystals are diamagnetic over the temperature range 2≤T≤1100 K, the Cr-doped crystals are room-temperature ferromagnets with a Curie temperature of 294 K. For each sample type, three-terminal capacitive dilatometry measurements detect a subtle 0.5 μm distortion at Tc≈85 K. Whereas our RUS measurements on SnTe show elastic hardening near the structural transition, pointing to co-elastic behavior, similar measurements on Sn0.995Cr0.005Te show a pronounced softening, pointing to ferroelastic behavior. Effective Debye temperature, θD, values of SnTe obtained from 119Sn Mössbauer studies show a hardening of phonons in the range 60–115 K (θD=162 K) as compared with the 100–300 K range (θD=150 K). In addition, a precursor softening extending over approximately 100 K anticipates this collapse at the critical temperature and quantitative analysis over three decades of its reduced modulus finds ΔC44/C44=A|(T−T0)/T0|−κ with κ=0.50±0.02, a value indicating a three-dimensional softening of phonon branches at a temperature T0∼75 K, considerably below Tc. We suggest that the differences in these two types of elastic behaviors lie in the absence of elastic domain-wall motion in the one case and their nucleation in the other.},
author = {Salje, E. K. H. and Safarik, D. J. and Modic, Kimberly A and Gubernatis, J. E. and Cooley, J. C. and Taylor, R. D. and Mihaila, B. and Saxena, A. and Lookman, T. and Smith, J. L. and Fisher, R. A. and Pasternak, M. and Opeil, C. P. and Siegrist, T. and Littlewood, P. B. and Lashley, J. C.},
issn = {1098-0121},
journal = {Physical Review B},
number = {18},
publisher = {APS},
title = {{Tin telluride: A weakly co-elastic metal}},
doi = {10.1103/physrevb.82.184112},
volume = {82},
year = {2010},
}
@article{1465,
abstract = {We prove a generating function formula for the Betti numbers of Nakajima quiver varieties. We prove that it is a q-deformation of the Weyl-Kac character formula. In particular this implies that the constant term of the polynomial counting the number of absolutely indecomposable representations of a quiver equals the multiplicity of a certain weight in the corresponding Kac-Moody algebra, which was conjectured by Kac in 1982.},
author = {Tamas Hausel},
journal = {Inventiones Mathematicae},
number = {1},
pages = {21 -- 37},
publisher = {Springer},
title = {{Kac's conjecture from Nakajima quiver varieties}},
doi = {10.1007/s00222-010-0241-3},
volume = {181},
year = {2010},
}
@article{1466,
abstract = {In Hausel et al. (2008) [10] we presented a conjecture generalizing the Cauchy formula for Macdonald polynomial. This conjecture encodes the mixed Hodge polynomials of the character varieties of representations of the fundamental group of a punctured Riemann surface of genus g. We proved several results which support this conjecture. Here we announce new results which are consequences of those in Hausel et al. (2008) [10].},
author = {Tamas Hausel and Letellier, Emmanuel and Rodríguez Villegas, Fernando},
journal = {Comptes Rendus Mathematique},
number = {3-4},
pages = {131 -- 135},
publisher = {Elsevier},
title = {{Topology of character varieties and representations of quivers}},
doi = {10.1016/j.crma.2010.01.025},
volume = {348},
year = {2010},
}
@inbook{1468,
abstract = {This chapter surveys the motivations, related results, and progress made towards the following problem, raised by Hitchin in 1995: What is the space of L2 harmonic forms on the moduli space of Higgs bundles on a Riemann surface?},
author = {Tamas Hausel},
booktitle = {The Many Facets of Geometry: A Tribute to Nigel Hitchin},
publisher = {Oxford University Press},
title = {{S-Duality in HyperkäHler Hodge Theory}},
doi = {10.1093/acprof:oso/9780199534920.003.0016},
year = {2010},
}
@article{1044,
abstract = {Control over all internal and external degrees of freedom of molecules at the level of single quantum states will enable a series of fundamental studies in physics and chemistry1,2. In particular, samples of ground-state molecules at ultralow temperatures and high number densities will facilitate new quantum-gas studies3 and future applications in quantum information science4. However, high phase-space densities for molecular samples are not readily attainable because efficient cooling techniques such as laser cooling are lacking. Here we produce an ultracold and dense sample of molecules in a single hyperfine level of the rovibronic ground state with each molecule individually trapped in the motional ground state of an optical lattice well. Starting from a zero-temperature atomic Mott-insulator state with optimized double-site occupancy6, weakly bound dimer molecules are efficiently associated on a Feshbach resonance7 and subsequently transferred to the rovibronic ground state by a stimulated four-photon process with >50% efficiency. The molecules are trapped in the lattice and have a lifetime of 8 s. Our results present a crucial step towards Bose-Einstein condensation of ground-state molecules and, when suitably generalized to polar heteronuclear molecules, the realization of dipolar quantum-gas phases in optical lattices8-10.},
author = {Danzl, Johann G and Mark, Manfred and Haller, Elmar and Gustavsson, Mattias and Hart, Russell and Aldegunde, Jesus and Hutson, Jeremy and Nägerl, Hanns},
journal = {Nature Physics},
number = {4},
pages = {265 -- 270},
publisher = {Nature Publishing Group},
title = {{An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice}},
doi = {10.1038/nphys1533},
volume = {6},
year = {2010},
}
@article{1045,
abstract = {We report on the observation of confinement-induced resonances in strongly interacting quantum-gas systems with tunable interactions for one- and two-dimensional geometry. Atom-atom scattering is substantially modified when the s-wave scattering length approaches the length scale associated with the tight transversal confinement, leading to characteristic loss and heating signatures. Upon introducing an anisotropy for the transversal confinement we observe a splitting of the confinement-induced resonance. With increasing anisotropy additional resonances appear. In the limit of a two-dimensional system we find that one resonance persists.},
author = {Haller, Elmar and Mark, Manfred and Hart, Russell and Danzl, Johann G and Reichsöllner, Lukas and Melezhik, Vladimir and Schmelcher, Peter and Nägerl, Hanns},
journal = {Physical Review Letters},
number = {15},
publisher = {American Physical Society},
title = {{Confinement-induced resonances in low-dimensional quantum systems}},
doi = {10.1103/PhysRevLett.104.153203},
volume = {104},
year = {2010},
}
@article{1047,
abstract = {Particles in a perfect lattice potential perform Bloch oscillations when subject to a constant force, leading to localization and preventing conductivity. For a weakly interacting Bose-Einstein condensate of Cs atoms, we observe giant center-of-mass oscillations in position space with a displacement across hundreds of lattice sites when we add a periodic modulation to the force near the Bloch frequency. We study the dependence of these "super" Bloch oscillations on lattice depth, modulation amplitude, and modulation frequency and show that they provide a means to induce linear transport in a dissipation-free lattice.},
author = {Haller, Elmar and Hart, Russell and Mark, Manfred and Danzl, Johann G and Reichsöllner, Lukas and Nägerl, Hanns},
journal = {Physical Review Letters},
number = {20},
publisher = {American Physical Society},
title = {{Inducing transport in a dissipation-free lattice with super bloch oscillations}},
doi = {10.1103/PhysRevLett.104.200403},
volume = {104},
year = {2010},
}
@article{1049,
abstract = {Quantum many-body systems can have phase transitions even at zero temperature; fluctuations arising from Heisenbergĝ€™s uncertainty principle, as opposed to thermal effects, drive the system from one phase to another. Typically, during the transition the relative strength of two competing terms in the systemĝ€™s Hamiltonian changes across a finite critical value. A well-known example is the Mottĝ€" Hubbard quantum phase transition from a superfluid to an insulating phase, which has been observed for weakly interacting bosonic atomic gases. However, for strongly interacting quantum systems confined to lower-dimensional geometry, a novel type of quantum phase transition may be induced and driven by an arbitrarily weak perturbation to the Hamiltonian. Here we observe such an effectĝ€"the sineĝ€"Gordon quantum phase transition from a superfluid Luttinger liquid to a Mott insulatorĝ€ "in a one-dimensional quantum gas of bosonic caesium atoms with tunable interactions. For sufficiently strong interactions, the transition is induced by adding an arbitrarily weak optical lattice commensurate with the atomic granularity, which leads to immediate pinning of the atoms. We map out the phase diagram and find that our measurements in the strongly interacting regime agree well with a quantum field description based on the exactly solvable sineĝ€"Gordon model. We trace the phase boundary all the way to the weakly interacting regime, where we find good agreement with the predictions of the one-dimensional Boseĝ€"Hubbard model. Our results open up the experimental study of quantum phase transitions, criticality and transport phenomena beyond Hubbard-type models in the context of ultracold gases.},
author = {Haller, Elmar and Hart, Russell and Mark, Manfred and Danzl, Johann G and Reichsöllner, Lukas and Gustavsson, Mattias and Dalmonte, Marcello and Pupillo, Guido and Nägerl, Hanns},
journal = {Nature},
number = {7306},
pages = {597 -- 600},
publisher = {Nature Publishing Group},
title = {{Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons}},
doi = {10.1038/nature09259},
volume = {466},
year = {2010},
}
@article{9012,
abstract = {In this Letter, we characterize experimentally the diffusiophoretic motion of colloids and λ-DNA toward higher concentration of solutes, using microfluidic technology to build spatially and temporally controlled concentration gradients. We then demonstrate that segregation and spatial patterning of the particles can be achieved from temporal variations of the solute concentration profile. This segregation takes the form of a strong trapping potential, stemming from an osmotically induced rectification mechanism of the solute time-dependent variations. Depending on the spatial and temporal symmetry of the solute signal, localization patterns with various shapes can be achieved. These results highlight the role of solute contrasts in out-of-equilibrium processes occurring in soft matter.},
author = {Palacci, Jérémie A and Abécassis, Benjamin and Cottin-Bizonne, Cécile and Ybert, Christophe and Bocquet, Lydéric},
issn = {10797114},
journal = {Physical Review Letters},
number = {13},
publisher = {American Physical Society},
title = {{Colloidal motility and pattern formation under rectified diffusiophoresis}},
doi = {10.1103/physrevlett.104.138302},
volume = {104},
year = {2010},
}
@article{9013,
abstract = {In this Letter, we investigate experimentally the nonequilibrium steady state of an active colloidal suspension under gravity field. The active particles are made of chemically powered colloids, showing self propulsion in the presence of an added fuel, here hydrogen peroxide. The active suspension is studied in a dedicated microfluidic device, made of permeable gel microstructures. Both the microdynamics of individual colloids and the global stationary state of the suspension under gravity are measured with optical microscopy. This yields a direct measurement of the effective temperature of the active system as a function of the particle activity, on the basis of the fluctuation-dissipation relationship. Our work is a first step in the experimental exploration of the out-of-equilibrium properties of active colloidal systems.},
author = {Palacci, Jérémie A and Cottin-Bizonne, Cécile and Ybert, Christophe and Bocquet, Lydéric},
issn = {10797114},
journal = {Physical Review Letters},
number = {8},
publisher = {American Physical Society },
title = {{Sedimentation and effective temperature of active colloidal suspensions}},
doi = {10.1103/physrevlett.105.088304},
volume = {105},
year = {2010},
}