@article{2220,
abstract = {In this issue of Chemistry & Biology, Cokol and colleagues report a systematic study of drug interactions between antifungal compounds. Suppressive drug interactions occur more frequently than previously realized and come in different flavors with interesting implications.},
author = {De Vos, Marjon and Bollenbach, Mark Tobias},
issn = {10745521},
journal = {Chemistry and Biology},
number = {4},
pages = {439 -- 440},
publisher = {Cell Press},
title = {{Suppressive drug interactions between antifungals}},
doi = {10.1016/j.chembiol.2014.04.004},
volume = {21},
year = {2014},
}
@article{2223,
abstract = {Correct positioning of membrane proteins is an essential process in eukaryotic organisms. The plant hormone auxin is distributed through intercellular transport and triggers various cellular responses. Auxin transporters of the PIN-FORMED (PIN) family localize asymmetrically at the plasma membrane (PM) and mediate the directional transport of auxin between cells. A fungal toxin, brefeldin A (BFA), inhibits a subset of guanine nucleotide exchange factors for ADP-ribosylation factor small GTPases (ARF GEFs) including GNOM, which plays a major role in localization of PIN1 predominantly to the basal side of the PM. The Arabidopsis genome encodes 19 ARF-related putative GTPases. However, ARF components involved in PIN1 localization have been genetically poorly defined. Using a fluorescence imaging-based forward genetic approach, we identified an Arabidopsis mutant, bfa-visualized exocytic trafficking defective1 (bex1), in which PM localization of PIN1-green fluorescent protein (GFP) as well as development is hypersensitive to BFA. We found that in bex1 a member of the ARF1 gene family, ARF1A1C, was mutated. ARF1A1C localizes to the trans-Golgi network/early endosome and Golgi apparatus, acts synergistically to BEN1/MIN7 ARF GEF and is important for PIN recycling to the PM. Consistent with the developmental importance of PIN proteins, functional interference with ARF1 resulted in an impaired auxin response gradient and various developmental defects including embryonic patterning defects and growth arrest. Our results show that ARF1A1C is essential for recycling of PIN auxin transporters and for various auxin-dependent developmental processes.},
author = {Tanaka, Hirokazu and Nodzyński, Tomasz and Kitakura, Saeko and Feraru, Mugurel and Sasabe, Michiko and Ishikawa, Tomomi and Kleine Vehn, Jürgen and Kakimoto, Tatsuo and Friml, Jirí},
issn = {00320781},
journal = {Plant and Cell Physiology},
number = {4},
pages = {737 -- 749},
publisher = {Oxford University Press},
title = {{BEX1/ARF1A1C is required for BFA-sensitive recycling of PIN auxin transporters and auxin-mediated development in arabidopsis}},
doi = {10.1093/pcp/pct196},
volume = {55},
year = {2014},
}
@article{2225,
abstract = {We consider sample covariance matrices of the form X∗X, where X is an M×N matrix with independent random entries. We prove the isotropic local Marchenko-Pastur law, i.e. we prove that the resolvent (X∗X−z)−1 converges to a multiple of the identity in the sense of quadratic forms. More precisely, we establish sharp high-probability bounds on the quantity ⟨v,(X∗X−z)−1w⟩−⟨v,w⟩m(z), where m is the Stieltjes transform of the Marchenko-Pastur law and v,w∈CN. We require the logarithms of the dimensions M and N to be comparable. Our result holds down to scales Iz≥N−1+ε and throughout the entire spectrum away from 0. We also prove analogous results for generalized Wigner matrices.
},
author = {Bloemendal, Alex and Erdös, László and Knowles, Antti and Yau, Horng and Yin, Jun},
issn = {10836489},
journal = {Electronic Journal of Probability},
publisher = {Institute of Mathematical Statistics},
title = {{Isotropic local laws for sample covariance and generalized Wigner matrices}},
doi = {10.1214/EJP.v19-3054},
volume = {19},
year = {2014},
}
@article{2226,
abstract = {Coriolis force effects on shear flows are important in geophysical and astrophysical contexts. We report a study on the linear stability and the transient energy growth of the plane Couette flow with system rotation perpendicular to the shear direction. External rotation causes linear instability. At small rotation rates, the onset of linear instability scales inversely with the rotation rate and the optimal transient growth in the linearly stable region is slightly enhanced ∼Re2. The corresponding optimal initial perturbations are characterized by roll structures inclined in the streamwise direction and are twisted under external rotation. At large rotation rates, the transient growth is significantly inhibited and hence linear stability analysis is a reliable indicator for instability.},
author = {Shi, Liang and Hof, Björn and Tilgner, Andreas},
issn = {15393755},
journal = {Physical Review E Statistical Nonlinear and Soft Matter Physics},
number = {1},
publisher = {American Institute of Physics},
title = {{Transient growth of Ekman-Couette flow}},
doi = {10.1103/PhysRevE.89.013001},
volume = {89},
year = {2014},
}
@article{2228,
abstract = {Fast-spiking, parvalbumin-expressing GABAergic interneurons, a large proportion of which are basket cells (BCs), have a key role in feedforward and feedback inhibition, gamma oscillations and complex information processing. For these functions, fast propagation of action potentials (APs) from the soma to the presynaptic terminals is important. However, the functional properties of interneuron axons remain elusive. We examined interneuron axons by confocally targeted subcellular patch-clamp recording in rat hippocampal slices. APs were initiated in the proximal axon ∼20 μm from the soma and propagated to the distal axon with high reliability and speed. Subcellular mapping revealed a stepwise increase of Na^+ conductance density from the soma to the proximal axon, followed by a further gradual increase in the distal axon. Active cable modeling and experiments with partial channel block revealed that low axonal Na^+ conductance density was sufficient for reliability, but high Na^+ density was necessary for both speed of propagation and fast-spiking AP phenotype. Our results suggest that a supercritical density of Na^+ channels compensates for the morphological properties of interneuron axons (small segmental diameter, extensive branching and high bouton density), ensuring fast AP propagation and high-frequency repetitive firing.},
author = {Hu, Hua and Jonas, Peter M},
issn = {10976256},
journal = {Nature Neuroscience},
number = {5},
pages = {686--693},
publisher = {Nature Publishing Group},
title = {{A supercritical density of Na^+ channels ensures fast signaling in GABAergic interneuron axons}},
doi = {10.1038/nn.3678},
volume = {17},
year = {2014},
}
@article{2229,
abstract = {The distance between Ca^2+ channels and release sensors determines the speed and efficacy of synaptic transmission. Tight "nanodomain" channel-sensor coupling initiates transmitter release at synapses in the mature brain, whereas loose "microdomain" coupling appears restricted to early developmental stages. To probe the coupling configuration at a plastic synapse in the mature central nervous system, we performed paired recordings between mossy fiber terminals and CA3 pyramidal neurons in rat hippocampus. Millimolar concentrations of both the fast Ca^2+ chelator BAPTA [1,2-bis(2-aminophenoxy)ethane- N,N, N′,N′-tetraacetic acid] and the slow chelator EGTA efficiently suppressed transmitter release, indicating loose coupling between Ca^2+ channels and release sensors. Loose coupling enabled the control of initial release probability by fast endogenous Ca^2+ buffers and the generation of facilitation by buffer saturation. Thus, loose coupling provides the molecular framework for presynaptic plasticity.},
author = {Vyleta, Nicholas and Jonas, Peter M},
issn = {00368075},
journal = {Science},
number = {6171},
pages = {665 -- 670},
publisher = {American Association for the Advancement of Science},
title = {{Loose coupling between Ca^2+ channels and release sensors at a plastic hippocampal synapse}},
doi = {10.1126/science.1244811},
volume = {343},
year = {2014},
}
@article{2230,
abstract = {Intracellular electrophysiological recordings provide crucial insights into elementary neuronal signals such as action potentials and synaptic currents. Analyzing and interpreting these signals is essential for a quantitative understanding of neuronal information processing, and requires both fast data visualization and ready access to complex analysis routines. To achieve this goal, we have developed Stimfit, a free software package for cellular neurophysiology with a Python scripting interface and a built-in Python shell. The program supports most standard file formats for cellular neurophysiology and other biomedical signals through the Biosig library. To quantify and interpret the activity of single neurons and communication between neurons, the program includes algorithms to characterize the kinetics of presynaptic action potentials and postsynaptic currents, estimate latencies between pre- and postsynaptic events, and detect spontaneously occurring events. We validate and benchmark these algorithms, give estimation errors, and provide sample use cases, showing that Stimfit represents an efficient, accessible and extensible way to accurately analyze and interpret neuronal signals.},
author = {Guzmán, José and Schlögl, Alois and Schmidt Hieber, Christoph},
issn = {16625196},
journal = {Frontiers in Neuroinformatics},
number = {FEB},
publisher = {Frontiers Research Foundation},
title = {{Stimfit: Quantifying electrophysiological data with Python}},
doi = {10.3389/fninf.2014.00016},
volume = {8},
year = {2014},
}
@article{2231,
abstract = {Based on the measurements of noise in gene expression performed during the past decade, it has become customary to think of gene regulation in terms of a two-state model, where the promoter of a gene can stochastically switch between an ON and an OFF state. As experiments are becoming increasingly precise and the deviations from the two-state model start to be observable, we ask about the experimental signatures of complex multistate promoters, as well as the functional consequences of this additional complexity. In detail, we i), extend the calculations for noise in gene expression to promoters described by state transition diagrams with multiple states, ii), systematically compute the experimentally accessible noise characteristics for these complex promoters, and iii), use information theory to evaluate the channel capacities of complex promoter architectures and compare them with the baseline provided by the two-state model. We find that adding internal states to the promoter generically decreases channel capacity, except in certain cases, three of which (cooperativity, dual-role regulation, promoter cycling) we analyze in detail.},
author = {Rieckh, Georg and Tkacik, Gasper},
issn = {00063495},
journal = {Biophysical Journal},
number = {5},
pages = {1194 -- 1204},
publisher = {Biophysical Society},
title = {{Noise and information transmission in promoters with multiple internal states}},
doi = {10.1016/j.bpj.2014.01.014},
volume = {106},
year = {2014},
}
@article{2232,
abstract = {The purpose of this contribution is to summarize and discuss recent advances regarding the onset of turbulence in shear flows. The absence of a clear-cut instability mechanism, the spatio-temporal intermittent character and extremely long lived transients are some of the major difficulties encountered in these flows and have hindered progress towards understanding the transition process. We will show for the case of pipe flow that concepts from nonlinear dynamics and statistical physics can help to explain the onset of turbulence. In particular, the turbulent structures (puffs) observed close to onset are spatially localized chaotic transients and their lifetimes increase super-exponentially with Reynolds number. At the same time fluctuations of individual turbulent puffs can (although very rarely) lead to the nucleation of new puffs. The competition between these two stochastic processes gives rise to a non-equilibrium phase transition where turbulence changes from a super-transient to a sustained state.},
author = {Song, Baofang and Hof, Björn},
issn = {17425468},
journal = {Journal of Statistical Mechanics Theory and Experiment},
number = {2},
publisher = {IOP Publishing Ltd.},
title = {{Deterministic and stochastic aspects of the transition to turbulence}},
doi = {10.1088/1742-5468/2014/02/P02001},
volume = {2014},
year = {2014},
}
@article{2233,
abstract = { A discounted-sum automaton (NDA) is a nondeterministic finite automaton with edge weights, valuing a run by the discounted sum of visited edge weights. More precisely, the weight in the i-th position of the run is divided by λi, where the discount factor λ is a fixed rational number greater than 1. The value of a word is the minimal value of the automaton runs on it. Discounted summation is a common and useful measuring scheme, especially for infinite sequences, reflecting the assumption that earlier weights are more important than later weights. Unfortunately, determinization of NDAs, which is often essential in formal verification, is, in general, not possible. We provide positive news, showing that every NDA with an integral discount factor is determinizable. We complete the picture by proving that the integers characterize exactly the discount factors that guarantee determinizability: for every nonintegral rational discount factor λ, there is a nondeterminizable λ-NDA. We also prove that the class of NDAs with integral discount factors enjoys closure under the algebraic operations min, max, addition, and subtraction, which is not the case for general NDAs nor for deterministic NDAs. For general NDAs, we look into approximate determinization, which is always possible as the influence of a word's suffix decays. We show that the naive approach, of unfolding the automaton computations up to a sufficient level, is doubly exponential in the discount factor. We provide an alternative construction for approximate determinization, which is singly exponential in the discount factor, in the precision, and in the number of states. We also prove matching lower bounds, showing that the exponential dependency on each of these three parameters cannot be avoided. All our results hold equally for automata over finite words and for automata over infinite words. },
author = {Boker, Udi and Henzinger, Thomas A},
issn = {18605974},
journal = {Logical Methods in Computer Science},
number = {1},
publisher = {International Federation of Computational Logic},
title = {{Exact and approximate determinization of discounted-sum automata}},
doi = {10.2168/LMCS-10(1:10)2014},
volume = {10},
year = {2014},
}
@article{2234,
abstract = {We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with κ limit-average functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the case of one limit-average function, both randomization and memory are necessary for strategies even for ε-approximation, and that finite-memory randomized strategies are sufficient for achieving Pareto optimal values. Under the satisfaction objective, in contrast to the case of one limit-average function, infinite memory is necessary for strategies achieving a specific value (i.e. randomized finite-memory strategies are not sufficient), whereas memoryless randomized strategies are sufficient for ε-approximation, for all ε > 0. We further prove that the decision problems for both expectation and satisfaction objectives can be solved in polynomial time and the trade-off curve (Pareto curve) can be ε-approximated in time polynomial in the size of the MDP and 1/ε, and exponential in the number of limit-average functions, for all ε > 0. Our analysis also reveals flaws in previous work for MDPs with multiple mean-payoff functions under the expectation objective, corrects the flaws, and allows us to obtain improved results.},
author = {Brázdil, Tomáš and Brožek, Václav and Chatterjee, Krishnendu and Forejt, Vojtěch and Kučera, Antonín},
issn = {18605974},
journal = {Logical Methods in Computer Science},
number = {1},
publisher = {International Federation of Computational Logic},
title = {{Markov decision processes with multiple long-run average objectives}},
doi = {10.2168/LMCS-10(1:13)2014},
volume = {10},
year = {2014},
}
@article{2235,
abstract = {Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops. Honeybees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high-impact pathogens, and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumblebees (Bombus spp.) are in global decline, one cause of which may be pathogen spillover from managed pollinators like honeybees or commercial colonies of bumblebees. Here we use a combination of infection experiments and landscape-scale field data to show that honeybee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic parasite Nosema ceranae in honeybees and bumblebees is linked; as honeybees have higher DWV prevalence, and sympatric bumblebees and honeybees are infected by the same DWV strains, Apis is the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators.},
author = {Fürst, Matthias and Mcmahon, Dino and Osborne, Juliet and Paxton, Robert and Brown, Mark},
issn = {00280836},
journal = {Nature},
number = {7488},
pages = {364 -- 366},
publisher = {Nature Publishing Group},
title = {{Disease associations between honeybees and bumblebees as a threat to wild pollinators}},
doi = {10.1038/nature12977},
volume = {506},
year = {2014},
}
@inproceedings{2236,
abstract = {Consider a joint distribution (X,A) on a set. We show that for any family of distinguishers, there exists a simulator such that 1 no function in can distinguish (X,A) from (X,h(X)) with advantage ε, 2 h is only O(2 3ℓ ε -2) times less efficient than the functions in. For the most interesting settings of the parameters (in particular, the cryptographic case where X has superlogarithmic min-entropy, ε > 0 is negligible and consists of circuits of polynomial size), we can make the simulator h deterministic. As an illustrative application of our theorem, we give a new security proof for the leakage-resilient stream-cipher from Eurocrypt'09. Our proof is simpler and quantitatively much better than the original proof using the dense model theorem, giving meaningful security guarantees if instantiated with a standard blockcipher like AES. Subsequent to this work, Chung, Lui and Pass gave an interactive variant of our main theorem, and used it to investigate weak notions of Zero-Knowledge. Vadhan and Zheng give a more constructive version of our theorem using their new uniform min-max theorem.},
author = {Jetchev, Dimitar and Pietrzak, Krzysztof Z},
editor = {Lindell, Yehuda},
isbn = {978-364254241-1},
location = {San Diego, USA},
pages = {566 -- 590},
publisher = {Springer},
title = {{How to fake auxiliary input}},
doi = {10.1007/978-3-642-54242-8_24},
volume = {8349},
year = {2014},
}
@article{2246,
abstract = {Muller games are played by two players moving a token along a graph; the winner is determined by the set of vertices that occur infinitely often. The central algorithmic problem is to compute the winning regions for the players. Different classes and representations of Muller games lead to problems of varying computational complexity. One such class are parity games; these are of particular significance in computational complexity, as they remain one of the few combinatorial problems known to be in NP ∩ co-NP but not known to be in P. We show that winning regions for a Muller game can be determined from the alternating structure of its traps. To every Muller game we then associate a natural number that we call its trap depth; this parameter measures how complicated the trap structure is. We present algorithms for parity games that run in polynomial time for graphs of bounded trap depth, and in general run in time exponential in the trap depth. },
author = {Grinshpun, Andrey and Phalitnonkiat, Pakawat and Rubin, Sasha and Tarfulea, Andrei},
issn = {03043975},
journal = {Theoretical Computer Science},
pages = {73 -- 91},
publisher = {Elsevier},
title = {{Alternating traps in Muller and parity games}},
doi = {10.1016/j.tcs.2013.11.032},
volume = {521},
year = {2014},
}
@article{2249,
abstract = {The unfolded protein response (UPR) is a signaling network triggered by overload of protein-folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down-regulation of auxin receptors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species-specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER-localized auxin transporters, including PIN5, we define a long-neglected biological significance of ER-based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone-dependent strategy for coordinating ER function with physiological processes.},
author = {Chen, Yani and Aung, Kyaw and Rolčík, Jakub and Walicki, Kathryn and Friml, Jirí and Brandizzí, Federica},
issn = {09607412},
journal = {Plant Journal},
number = {1},
pages = {97 -- 107},
publisher = {Wiley-Blackwell},
title = {{Inter-regulation of the unfolded protein response and auxin signaling}},
doi = {10.1111/tpj.12373},
volume = {77},
year = {2014},
}
@article{2250,
abstract = {The genome sequences of new viruses often contain many "orphan" or "taxon-specific" proteins apparently lacking homologs. However, because viral proteins evolve very fast, commonly used sequence similarity detection methods such as BLAST may overlook homologs. We analyzed a data set of proteins from RNA viruses characterized as "genus specific" by BLAST. More powerful methods developed recently, such as HHblits or HHpred (available through web-based, user-friendly interfaces), could detect distant homologs of a quarter of these proteins, suggesting that these methods should be used to annotate viral genomes. In-depth manual analyses of a subset of the remaining sequences, guided by contextual information such as taxonomy, gene order, or domain cooccurrence, identified distant homologs of another third. Thus, a combination of powerful automated methods and manual analyses can uncover distant homologs of many proteins thought to be orphans. We expect these methodological results to be also applicable to cellular organisms, since they generally evolve much more slowly than RNA viruses. As an application, we reanalyzed the genome of a bee pathogen, Chronic bee paralysis virus (CBPV). We could identify homologs of most of its proteins thought to be orphans; in each case, identifying homologs provided functional clues. We discovered that CBPV encodes a domain homologous to the Alphavirus methyltransferase-guanylyltransferase; a putative membrane protein, SP24, with homologs in unrelated insect viruses and insect-transmitted plant viruses having different morphologies (cileviruses, higreviruses, blunerviruses, negeviruses); and a putative virion glycoprotein, ORF2, also found in negeviruses. SP24 and ORF2 are probably major structural components of the virionsd.},
author = {Kuchibhatla, Durga and Sherman, Westley and Chung, Betty and Cook, Shelley and Schneider, Georg and Eisenhaber, Birgit and Karlin, David},
issn = {0022538X},
journal = {Journal of Virology},
number = {1},
pages = {10 -- 20},
publisher = {ASM},
title = {{Powerful sequence similarity search methods and in-depth manual analyses can identify remote homologs in many apparently "orphan" viral proteins}},
doi = {10.1128/JVI.02595-13},
volume = {88},
year = {2014},
}
@article{2251,
abstract = {Sharp wave/ripple (SWR, 150–250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps.},
author = {Csicsvari, Jozsef L and Dupret, David},
issn = {09628436},
journal = {Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences},
number = {1635},
publisher = {Royal Society, The},
title = {{Sharp wave/ripple network oscillations and learning-associated hippocampal maps}},
doi = {10.1098/rstb.2012.0528},
volume = {369},
year = {2014},
}
@article{2253,
abstract = {Plant growth is achieved predominantly by cellular elongation, which is thought to be controlled on several levels by apoplastic auxin. Auxin export into the apoplast is achieved by plasma membrane efflux catalysts of the PIN-FORMED (PIN) and ATP-binding cassette protein subfamily B/phosphor- glycoprotein (ABCB/PGP) classes; the latter were shown to depend on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Here by using a transgenic approach in combination with phenotypical, biochemical and cell biological analyses we demonstrate the importance of a putative C-terminal in-plane membrane anchor of TWD1 in the regulation of ABCB-mediated auxin transport. In contrast with dwarfed twd1 loss-of-function alleles, TWD1 gain-of-function lines that lack a putative in-plane membrane anchor (HA-TWD1-Ct) show hypermorphic plant architecture, characterized by enhanced stem length and leaf surface but reduced shoot branching. Greater hypocotyl length is the result of enhanced cell elongation that correlates with reduced polar auxin transport capacity for HA-TWD1-Ct. As a consequence, HA-TWD1-Ct displays higher hypocotyl auxin accumulation, which is shown to result in elevated auxin-induced cell elongation rates. Our data highlight the importance of C-terminal membrane anchoring for TWD1 action, which is required for specific regulation of ABCB-mediated auxin transport. These data support a model in which TWD1 controls lateral ABCB1-mediated export into the apoplast, which is required for auxin-mediated cell elongation.},
author = {Bailly, Aurélien and Wang, Bangjun and Zwiewka, Marta and Pollmann, Stephan and Schenck, Daniel and Lüthen, Hartwig and Schulz, Alexander and Friml, Jirí and Geisler, Markus},
issn = {09607412},
journal = {Plant Journal},
number = {1},
pages = {108 -- 118},
publisher = {Wiley-Blackwell},
title = {{Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth}},
doi = {10.1111/tpj.12369},
volume = {77},
year = {2014},
}
@article{2254,
abstract = {Theta-gamma network oscillations are thought to represent key reference signals for information processing in neuronal ensembles, but the underlying synaptic mechanisms remain unclear. To address this question, we performed whole-cell (WC) patch-clamp recordings from mature hippocampal granule cells (GCs) in vivo in the dentate gyrus of anesthetized and awake rats. GCs in vivo fired action potentials at low frequency, consistent with sparse coding in the dentate gyrus. GCs were exposed to barrages of fast AMPAR-mediated excitatory postsynaptic currents (EPSCs), primarily relayed from the entorhinal cortex, and inhibitory postsynaptic currents (IPSCs), presumably generated by local interneurons. EPSCs exhibited coherence with the field potential predominantly in the theta frequency band, whereas IPSCs showed coherence primarily in the gamma range. Action potentials in GCs were phase locked to network oscillations. Thus, theta-gamma-modulated synaptic currents may provide a framework for sparse temporal coding of information in the dentate gyrus.},
author = {Pernia-Andrade, Alejandro and Jonas, Peter M},
issn = {08966273},
journal = {Neuron},
number = {1},
pages = {140 -- 152},
publisher = {Elsevier},
title = {{Theta-gamma-modulated synaptic currents in hippocampal granule cells in vivo define a mechanism for network oscillations}},
doi = {10.1016/j.neuron.2013.09.046},
volume = {81},
year = {2014},
}
@article{2255,
abstract = {Motivated by applications in biology, we present an algorithm for estimating the length of tube-like shapes in 3-dimensional Euclidean space. In a first step, we combine the tube formula of Weyl with integral geometric methods to obtain an integral representation of the length, which we approximate using a variant of the Koksma-Hlawka Theorem. In a second step, we use tools from computational topology to decrease the dependence on small perturbations of the shape. We present computational experiments that shed light on the stability and the convergence rate of our algorithm.},
author = {Edelsbrunner, Herbert and Pausinger, Florian},
issn = {09249907},
journal = {Journal of Mathematical Imaging and Vision},
number = {1},
pages = {164 -- 177},
publisher = {Springer},
title = {{Stable length estimates of tube-like shapes}},
doi = {10.1007/s10851-013-0468-x},
volume = {50},
year = {2014},
}
@article{2257,
abstract = {Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such “K-pairwise” models—being systematic extensions of the previously used pairwise Ising models—provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1) estimating its entropy, which constrains the population's capacity to represent visual information; 2) classifying activity patterns into a small set of metastable collective modes; 3) showing that the neural codeword ensembles are extremely inhomogenous; 4) demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.},
author = {Tkacik, Gasper and Marre, Olivier and Amodei, Dario and Schneidman, Elad and Bialek, William and Berry, Michael},
issn = {1553734X},
journal = {PLoS Computational Biology},
number = {1},
publisher = {Public Library of Science},
title = {{Searching for collective behavior in a large network of sensory neurons}},
doi = {10.1371/journal.pcbi.1003408},
volume = {10},
year = {2014},
}
@article{7598,
author = {Tan, Shutang and Xue, Hong-Wei},
issn = {2211-1247},
journal = {Cell Reports},
number = {5},
pages = {1692--1702},
publisher = {Elsevier},
title = {{Casein kinase 1 regulates ethylene synthesis by phosphorylating and promoting the turnover of ACS5}},
doi = {10.1016/j.celrep.2014.10.047},
volume = {9},
year = {2014},
}
@inproceedings{772,
abstract = {Lock-free concurrent algorithms guarantee that some concurrent operation will always make progress in a finite number of steps. Yet programmers prefer to treat concurrent code as if it were wait-free, guaranteeing that all operations always make progress. Unfortunately, designing wait-free algorithms is generally a very complex task, and the resulting algorithms are not always efficient. While obtaining efficient wait-free algorithms has been a long-time goal for the theory community, most non-blocking commercial code is only lock-free. This paper suggests a simple solution to this problem. We show that, for a large class of lock-free algorithms, under scheduling conditions which approximate those found in commercial hardware architectures, lock-free algorithms behave as if they are wait-free. In other words, programmers can keep on designing simple lock-free algorithms instead of complex wait-free ones, and in practice, they will get wait-free progress. Our main contribution is a new way of analyzing a general class of lock-free algorithms under a stochastic scheduler. Our analysis relates the individual performance of processes with the global performance of the system using Markov chain lifting between a complex per-process chain and a simpler system progress chain. We show that lock-free algorithms are not only wait-free with probability 1, but that in fact a general subset of lock-free algorithms can be closely bounded in terms of the average number of steps required until an operation completes. To the best of our knowledge, this is the first attempt to analyze progress conditions, typically stated in relation to a worst case adversary, in a stochastic model capturing their expected asymptotic behavior.},
author = {Alistarh, Dan-Adrian and Censor Hillel, Keren and Shavit, Nir},
pages = {714 -- 723},
publisher = {ACM},
title = {{Are lock-free concurrent algorithms practically wait-free?}},
doi = {10.1145/2591796.2591836},
year = {2014},
}
@inproceedings{775,
abstract = {The long-lived renaming problem appears in shared-memory systems where a set of threads need to register and deregister frequently from the computation, while concurrent operations scan the set of currently registered threads. Instances of this problem show up in concurrent implementations of transactional memory, flat combining, thread barriers, and memory reclamation schemes for lock-free data structures. In this paper, we analyze a randomized solution for long-lived renaming. The algorithmic technique we consider, called the Level Array, has previously been used for hashing and one-shot (single-use) renaming. Our main contribution is to prove that, in long-lived executions, where processes may register and deregister polynomially many times, the technique guarantees constant steps on average and O (log log n) steps with high probability for registering, unit cost for deregistering, and O (n) steps for collect queries, where n is an upper bound on the number of processes that may be active at any point in time. We also show that the algorithm has the surprising property that it is self-healing: under reasonable assumptions on the schedule, operations running while the data structure is in a degraded state implicitly help the data structure re-balance itself. This subtle mechanism obviates the need for expensive periodic rebuilding procedures. Our benchmarks validate this approach, showing that, for typical use parameters, the average number of steps a process takes to register is less than two and the worst-case number of steps is bounded by six, even in executions with billions of operations. We contrast this with other randomized implementations, whose worst-case behavior we show to be unreliable, and with deterministic implementations, whose cost is linear in n.},
author = {Alistarh, Dan-Adrian and Kopinsky, Justin and Matveev, Alexander and Shavit, Nir},
pages = {348 -- 357},
publisher = {IEEE},
title = {{The levelarray: A fast, practical long-lived renaming algorithm}},
doi = {10.1109/ICDCS.2014.43},
year = {2014},
}
@article{7771,
abstract = {In their Letter, Schreck, Bertrand, O'Hern and Shattuck [Phys. Rev. Lett. 107, 078301 (2011)] study nonlinearities in jammed particulate systems that arise when contacts are altered. They conclude that there is "no harmonic regime in the large system limit for all compressions" and "at jamming onset for any system size." Their argument rests on the claim that for finite-range repulsive potentials, of the form used in studies of jamming, the breaking or forming of a single contact is sufficient to destroy the linear regime. We dispute these conclusions and argue that linear response is both justified and essential for understanding the nature of the jammed solid. },
author = {Goodrich, Carl Peter and Liu, Andrea J. and Nagel, Sidney R.},
issn = {0031-9007},
journal = {Physical Review Letters},
number = {4},
publisher = {American Physical Society},
title = {{Comment on “Repulsive contact interactions make jammed particulate systems inherently nonharmonic”}},
doi = {10.1103/physrevlett.112.049801},
volume = {112},
year = {2014},
}
@article{468,
abstract = {Invasive alien parasites and pathogens are a growing threat to biodiversity worldwide, which can contribute to the extinction of endemic species. On the Galápagos Islands, the invasive parasitic fly Philornis downsi poses a major threat to the endemic avifauna. Here, we investigated the influence of this parasite on the breeding success of two Darwin's finch species, the warbler finch (Certhidea olivacea) and the sympatric small tree finch (Camarhynchus parvulus), on Santa Cruz Island in 2010 and 2012. While the population of the small tree finch appeared to be stable, the warbler finch has experienced a dramatic decline in population size on Santa Cruz Island since 1997. We aimed to identify whether warbler finches are particularly vulnerable during different stages of the breeding cycle. Contrary to our prediction, breeding success was lower in the small tree finch than in the warbler finch. In both species P. downsi had a strong negative impact on breeding success and our data suggest that heavy rain events also lowered the fledging success. On the one hand parents might be less efficient in compensating their chicks' energy loss due to parasitism as they might be less efficient in foraging on days of heavy rain. On the other hand, intense rainfalls might lead to increased humidity and more rapid cooling of the nests. In the case of the warbler finch we found that the control of invasive plant species with herbicides had a significant additive negative impact on the breeding success. It is very likely that the availability of insects (i.e. food abundance) is lower in such controlled areas, as herbicide usage led to the removal of the entire understory. Predation seems to be a minor factor in brood loss.},
author = {Cimadom, Arno and Ulloa, Angel and Meidl, Patrick and Zöttl, Markus and Zöttl, Elisabet and Fessl, Birgit and Nemeth, Erwin and Dvorak, Michael and Cunninghame, Francesca and Tebbich, Sabine},
journal = {PLoS One},
number = {9},
publisher = {Public Library of Science},
title = {{Invasive parasites habitat change and heavy rainfall reduce breeding success in Darwin's finches}},
doi = {10.1371/journal.pone.0107518},
volume = {9},
year = {2014},
}
@inproceedings{475,
abstract = {First cycle games (FCG) are played on a finite graph by two players who push a token along the edges until a vertex is repeated, and a simple cycle is formed. The winner is determined by some fixed property Y of the sequence of labels of the edges (or nodes) forming this cycle. These games are traditionally of interest because of their connection with infinite-duration games such as parity and mean-payoff games. We study the memory requirements for winning strategies of FCGs and certain associated infinite duration games. We exhibit a simple FCG that is not memoryless determined (this corrects a mistake in Memoryless determinacy of parity and mean payoff games: a simple proof by Bj⋯orklund, Sandberg, Vorobyov (2004) that claims that FCGs for which Y is closed under cyclic permutations are memoryless determined). We show that θ (n)! memory (where n is the number of nodes in the graph), which is always sufficient, may be necessary to win some FCGs. On the other hand, we identify easy to check conditions on Y (i.e., Y is closed under cyclic permutations, and both Y and its complement are closed under concatenation) that are sufficient to ensure that the corresponding FCGs and their associated infinite duration games are memoryless determined. We demonstrate that many games considered in the literature, such as mean-payoff, parity, energy, etc., satisfy these conditions. On the complexity side, we show (for efficiently computable Y) that while solving FCGs is in PSPACE, solving some families of FCGs is PSPACE-hard. },
author = {Aminof, Benjamin and Rubin, Sasha},
booktitle = {Electronic Proceedings in Theoretical Computer Science, EPTCS},
location = {Grenoble, France},
pages = {83 -- 90},
publisher = {Open Publishing Association},
title = {{First cycle games}},
doi = {10.4204/EPTCS.146.11},
volume = {146},
year = {2014},
}
@article{535,
abstract = {Energy games belong to a class of turn-based two-player infinite-duration games played on a weighted directed graph. It is one of the rare and intriguing combinatorial problems that lie in NP∩co-NP, but are not known to be in P. The existence of polynomial-time algorithms has been a major open problem for decades and apart from pseudopolynomial algorithms there is no algorithm that solves any non-trivial subclass in polynomial time. In this paper, we give several results based on the weight structures of the graph. First, we identify a notion of penalty and present a polynomial-time algorithm when the penalty is large. Our algorithm is the first polynomial-time algorithm on a large class of weighted graphs. It includes several worst-case instances on which previous algorithms, such as value iteration and random facet algorithms, require at least sub-exponential time. Our main technique is developing the first non-trivial approximation algorithm and showing how to convert it to an exact algorithm. Moreover, we show that in a practical case in verification where weights are clustered around a constant number of values, the energy game problem can be solved in polynomial time. We also show that the problem is still as hard as in general when the clique-width is bounded or the graph is strongly ergodic, suggesting that restricting the graph structure does not necessarily help.},
author = {Chatterjee, Krishnendu and Henzinger, Monika and Krinninger, Sebastian and Nanongkai, Danupon},
journal = {Algorithmica},
number = {3},
pages = {457 -- 492},
publisher = {Springer},
title = {{Polynomial time algorithms for energy games with special weight structures}},
doi = {10.1007/s00453-013-9843-7},
volume = {70},
year = {2014},
}
@article{537,
abstract = {Transgenerational effects are broader than only parental relationships. Despite mounting evidence that multigenerational effects alter phenotypic and life-history traits, our understanding of how they combine to determine fitness is not well developed because of the added complexity necessary to study them. Here, we derive a quantitative genetic model of adaptation to an extraordinary new environment by an additive genetic component, phenotypic plasticity, maternal and grandmaternal effects. We show how, at equilibrium, negative maternal and negative grandmaternal effects maximize expected population mean fitness. We define negative transgenerational effects as those that have a negative effect on trait expression in the subsequent generation, that is, they slow, or potentially reverse, the expected evolutionary dynamic. When maternal effects are positive, negative grandmaternal effects are preferred. As expected under Mendelian inheritance, the grandmaternal effects have a lower impact on fitness than the maternal effects, but this dual inheritance model predicts a more complex relationship between maternal and grandmaternal effects to constrain phenotypic variance and so maximize expected population mean fitness in the offspring.},
author = {Prizak, Roshan and Ezard, Thomas and Hoyle, Rebecca},
journal = {Ecology and Evolution},
number = {15},
pages = {3139 -- 3145},
publisher = {Wiley-Blackwell},
title = {{Fitness consequences of maternal and grandmaternal effects}},
doi = {10.1002/ece3.1150},
volume = {4},
year = {2014},
}
@misc{5411,
abstract = {Model-based testing is a promising technology for black-box software and hardware testing, in which test cases are generated automatically from high-level specifications. Nowadays, systems typically consist of multiple interacting components and, due to their complexity, testing presents a considerable portion of the effort and cost in the design process. Exploiting the compositional structure of system specifications can considerably reduce the effort in model-based testing. Moreover, inferring properties about the system from testing its individual components allows the designer to reduce the amount of integration testing.
In this paper, we study compositional properties of the IOCO-testing theory. We propose a new approach to composition and hiding operations, inspired by contract-based design and interface theories. These operations preserve behaviors that are compatible under composition and hiding, and prune away incompatible ones. The resulting specification characterizes the input sequences for which the unit testing of components is sufficient to infer the correctness of component integration without the need for further tests. We provide a methodology that uses these results to minimize integration testing effort, but also to detect potential weaknesses in specifications. While we focus on asynchronous models and the IOCO conformance relation, the resulting methodology can be applied to a broader class of systems.},
author = {Daca, Przemyslaw and Henzinger, Thomas A and Krenn, Willibald and Nickovic, Dejan},
issn = {2664-1690},
pages = {20},
publisher = {IST Austria},
title = {{Compositional specifications for IOCO testing}},
doi = {10.15479/AT:IST-2014-148-v2-1},
year = {2014},
}
@misc{5412,
abstract = {We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation. We have implemented our algorithms and show that the compositional analysis leads to significant improvements. },
author = {Chatterjee, Krishnendu and Daca, Przemyslaw and Chmelik, Martin},
issn = {2664-1690},
pages = {31},
publisher = {IST Austria},
title = {{CEGAR for qualitative analysis of probabilistic systems}},
doi = {10.15479/AT:IST-2014-153-v1-1},
year = {2014},
}
@misc{5413,
abstract = {We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation. We have implemented our algorithms and show that the compositional analysis leads to significant improvements. },
author = {Chatterjee, Krishnendu and Daca, Przemyslaw and Chmelik, Martin},
issn = {2664-1690},
pages = {33},
publisher = {IST Austria},
title = {{CEGAR for qualitative analysis of probabilistic systems}},
doi = {10.15479/AT:IST-2014-153-v2-2},
year = {2014},
}
@misc{5414,
abstract = {We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems. We focus on qualitative properties for MDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability.
We introduce a new simulation relation to capture the refinement relation of MDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.
We present an automated technique for assume-guarantee style reasoning for compositional analysis of MDPs with qualitative properties by giving a counter-example guided abstraction-refinement approach to compute our new simulation relation.
We have implemented our algorithms and show that the compositional analysis leads to significant improvements. },
author = {Chatterjee, Krishnendu and Daca, Przemyslaw and Chmelik, Martin},
issn = {2664-1690},
pages = {33},
publisher = {IST Austria},
title = {{CEGAR for qualitative analysis of probabilistic systems}},
doi = {10.15479/AT:IST-2014-153-v3-1},
year = {2014},
}
@misc{5415,
abstract = {Recently there has been a significant effort to add quantitative properties in formal verification and synthesis. While weighted automata over finite and infinite words provide a natural and flexible framework to express quantitative properties, perhaps surprisingly, several basic system properties such as average response time cannot be expressed with weighted automata. In this work, we introduce nested weighted automata as a new formalism for expressing important quantitative properties such as average response time. We establish an almost complete decidability picture for the basic decision problems for nested weighted automata, and illustrate its applicability in several domains. },
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{Nested weighted automata}},
doi = {10.15479/AT:IST-2014-170-v1-1},
year = {2014},
}
@misc{5416,
abstract = {As hybrid systems involve continuous behaviors, they should be evaluated by quantitative methods, rather than qualitative methods. In this paper we adapt a quantitative framework, called model measuring, to the hybrid systems domain. The model-measuring problem asks, given a model M and a specification, what is the maximal distance such that all models within that distance from M satisfy (or violate) the specification. A distance function on models is given as part of the input of the problem. Distances, especially related to continuous behaviors are more natural in the hybrid case than the discrete case. We are interested in distances represented by monotonic hybrid automata, a hybrid counterpart of (discrete) weighted automata, whose recognized timed languages are monotone (w.r.t. inclusion) in the values of parameters.The contributions of this paper are twofold. First, we give sufficient conditions under which the model-measuring problem can be solved. Second, we discuss the modeling of distances and applications of the model-measuring problem.},
author = {Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {22},
publisher = {IST Austria},
title = {{Model measuring for hybrid systems}},
doi = {10.15479/AT:IST-2014-171-v1-1},
year = {2014},
}
@misc{5417,
abstract = {We define the model-measuring problem: given a model M and specification φ, what is the maximal distance ρ such that all models M'within distance ρ from M satisfy (or violate)φ. The model measuring problem presupposes a distance function on models. We concentrate on automatic distance functions, which are defined by weighted automata.
The model-measuring problem subsumes several generalizations of the classical model-checking problem, in particular, quantitative model-checking problems that measure the degree of satisfaction of a specification, and robustness problems that measure how much a model can be perturbed without violating the specification.
We show that for automatic distance functions, and ω-regular linear-time and branching-time specifications, the model-measuring problem can be solved.
We use automata-theoretic model-checking methods for model measuring, replacing the emptiness question for standard word and tree automata by the optimal-weight question for the weighted versions of these automata. We consider weighted automata that accumulate weights by maximizing, summing, discounting, and limit averaging.
We give several examples of using the model-measuring problem to compute various notions of robustness and quantitative satisfaction for temporal specifications.},
author = {Henzinger, Thomas A and Otop, Jan},
issn = {2664-1690},
pages = {14},
publisher = {IST Austria},
title = {{From model checking to model measuring}},
doi = {10.15479/AT:IST-2014-172-v1-1},
year = {2014},
}
@misc{5418,
abstract = {We consider multi-player graph games with partial-observation and parity objective. While the decision problem for three-player games with a coalition of the first and second players against the third player is undecidable, we present a decidability result for partial-observation games where the first and third player are in a coalition against the second player, thus where the second player is adversarial but weaker due to partial-observation. We establish tight complexity bounds in the case where player 1 is less informed than player 2, namely 2-EXPTIME-completeness for parity objectives. The symmetric case of player 1 more informed than player 2 is much more complicated, and we show that already in the case where player 1 has perfect observation, memory of size non-elementary is necessary in general for reachability objectives, and the problem is decidable for safety and reachability objectives. Our results have tight connections with partial-observation stochastic games for which we derive new complexity results.},
author = {Chatterjee, Krishnendu and Doyen, Laurent},
issn = {2664-1690},
pages = {18},
publisher = {IST Austria},
title = {{Games with a weak adversary}},
doi = {10.15479/AT:IST-2014-176-v1-1},
year = {2014},
}
@misc{5419,
abstract = {We consider the reachability and shortest path problems on low tree-width graphs, with n nodes, m edges, and tree-width t, on a standard RAM with wordsize W. We use O to hide polynomial factors of the inverse of the Ackermann function. Our main contributions are three fold:
1. For reachability, we present an algorithm that requires O(n·t2·log(n/t)) preprocessing time, O(n·(t·log(n/t))/W) space, and O(t/W) time for pair queries and O((n·t)/W) time for single-source queries. Note that for constant t our algorithm uses O(n·logn) time for preprocessing; and O(n/W) time for single-source queries, which is faster than depth first search/breath first search (after the preprocessing).
2. We present an algorithm for shortest path that requires O(n·t2) preprocessing time, O(n·t) space, and O(t2) time for pair queries and O(n·t) time single-source queries.
3. We give a space versus query time trade-off algorithm for shortest path that, given any constant >0, requires O(n·t2) preprocessing time, O(n·t2) space, and O(n1−·t2) time for pair queries.
Our algorithms improve all existing results, and use very simple data structures.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {34},
publisher = {IST Austria},
title = {{Improved algorithms for reachability and shortest path on low tree-width graphs}},
doi = {10.15479/AT:IST-2014-187-v1-1},
year = {2014},
}
@misc{5420,
abstract = {We consider concurrent mean-payoff games, a very well-studied class of two-player (player 1 vs player 2) zero-sum games on finite-state graphs where every transition is assigned a reward between 0 and 1, and the payoff function is the long-run average of the rewards. The value is the maximal expected payoff that player 1 can guarantee against all strategies of player 2. We consider the computation of the set of states with value 1 under finite-memory strategies for player 1, and our main results for the problem are as follows: (1) we present a polynomial-time algorithm; (2) we show that whenever there is a finite-memory strategy, there is a stationary strategy that does not need memory at all; and (3) we present an optimal bound (which is double exponential) on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy).},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus},
issn = {2664-1690},
pages = {49},
publisher = {IST Austria},
title = {{The value 1 problem for concurrent mean-payoff games}},
doi = {10.15479/AT:IST-2014-191-v1-1},
year = {2014},
}
@misc{5421,
abstract = {Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom in the context of evolution. The replacement graph specifies who competes with whom for reproduction. The vertices of the two graphs are the same, and each vertex corresponds to an individual. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability. Our main results are: (1) We show that the qualitative question is NP-complete and the quantitative approximation question is #P-hard in the special case when the interaction and the replacement graphs coincide and even with the restriction that the resident individuals do not reproduce (which corresponds to an invading population taking over an empty structure). (2) We show that in general the qualitative question is PSPACE-complete and the quantitative approximation question is PSPACE-hard and can be solved in exponential time.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Nowak, Martin},
issn = {2664-1690},
pages = {27},
publisher = {IST Austria},
title = {{The complexity of evolution on graphs}},
doi = {10.15479/AT:IST-2014-190-v2-2},
year = {2014},
}
@techreport{5422,
abstract = {Notes from the Third Plenary for the Research Data Alliance in Dublin, Ireland on March 26 to 28, 2014 with focus on starting an institutional research data repository.},
author = {Porsche, Jana},
publisher = {none},
title = {{Notes from Research Data Alliance Plenary Meeting in Dublin, Ireland}},
year = {2014},
}
@misc{5423,
abstract = {We present a flexible framework for the automated competitive analysis of on-line scheduling algorithms for firm- deadline real-time tasks based on multi-objective graphs: Given a taskset and an on-line scheduling algorithm specified as a labeled transition system, along with some optional safety, liveness, and/or limit-average constraints for the adversary, we automatically compute the competitive ratio of the algorithm w.r.t. a clairvoyant scheduler. We demonstrate the flexibility and power of our approach by comparing the competitive ratio of several on-line algorithms, including D(over), that have been proposed in the past, for various tasksets. Our experimental results reveal that none of these algorithms is universally optimal, in the sense that there are tasksets where other schedulers provide better performance. Our framework is hence a very useful design tool for selecting optimal algorithms for a given application. },
author = {Chatterjee, Krishnendu and Kössler, Alexander and Pavlogiannis, Andreas and Schmid, Ulrich},
issn = {2664-1690},
pages = {14},
publisher = {IST Austria},
title = {{A framework for automated competitive analysis of on-line scheduling of firm-deadline tasks}},
doi = {10.15479/AT:IST-2014-300-v1-1},
year = {2014},
}
@misc{5424,
abstract = {We consider partially observable Markov decision processes (POMDPs), that are a standard framework for robotics applications to model uncertainties present in the real world, with temporal logic specifications. All temporal logic specifications in linear-time temporal logic (LTL) can be expressed as parity objectives. We study the qualitative analysis problem for POMDPs with parity objectives that asks whether there is a controller (policy) to ensure that the objective holds with probability 1 (almost-surely). While the qualitative analysis of POMDPs with parity objectives is undecidable, recent results show that when restricted to finite-memory policies the problem is EXPTIME-complete. While the problem is intractable in theory, we present a practical approach to solve the qualitative analysis problem. We designed several heuristics to deal with the exponential complexity, and have used our implementation on a number of well-known POMDP examples for robotics applications. Our results provide the first practical approach to solve the qualitative analysis of robot motion planning with LTL properties in the presence of uncertainty.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Gupta, Raghav and Kanodia, Ayush},
issn = {2664-1690},
pages = {12},
publisher = {IST Austria},
title = {{Qualitative analysis of POMDPs with temporal logic specifications for robotics applications}},
doi = {10.15479/AT:IST-2014-305-v1-1},
year = {2014},
}
@misc{5425,
abstract = { We consider partially observable Markov decision processes (POMDPs) with a set of target states and every transition is associated with an integer cost. The optimization objective we study asks to minimize the expected total cost till the target set is reached, while ensuring that the target set is reached almost-surely (with probability 1). We show that for integer costs approximating the optimal cost is undecidable. For positive costs, our results are as follows: (i) we establish matching lower and upper bounds for the optimal cost and the bound is double exponential; (ii) we show that the problem of approximating the optimal cost is decidable and present approximation algorithms developing on the existing algorithms for POMDPs with finite-horizon objectives. While the worst-case running time of our algorithm is double exponential, we also present efficient stopping criteria for the algorithm and show experimentally that it performs well in many examples of interest.},
author = {Anonymous, 1 and Anonymous, 2 and Anonymous, 3 and Anonymous, 4},
issn = {2664-1690},
pages = {22},
publisher = {IST Austria},
title = {{Optimal cost almost-sure reachability in POMDPs}},
year = {2014},
}
@misc{5426,
abstract = {We consider partially observable Markov decision processes (POMDPs), that are a standard framework for robotics applications to model uncertainties present in the real world, with temporal logic specifications. All temporal logic specifications in linear-time temporal logic (LTL) can be expressed as parity objectives. We study the qualitative analysis problem for POMDPs with parity objectives that asks whether there is a controller (policy) to ensure that the objective holds with probability 1 (almost-surely). While the qualitative analysis of POMDPs with parity objectives is undecidable, recent results show that when restricted to finite-memory policies the problem is EXPTIME-complete. While the problem is intractable in theory, we present a practical approach to solve the qualitative analysis problem. We designed several heuristics to deal with the exponential complexity, and have used our implementation on a number of well-known POMDP examples for robotics applications. Our results provide the first practical approach to solve the qualitative analysis of robot motion planning with LTL properties in the presence of uncertainty.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Gupta, Raghav and Kanodia, Ayush},
issn = {2664-1690},
pages = {10},
publisher = {IST Austria},
title = {{Qualitative analysis of POMDPs with temporal logic specifications for robotics applications}},
doi = {10.15479/AT:IST-2014-305-v2-1},
year = {2014},
}
@misc{5427,
abstract = {We consider graphs with n nodes together with their tree-decomposition that has b = O ( n ) bags and width t , on the standard RAM computational model with wordsize W = Θ (log n ) . Our contributions are two-fold: Our first contribution is an algorithm that given a graph and its tree-decomposition as input, computes a binary and balanced tree-decomposition of width at most 4 · t + 3 of the graph in O ( b ) time and space, improving a long-standing (from 1992) bound of O ( n · log n ) time for constant treewidth graphs. Our second contribution is on reachability queries for low treewidth graphs. We build on our tree-balancing algorithm and present a data-structure for graph reachability that requires O ( n · t 2 ) preprocessing time, O ( n · t ) space, and O ( d t/ log n e ) time for pair queries, and O ( n · t · log t/ log n ) time for single-source queries. For constant t our data-structure uses O ( n ) time for preprocessing, O (1) time for pair queries, and O ( n/ log n ) time for single-source queries. This is (asymptotically) optimal and is faster than DFS/BFS when answering more than a constant number of single-source queries.},
author = {Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
issn = {2664-1690},
pages = {24},
publisher = {IST Austria},
title = {{Optimal tree-decomposition balancing and reachability on low treewidth graphs}},
doi = {10.15479/AT:IST-2014-314-v1-1},
year = {2014},
}
@misc{5428,
abstract = {Simulation is an attractive alternative for language inclusion for automata as it is an under-approximation of language inclusion, but usually has much lower complexity. For non-deterministic automata, while language inclusion is PSPACE-complete, simulation can be computed in polynomial time. Simulation has also been extended in two orthogonal directions, namely, (1) fair simulation, for simulation over specified set of infinite runs; and (2) quantitative simulation, for simulation between weighted automata. Again, while fair trace inclusion is PSPACE-complete, fair simulation can be computed in polynomial time. For weighted automata, the (quantitative) language inclusion problem is undecidable for mean-payoff automata and the decidability is open for discounted-sum automata, whereas the (quantitative) simulation reduce to mean-payoff games and discounted-sum games, which admit pseudo-polynomial time algorithms.
In this work, we study (quantitative) simulation for weighted automata with Büchi acceptance conditions, i.e., we generalize fair simulation from non-weighted automata to weighted automata. We show that imposing Büchi acceptance conditions on weighted automata changes many fundamental properties of the simulation games. For example, whereas for mean-payoff and discounted-sum games, the players do not need memory to play optimally; we show in contrast that for simulation games with Büchi acceptance conditions, (i) for mean-payoff objectives, optimal strategies for both players require infinite memory in general, and (ii) for discounted-sum objectives, optimal strategies need not exist for both players. While the simulation games with Büchi acceptance conditions are more complicated (e.g., due to infinite-memory requirements for mean-payoff objectives) as compared to their counterpart without Büchi acceptance conditions, we still present pseudo-polynomial time algorithms to solve simulation games with Büchi acceptance conditions for both weighted mean-payoff and weighted discounted-sum automata.},
author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan and Velner, Yaron},
issn = {2664-1690},
pages = {26},
publisher = {IST Austria},
title = {{Quantitative fair simulation games}},
doi = {10.15479/AT:IST-2014-315-v1-1},
year = {2014},
}
@article{5813,
abstract = {We consider homogeneous Bose gas in a large cubic box with periodic boundary conditions, at zero temperature. We analyze its excitation spectrum in a certain kind of a mean-field infinite-volume limit. We prove that under appropriate conditions the excitation spectrum has the form predicted by the Bogoliubov approximation. Our result can be viewed as an extension of the result of Seiringer (Commun. Math. Phys.306:565–578, 2011) to large volumes.},
author = {Dereziński, Jan and Napiórkowski, Marcin M},
issn = {1424-0637},
journal = {Annales Henri Poincaré},
number = {12},
pages = {2409--2439},
publisher = {Springer Nature},
title = {{Excitation spectrum of interacting bosons in the Mean-Field Infinite-Volume limit}},
doi = {10.1007/s00023-013-0302-4},
volume = {15},
year = {2014},
}
@article{589,
abstract = {We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.},
author = {Lee, Jongmin and Vrijsen, Geert and Teper, Igor and Onur Hosten and Kasevich, Mark A},
journal = {Optics Letters},
number = {13},
pages = {4005 -- 4008},
publisher = {OSA},
title = {{Many-atom-cavity QED system with homogeneous atom-cavity coupling}},
doi = {10.1364/OL.39.004005},
volume = {39},
year = {2014},
}
@article{6122,
author = {Linneweber, Gerit A. and Jacobson, Jake and Busch, Karl Emanuel and Hudry, Bruno and Christov, Christo P. and Dormann, Dirk and Yuan, Michaela and Otani, Tomoki and Knust, Elisabeth and de Bono, Mario and Miguel-Aliaga, Irene},
issn = {0092-8674},
journal = {Cell},
number = {1-2},
pages = {69--83},
publisher = {Elsevier},
title = {{Neuronal control of metabolism through nutrient-dependent modulation of tracheal branching}},
doi = {10.1016/j.cell.2013.12.008},
volume = {156},
year = {2014},
}
@article{6124,
abstract = {Despite the importance of G-protein coupled receptors (GPCRs) their biogenesis is poorly understood. Like vertebrates, C. elegans uses a large family of GPCRs as chemoreceptors. A subset of these receptors, such as ODR-10, requires the odr-4 and odr-8 genes to be appropriately localized to sensory cilia. The odr-4 gene encodes a conserved tail-anchored transmembrane protein; the molecular identity of odr-8 is unknown. Here, we show that odr-8 encodes the C. elegans ortholog of Ufm1-specific protease 2 (UfSP2). UfSPs are cysteine proteases identified biochemically by their ability to liberate the ubiquitin-like modifier Ufm1 from its pro-form and protein conjugates. ODR-8/UfSP2 and ODR-4 are expressed in the same set of twelve chemosensory neurons, and physically interact at the ER membrane. ODR-4 also binds ODR-10, suggesting that an ODR-4/ODR-8 complex promotes GPCR folding, maturation, or export from the ER. The physical interaction between human ODR4 and UfSP2 suggests that this complex's role in GPCR biogenesis may be evolutionarily conserved. Unexpectedly, mutant versions of ODR-8/UfSP2 lacking catalytic residues required for protease activity can rescue all odr-8 mutant phenotypes tested. Moreover, deleting C. elegans ufm-1 does not alter chemoreceptor traffic to cilia, either in wild type or in odr-8 mutants. Thus, UfSP2 proteins have protease- and Ufm1-independent functions in GPCR biogenesis.},
author = {Chen, Changchun and Itakura, Eisuke and Weber, Katherine P. and Hegde, Ramanujan S. and de Bono, Mario},
issn = {1553-7404},
journal = {PLoS Genetics},
number = {3},
publisher = {Public Library of Science (PLoS)},
title = {{An ER complex of ODR-4 and ODR-8/Ufm1 specific protease 2 promotes GPCR maturation by a Ufm1-independent mechanism}},
doi = {10.1371/journal.pgen.1004082},
volume = {10},
year = {2014},
}
@article{6126,
abstract = {Aerobic animals constantly monitor and adapt to changes in O2 levels. The molecular mechanisms involved in sensing O2 are, however, incompletely understood. Previous studies showed that a hexacoordinated globin called GLB-5 tunes the dynamic range of O2-sensing neurons in natural C. elegans isolates, but is defective in the N2 lab reference strain (McGrath et al., 2009; Persson et al., 2009). GLB-5 enables a sharp behavioral switch when O2 changes between 21 and 17%. Here, we show that GLB-5 also confers rapid behavioral and cellular recovery from exposure to hypoxia. Hypoxia reconfigures O2-evoked Ca2+ responses in the URX O2 sensors, and GLB-5 enables rapid recovery of these responses upon re-oxygenation. Forward genetic screens indicate that GLB-5's effects on O2 sensing require PDL-1, the C. elegans ortholog of mammalian PrBP/PDE6δ protein. In mammals, PDE6δ regulates the traffic and activity of prenylated proteins (Zhang et al., 2004; Norton et al., 2005). PDL-1 promotes localization of GCY-33 and GCY-35, atypical soluble guanylate cyclases that act as O2 sensors, to the dendritic endings of URX and BAG neurons, where they colocalize with GLB-5. Both GCY-33 and GCY-35 are predicted to be prenylated. Dendritic localization is not essential for GCY-35 to function as an O2 sensor, but disrupting pdl-1 alters the URX neuron's O2 response properties. Functional GLB-5 can restore dendritic localization of GCY-33 in pdl-1 mutants, suggesting GCY-33 and GLB-5 are in a complex. Our data suggest GLB-5 and the soluble guanylate cyclases operate in close proximity to sculpt O2 responses.},
author = {Gross, E. and Soltesz, Z. and Oda, S. and Zelmanovich, V. and Abergel, Z. and de Bono, Mario},
issn = {0270-6474},
journal = {Journal of Neuroscience},
number = {50},
pages = {16726--16738},
publisher = {Society for Neuroscience},
title = {{GLOBIN-5-dependent O2 responses are regulated by PDL-1/PrBP that targets prenylated soluble guanylate cyclases to dendritic endings}},
doi = {10.1523/jneurosci.5368-13.2014},
volume = {34},
year = {2014},
}
@article{6319,
abstract = {Nous étudions le comportement asymptotique du nombre de variétés dans une certaine classe ne satisfaisant pas le principe de Hasse. Cette étude repose sur des résultats récemmentobtenus par Colliot-Thélène.},
author = {Bretèche, Régis de la and Browning, Timothy D},
issn = {1246-7405},
journal = {Journal de Théorie des Nombres de Bordeaux},
number = {1},
pages = {25--44},
publisher = {Cellule MathDoc/CEDRAM},
title = {{Contre-exemples au principe de Hasse pour certains tores coflasques}},
doi = {10.5802/jtnb.857},
volume = {26},
year = {2014},
}
@article{6739,
abstract = {We explore the relationship between polar and RM codes and we describe a coding scheme which improves upon the performance of the standard polar code at practical block lengths. Our starting point is the experimental observation that RM codes have a smaller error probability than polar codes under MAP decoding. This motivates us to introduce a family of codes that “interpolates” between RM and polar codes, call this family C inter = {C α : α ∈ [0, 1j}, where C α|α=1 is the original polar code, and C α|α=0 is an RM code. Based on numerical observations, we remark that the error probability under MAP decoding is an increasing function of α. MAP decoding has in general exponential complexity, but empirically the performance of polar codes at finite block lengths is boosted by moving along the family Cinter even under low-complexity decoding schemes such as, for instance, belief propagation or successive cancellation list decoder. We demonstrate the performance gain via numerical simulations for transmission over the erasure channel as well as the Gaussian channel.},
author = {Mondelli, Marco and Hassani, Hamed and Urbanke, Rudiger},
issn = {0090-6778},
journal = {IEEE Transactions on Communications},
number = {9},
pages = {3084--3091},
publisher = {IEEE},
title = {{From polar to Reed-Muller codes: A technique to improve the finite-length performance}},
doi = {10.1109/tcomm.2014.2345069},
volume = {62},
year = {2014},
}
@inproceedings{6740,
abstract = {We describe coding techniques that achieve the capacity of a discrete memoryless asymmetric channel. To do so, we discuss how recent advances in coding for symmetric channels yield more efficient solutions also for the asymmetric case. In more detail, we consider three basic approaches. The first one is Gallager's scheme that concatenates a linear code with a non-linear mapper, in order to bias the input distribution. We explicitly show that both polar codes and spatially coupled codes can be employed in this scenario. Further, we derive a scaling law between the gap to capacity, the cardinality of channel input and output alphabets, and the required size of the mapper. The second one is an integrated approach in which the coding scheme is used both for source coding, in order to create codewords with the capacity-achieving distribution, and for channel coding, in order to provide error protection. Such a technique has been recently introduced by Honda and Yamamoto in the context of polar codes, and we show how to apply it also to the design of sparse graph codes. The third approach is based on an idea due to Böcherer and Mathar and separates completely the two tasks of source coding and channel coding by “chaining” together several codewords. We prove that we can combine any suitable source code with any suitable channel code in order to provide optimal schemes for asymmetric channels. In particular, polar codes and spatially coupled codes fulfill the required conditions.},
author = {Mondelli, Marco and Urbanke, Rudiger and Hassani, Hamed},
booktitle = {52nd Annual Allerton Conference on Communication, Control, and Computing},
location = {Monticello, IL, United States},
pages = {789--796},
publisher = {IEEE},
title = {{How to achieve the capacity of asymmetric channels}},
doi = {10.1109/allerton.2014.7028535},
year = {2014},
}
@techreport{7038,
author = {Huszár, Kristóf and Rolinek, Michal},
pages = {5},
publisher = {IST Austria},
title = {{Playful Math - An introduction to mathematical games}},
year = {2014},
}
@article{7071,
abstract = {Spin and orbital quantum numbers play a key role in the physics of Mott insulators, but in most systems they are connected only indirectly—via the Pauli exclusion principle and the Coulomb interaction. Iridium-based oxides (iridates) introduce strong spin–orbit coupling directly, such that these numbers become entwined together and the Mott physics attains a strong orbital character. In the layered honeycomb iridates this is thought to generate highly spin–anisotropic magnetic interactions, coupling the spin to a given spatial direction of exchange and leading to strongly frustrated magnetism. Here we report a new iridate structure that has the same local connectivity as the layered honeycomb and exhibits striking evidence for highly spin–anisotropic exchange. The basic structural units of this material suggest that a new family of three-dimensional structures could exist, the ‘harmonic honeycomb’ iridates, of which the present compound is the first example.},
author = {Modic, Kimberly A and Smidt, Tess E. and Kimchi, Itamar and Breznay, Nicholas P. and Biffin, Alun and Choi, Sungkyun and Johnson, Roger D. and Coldea, Radu and Watkins-Curry, Pilanda and McCandless, Gregory T. and Chan, Julia Y. and Gandara, Felipe and Islam, Z. and Vishwanath, Ashvin and Shekhter, Arkady and McDonald, Ross D. and Analytis, James G.},
issn = {2041-1723},
journal = {Nature Communications},
publisher = {Springer Science and Business Media LLC},
title = {{Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate}},
doi = {10.1038/ncomms5203},
volume = {5},
year = {2014},
}
@article{1375,
abstract = {We consider directed graphs where each edge is labeled with an integer weight and study the fundamental algorithmic question of computing the value of a cycle with minimum mean weight. Our contributions are twofold: (1) First we show that the algorithmic question is reducible to the problem of a logarithmic number of min-plus matrix multiplications of n×n-matrices, where n is the number of vertices of the graph. (2) Second, when the weights are nonnegative, we present the first (1+ε)-approximation algorithm for the problem and the running time of our algorithm is Õ(nωlog3(nW/ε)/ε),1 where O(nω) is the time required for the classic n×n-matrix multiplication and W is the maximum value of the weights. With an additional O(log(nW/ε)) factor in space a cycle with approximately optimal weight can be computed within the same time bound.},
author = {Chatterjee, Krishnendu and Henzinger, Monika and Krinninger, Sebastian and Loitzenbauer, Veronika and Raskin, Michael},
journal = {Theoretical Computer Science},
number = {C},
pages = {104 -- 116},
publisher = {Elsevier},
title = {{Approximating the minimum cycle mean}},
doi = {10.1016/j.tcs.2014.06.031},
volume = {547},
year = {2014},
}
@inproceedings{1392,
abstract = {Fault-tolerant distributed algorithms play an important role in ensuring the reliability of many software applications. In this paper we consider distributed algorithms whose computations are organized in rounds. To verify the correctness of such algorithms, we reason about (i) properties (such as invariants) of the state, (ii) the transitions controlled by the algorithm, and (iii) the communication graph. We introduce a logic that addresses these points, and contains set comprehensions with cardinality constraints, function symbols to describe the local states of each process, and a limited form of quantifier alternation to express the verification conditions. We show its use in automating the verification of consensus algorithms. In particular, we give a semi-decision procedure for the unsatisfiability problem of the logic and identify a decidable fragment. We successfully applied our framework to verify the correctness of a variety of consensus algorithms tolerant to both benign faults (message loss, process crashes) and value faults (message corruption).},
author = {Dragoi, Cezara and Henzinger, Thomas A and Veith, Helmut and Widder, Josef and Zufferey, Damien},
location = {San Diego, USA},
pages = {161 -- 181},
publisher = {Springer},
title = {{A logic-based framework for verifying consensus algorithms}},
doi = {10.1007/978-3-642-54013-4_10},
volume = {8318},
year = {2014},
}
@inproceedings{1393,
abstract = {Probabilistic programs are usual functional or imperative programs with two added constructs: (1) the ability to draw values at random from distributions, and (2) the ability to condition values of variables in a program via observations. Models from diverse application areas such as computer vision, coding theory, cryptographic protocols, biology and reliability analysis can be written as probabilistic programs. Probabilistic inference is the problem of computing an explicit representation of the probability distribution implicitly specified by a probabilistic program. Depending on the application, the desired output from inference may vary-we may want to estimate the expected value of some function f with respect to the distribution, or the mode of the distribution, or simply a set of samples drawn from the distribution. In this paper, we describe connections this research area called \Probabilistic Programming" has with programming languages and software engineering, and this includes language design, and the static and dynamic analysis of programs. We survey current state of the art and speculate on promising directions for future research.},
author = {Gordon, Andrew and Henzinger, Thomas A and Nori, Aditya and Rajamani, Sriram},
booktitle = {Proceedings of the on Future of Software Engineering},
location = {Hyderabad, India},
pages = {167 -- 181},
publisher = {ACM},
title = {{Probabilistic programming}},
doi = {10.1145/2593882.2593900},
year = {2014},
}
@inproceedings{1507,
abstract = {The Wigner-Dyson-Gaudin-Mehta conjecture asserts that the local eigenvalue statistics of large real and complex Hermitian matrices with independent, identically distributed entries are universal in a sense that they depend only on the symmetry class of the matrix and otherwise are independent of the details of the distribution. We present the recent solution to this half-century old conjecture. We explain how stochastic tools, such as the Dyson Brownian motion, and PDE ideas, such as De Giorgi-Nash-Moser regularity theory, were combined in the solution. We also show related results for log-gases that represent a universal model for strongly correlated systems. Finally, in the spirit of Wigner’s original vision, we discuss the extensions of these universality results to more realistic physical systems such as random band matrices.},
author = {Erdös, László},
location = {Seoul, Korea},
pages = {214 -- 236},
publisher = {Kyung Moon SA Co. Ltd.},
title = {{Random matrices, log-gases and Hölder regularity}},
volume = {3},
year = {2014},
}
@inproceedings{1516,
abstract = {We present a rigorous derivation of the BCS gap equation for superfluid fermionic gases with point interactions. Our starting point is the BCS energy functional, whose minimizer we investigate in the limit when the range of the interaction potential goes to zero.
},
author = {Bräunlich, Gerhard and Hainzl, Christian and Seiringer, Robert},
booktitle = {Proceedings of the QMath12 Conference},
location = {Berlin, Germany},
pages = {127 -- 137},
publisher = {World Scientific Publishing},
title = {{On the BCS gap equation for superfluid fermionic gases}},
doi = {10.1142/9789814618144_0007},
year = {2014},
}
@article{1629,
abstract = {We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations.},
author = {Guerrero, Paul and Jeschke, Stefan and Wimmer, Michael and Wonka, Peter},
journal = {ACM Transactions on Graphics},
number = {2},
publisher = {ACM},
title = {{Edit propagation using geometric relationship functions}},
doi = {10.1145/2591010},
volume = {33},
year = {2014},
}
@inproceedings{1643,
abstract = {We extend the notion of verifiable random functions (VRF) to constrained VRFs, which generalize the concept of constrained pseudorandom functions, put forward by Boneh and Waters (Asiacrypt’13), and independently by Kiayias et al. (CCS’13) and Boyle et al. (PKC’14), who call them delegatable PRFs and functional PRFs, respectively. In a standard VRF the secret key sk allows one to evaluate a pseudorandom function at any point of its domain; in addition, it enables computation of a non-interactive proof that the function value was computed correctly. In a constrained VRF from the key sk one can derive constrained keys skS for subsets S of the domain, which allow computation of function values and proofs only at points in S. After formally defining constrained VRFs, we derive instantiations from the multilinear-maps-based constrained PRFs by Boneh and Waters, yielding a VRF with constrained keys for any set that can be decided by a polynomial-size circuit. Our VRFs have the same function values as the Boneh-Waters PRFs and are proved secure under the same hardness assumption, showing that verifiability comes at no cost. Constrained (functional) VRFs were stated as an open problem by Boyle et al.},
author = {Fuchsbauer, Georg},
booktitle = {SCN 2014},
editor = {Abdalla, Michel and De Prisco, Roberto},
location = {Amalfi, Italy},
pages = {95 -- 114},
publisher = {Springer},
title = {{Constrained Verifiable Random Functions }},
doi = {10.1007/978-3-319-10879-7_7},
volume = {8642},
year = {2014},
}
@article{119,
abstract = {Observations of flowing granular matter have suggested that same-material tribocharging depends on particle size, typically rendering large grains positive and small ones negative. Models assuming the transfer of trapped electrons can account for this trend, but have not been validated. Tracking individual grains in an electric field, we show quantitatively that charge is transferred based on size between materially identical grains. However, the surface density of trapped electrons, measured independently by thermoluminescence techniques, is orders of magnitude too small to account for the scale of charge transferred. This reveals that trapped electrons are not a necessary ingredient for same-material tribocharging.},
author = {Waitukaitis, Scott R and Lee, Victor and Pierson, James and Forman, Steven and Jaeger, Heinrich},
journal = {APS Physics, Physical Review Letters},
number = {21},
publisher = {American Physical Society},
title = {{Size-dependent same-material tribocharging in insulating grains}},
doi = {10.1103/PhysRevLett.112.218001},
volume = {112},
year = {2014},
}
@article{9050,
abstract = {Self-propelled particles can exhibit surprising non-equilibrium behaviors, and how they interact with obstacles or boundaries remains an important open problem. Here we show that chemically propelled micro-rods can be captured, with little change in their speed, into close orbits around solid spheres resting on or near a horizontal plane. We show that this interaction between sphere and particle is short-range, occurring even for spheres smaller than the particle length, and for a variety of sphere materials. We consider a simple model, based on lubrication theory, of a force- and torque-free swimmer driven by a surface slip (the phoretic propulsion mechanism) and moving near a solid surface. The model demonstrates capture, or movement towards the surface, and yields speeds independent of distance. This study reveals the crucial aspects of activity–driven interactions of self-propelled particles with passive objects, and brings into question the use of colloidal tracers as probes of active matter.},
author = {Takagi, Daisuke and Palacci, Jérémie A and Braunschweig, Adam B. and Shelley, Michael J. and Zhang, Jun},
issn = {1744-6848},
journal = {Soft Matter},
keywords = {General Chemistry, Condensed Matter Physics},
number = {11},
publisher = {Royal Society of Chemistry },
title = {{Hydrodynamic capture of microswimmers into sphere-bound orbits}},
doi = {10.1039/c3sm52815d},
volume = {10},
year = {2014},
}
@article{96,
abstract = {Multielectron spin qubits are demonstrated, and performance examined by comparing coherent exchange oscillations in coupled single-electron and multielectron quantum dots, measured in the same device. Fast (>1 GHz) exchange oscillations with a quality factor Q∼15 are found for the multielectron case, compared to Q∼2 for the single-electron case, the latter consistent with experiments in the literature. A model of dephasing that includes voltage and hyperfine noise is developed that is in good agreement with both single- and multielectron data, though in both cases additional exchange-independent dephasing is needed to obtain quantitative agreement across a broad parameter range.},
author = {Higginbotham, Andrew P and Kuemmeth, Ferdinand and Hanson, Micah and Gossard, Arthur and Marcus, Charles},
journal = {APS Physics, Physical Review Letters},
number = {2},
publisher = {American Physiological Society},
title = {{Coherent operations and screening in multielectron spin qubits}},
doi = {10.1103/PhysRevLett.112.026801},
volume = {112},
year = {2014},
}
@article{97,
abstract = {The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak height distribution has its maximum away from zero at zero magnetic field, with an average that decreases with increasing field. Magnetoconductance in the open-wire regime places a bound on the spin-orbit length (lso < 20 nm), consistent with values extracted in the Coulomb blockade regime (lso < 25 nm).},
author = {Higginbotham, Andrew P and Kuemmeth, Ferdinand and Larsen, Thorvald and Fitzpatrick, Mattias and Yao, Jun and Yan, Hao and Lieber, Charles and Marcus, Charles},
journal = {APS Physics, Physical Review Letters},
number = {21},
publisher = {American Physical Society},
title = {{Antilocalization of coulomb blockade in a Ge/Si nanowire}},
doi = {10.1103/PhysRevLett.112.216806},
volume = {112},
year = {2014},
}
@article{977,
abstract = {We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a noninteracting localized phase and a delocalized phase. In particular, we show that for a properly chosen pulse sequence the MBL phase exhibits a characteristic power-law decay reflecting its slow growth of entanglement. We find that this power-law decay is robust with respect to thermal and disorder averaging, provide numerical simulations supporting our results, and discuss possible experimental realizations in solid-state and cold-atom systems.},
author = {Maksym Serbyn and Knap, Michael J and Gopalakrishnan, Sarang and Papić, Zlatko and Yao, Norman Y and Laumann, Chris R and Abanin, Dmitry A and Lukin, Mikhail D and Demler, Eugene A},
journal = {Physical Review Letters},
number = {14},
publisher = {American Physical Society},
title = {{Interferometric probes of many-body localization}},
doi = {10.1103/PhysRevLett.113.147204},
volume = {113},
year = {2014},
}
@article{978,
abstract = {The newly discovered topological crystalline insulators feature a complex band structure involving multiple Dirac cones, and are potentially highly tunable by external electric field, temperature or strain. Theoretically, it has been predicted that the various Dirac cones, which are offset in energy and momentum, might harbour vastly different orbital character. However, their orbital texture, which is of immense importance in determining a variety of a materialâ €™ s properties remains elusive. Here, we unveil the orbital texture of Pb 1â ̂'x Sn x Se, a prototypical topological crystalline insulator. By using Fourier-transform scanning tunnelling spectroscopy we measure the interference patterns produced by the scattering of surface-state electrons. We discover that the intensity and energy dependences of the Fourier transforms show distinct characteristics, which can be directly attributed to orbital effects. Our experiments reveal a complex band topology involving two Lifshitz transitions and establish the orbital nature of the Dirac bands, which could provide an alternative pathway towards future quantum applications.},
author = {Zeljkovic, Ilija and Okada, Yoshinori and Huang, Chengyi and Sankar, Raman and Walkup, Daniel and Zhou, Wenwen and Maksym Serbyn and Chou, Fangcheng and Tsai, Wei-Feng and Lin, Hsin and Bansil, Arun and Fu, Liang and Hasan, Md Z and Madhavan, Vidya},
journal = {Nature Physics},
number = {8},
pages = {572 -- 577},
publisher = {Nature Publishing Group},
title = {{Mapping the unconventional orbital texture in topological crystalline insulators}},
doi = {10.1038/nphys3012},
volume = {10},
year = {2014},
}
@article{979,
abstract = {In the recently discovered topological crystalline insulators SnTe and Pb1-xSnx(Te, Se), crystal symmetry and electronic topology intertwine to create topological surface states with many interesting features including Lifshitz transition, Van-Hove singularity, and fermion mass generation. These surface states are protected by mirror symmetry with respect to the (110) plane. In this work we present a comprehensive study of the effects of different mirror-symmetry-breaking perturbations on the (001) surface band structure. Pristine (001) surface states have four branches of Dirac fermions at low energy. We show that ferroelectric-type structural distortion generates a mass and gaps out some or all of these Dirac points, while strain shifts Dirac points in the Brillouin zone. An in-plane magnetic field leaves the surface state gapless, but introduces asymmetry between Dirac points. Finally, an out-of-plane magnetic field leads to discrete Landau levels. We show that the Landau level spectrum has an unusual pattern of degeneracy and interesting features due to the unique underlying band structure. This suggests that Landau level spectroscopy can detect and distinguish between different mechanisms of symmetry breaking in topological crystalline insulators.},
author = {Maksym Serbyn and Fu, Liang},
journal = {Physical Review B - Condensed Matter and Materials Physics},
number = {3},
publisher = {American Physical Society},
title = {{Symmetry breaking and Landau quantization in topological crystalline insulators}},
doi = {10.1103/PhysRevB.90.035402},
volume = {90},
year = {2014},
}
@article{98,
abstract = {Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2* ∼ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order of magnitude, as expected for predominately nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaussian, previously seen in systems with nuclear-spin-dominated dephasing.},
author = {Higginbotham, Andrew P and Larsen, Thorvald and Yao, Jun and Yan, Hao and Lieber, Charles and Marcus, Charles and Kuemmeth, Ferdinand},
journal = {Nano Letters},
number = {6},
pages = {3582 -- 3586},
publisher = {American Chemical Society},
title = {{Hole spin coherence in a Ge/Si heterostructure nanowire}},
doi = {10.1021/nl501242b},
volume = {14},
year = {2014},
}
@article{980,
abstract = {Many-body localized (MBL) systems are characterized by the absence of transport and thermalization and, therefore, cannot be described by conventional statistical mechanics. In this paper, using analytic arguments and numerical simulations, we study the behavior of local observables in an isolated MBL system following a quantum quench. For the case of a global quench, we find that the local observables reach stationary, highly nonthermal values at long times as a result of slow dephasing characteristic of the MBL phase. These stationary values retain the local memory of the initial state due to the existence of local integrals of motion in the MBL phase. The temporal fluctuations around stationary values exhibit universal power-law decay in time, with an exponent set by the localization length and the diagonal entropy of the initial state. Such a power-law decay holds for any local observable and is related to the logarithmic in time growth of entanglement in the MBL phase. This behavior distinguishes the MBL phase from both the Anderson insulator (where no stationary state is reached) and from the ergodic phase (where relaxation is expected to be exponential). For the case of a local quench, we also find a power-law approach of local observables to their stationary values when the system is prepared in a mixed state. Quench protocols considered in this paper can be naturally implemented in systems of ultracold atoms in disordered optical lattices, and the behavior of local observables provides a direct experimental signature of many-body localization.},
author = {Maksym Serbyn and Papić, Zlatko and Abanin, Dmitry A},
journal = {Physical Review B - Condensed Matter and Materials Physics},
number = {17},
publisher = {American Physical Society},
title = {{Quantum quenches in the many-body localized phase}},
doi = {10.1103/PhysRevB.90.174302},
volume = {90},
year = {2014},
}
@article{451,
abstract = {We introduce algorithms for the computation of homology, cohomology, and related operations on cubical cell complexes, using the technique based on a chain contraction from the original chain complex to a reduced one that represents its homology. This work is based on previous results for simplicial complexes, and uses Serre’s diagonalization for cubical cells. An implementation in C++ of the introduced algorithms is available at http://www.pawelpilarczyk.com/chaincon/ together with some examples. The paper is self-contained as much as possible, and is written at a very elementary level, so that basic knowledge of algebraic topology should be sufficient to follow it.},
author = {Pawel Pilarczyk and Real, Pedro},
journal = {Advances in Computational Mathematics},
number = {1},
pages = {253 -- 275},
publisher = {Kluwer},
title = {{Computation of cubical homology, cohomology, and (co)homological operations via chain contraction}},
doi = {10.1007/s10444-014-9356-1},
volume = {41},
year = {2014},
}
@article{3263,
abstract = {Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.},
author = {Tkacik, Gasper and Ghosh, Anandamohan and Schneidman, Elad and Segev, Ronen},
journal = {PLoS One},
number = {1},
publisher = {Public Library of Science},
title = {{Adaptation to changes in higher-order stimulus statistics in the salamander retina}},
doi = {10.1371/journal.pone.0085841},
volume = {9},
year = {2014},
}
@article{350,
abstract = {Herein, a colloidal synthetic route to produce highly monodisperse Cu2HgGeSe4 (CHGSe) nanoparticles (NPs) is presented in detail. The high yield of the developed procedure allowed the production of CHGSe NPs at the gram scale. A thorough analysis of their structural and optical properties is shown. CHGSe NPs displayed poly-tetrahedral morphology and narrow size distributions with average size in the range of 10–40 nm and size dispersions below 10 %. A 1.6 eV optical band gap was measured by mean of UV–Vis. By adjusting the cation ratio, an effective control of their electrical conductivity is achieved. The prepared NPs are used as building blocks for the production of CHGSe bulk nanostructured materials. The thermoelectric properties of CHGSe nanomaterials are studied in the temperature range from 300 to 730 K. CHGSe nanomaterials reached electrical conductivities up to 5 × 104 S m−1, Seebeck coefficients above 100 μV K−1, and thermal conductivities below 1.0 W m−1 K−1 which translated into thermoelectric figures of merit up to 0.34 at 730 K.},
author = {Li, Wenhua and Ibáñez, Maria and Cadavid, Doris and Zamani, Reza and Rubio Garcia, Javier and Gorsse, Stéphane and Morante, Joan and Arbiol, Jordi and Cabot, Andreu},
journal = {Journal of Nanoparticle Research},
number = {3},
publisher = {Kluwer},
title = {{Colloidal synthesis and functional properties of quaternary Cu based semiconductors: Cu2HgGeSe4}},
doi = {10.1007/s11051-014-2297-2},
volume = {16},
year = {2014},
}
@article{9166,
abstract = {Light-activated self-propelled colloids are synthesized and their active motion is studied using optical microscopy. We propose a versatile route using different photoactive materials, and demonstrate a multiwavelength activation and propulsion. Thanks to the photoelectrochemical properties of two semiconductor materials (α-Fe2O3 and TiO2), a light with an energy higher than the bandgap triggers the reaction of decomposition of hydrogen peroxide and produces a chemical cloud around the particle. It induces a phoretic attraction with neighbouring colloids as well as an osmotic self-propulsion of the particle on the substrate. We use these mechanisms to form colloidal cargos as well as self-propelled particles where the light-activated component is embedded into a dielectric sphere. The particles are self-propelled along a direction otherwise randomized by thermal fluctuations, and exhibit a persistent random walk. For sufficient surface density, the particles spontaneously form ‘living crystals’ which are mobile, break apart and reform. Steering the particle with an external magnetic field, we show that the formation of the dense phase results from the collisions heads-on of the particles. This effect is intrinsically non-equilibrium and a novel principle of organization for systems without detailed balance. Engineering families of particles self-propelled by different wavelength demonstrate a good understanding of both the physics and the chemistry behind the system and points to a general route for designing new families of self-propelled particles.},
author = {Palacci, Jérémie A and Sacanna, S. and Kim, S.-H. and Yi, G.-R. and Pine, D. J. and Chaikin, P. M.},
issn = {1471-2962},
journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences},
keywords = {General Engineering, General Physics and Astronomy, General Mathematics},
number = {2029},
publisher = {The Royal Society},
title = {{Light-activated self-propelled colloids}},
doi = {10.1098/rsta.2013.0372},
volume = {372},
year = {2014},
}
@inproceedings{2218,
abstract = {While fixing concurrency bugs, program repair algorithms may introduce new concurrency bugs. We present an algorithm that avoids such regressions. The solution space is given by a set of program transformations we consider in the repair process. These include reordering of instructions within a thread and inserting atomic sections. The new algorithm learns a constraint on the space of candidate solutions, from both positive examples (error-free traces) and counterexamples (error traces). From each counterexample, the algorithm learns a constraint necessary to remove the errors. From each positive examples, it learns a constraint that is necessary in order to prevent the repair from turning the trace into an error trace. We implemented the algorithm and evaluated it on simplified Linux device drivers with known bugs.},
author = {Cerny, Pavol and Henzinger, Thomas A and Radhakrishna, Arjun and Ryzhyk, Leonid and Tarrach, Thorsten},
isbn = {978-331908866-2},
location = {Vienna, Austria},
pages = {568 -- 584},
publisher = {Springer},
title = {{Regression-free synthesis for concurrency}},
doi = {10.1007/978-3-319-08867-9_38},
volume = {8559},
year = {2014},
}
@inproceedings{2159,
abstract = {Motivated by topological Tverberg-type problems, we consider multiple (double, triple, and higher multiplicity) selfintersection points of maps from finite simplicial complexes (compact polyhedra) into ℝd and study conditions under which such multiple points can be eliminated. The most classical case is that of embeddings (i.e., maps without double points) of a κ-dimensional complex K into ℝ2κ. For this problem, the work of van Kampen, Shapiro, and Wu provides an efficiently testable necessary condition for embeddability (namely, vanishing of the van Kampen ob-struction). For κ ≥ 3, the condition is also sufficient, and yields a polynomial-time algorithm for deciding embeddability: One starts with an arbitrary map f : K→ℝ2κ, which generically has finitely many double points; if k ≥ 3 and if the obstruction vanishes then one can successively remove these double points by local modifications of the map f. One of the main tools is the famous Whitney trick that permits eliminating pairs of double points of opposite intersection sign. We are interested in generalizing this approach to intersection points of higher multiplicity. We call a point y 2 ℝd an r-fold Tverberg point of a map f : Kκ →ℝd if y lies in the intersection f(σ1)∩. ∩f(σr) of the images of r pairwise disjoint simplices of K. The analogue of (non-)embeddability that we study is the problem Tverbergκ r→d: Given a κ-dimensional complex K, does it satisfy a Tverberg-type theorem with parameters r and d, i.e., does every map f : K κ → ℝd have an r-fold Tverberg point? Here, we show that for fixed r, κ and d of the form d = rm and k = (r-1)m, m ≥ 3, there is a polynomial-time algorithm for deciding this (based on the vanishing of a cohomological obstruction, as in the case of embeddings). Our main tool is an r-fold analogue of the Whitney trick: Given r pairwise disjoint simplices of K such that the intersection of their images contains two r-fold Tverberg points y+ and y- of opposite intersection sign, we can eliminate y+ and y- by a local isotopy of f. In a subsequent paper, we plan to develop this further and present a generalization of the classical Haeiger-Weber Theorem (which yields a necessary and sufficient condition for embeddability of κ-complexes into ℝd for a wider range of dimensions) to intersection points of higher multiplicity.},
author = {Mabillard, Isaac and Wagner, Uli},
booktitle = {Proceedings of the Annual Symposium on Computational Geometry},
location = {Kyoto, Japan},
pages = {171 -- 180},
publisher = {ACM},
title = {{Eliminating Tverberg points, I. An analogue of the Whitney trick}},
doi = {10.1145/2582112.2582134},
year = {2014},
}
@article{2023,
abstract = {Understanding the evolution of dispersal is essential for understanding and predicting the dynamics of natural populations. Two main factors are known to influence dispersal evolution: spatio-temporal variation in the environment and relatedness between individuals. However, the relation between these factors is still poorly understood, and they are usually treated separately. In this article, I present a theoretical framework that contains and connects effects of both environmental variation and relatedness, and reproduces and extends their known features. Spatial habitat variation selects for balanced dispersal strategies, whereby the population is kept at an ideal free distribution. Within this class of dispersal strategies, I explain how increased dispersal is promoted by perturbations to the dispersal type frequencies. An explicit formula shows the magnitude of the selective advantage of increased dispersal in terms of the spatial variability in the frequencies of the different dispersal strategies present. These variances are capable of capturing various sources of stochasticity and hence establish a common scale for their effects on the evolution of dispersal. The results furthermore indicate an alternative approach to identifying effects of relatedness on dispersal evolution.},
author = {Novak, Sebastian},
journal = {Ecology and Evolution},
number = {24},
pages = {4589 -- 4597},
publisher = {Wiley-Blackwell},
title = {{Habitat heterogeneities versus spatial type frequency variances as driving forces of dispersal evolution}},
doi = {10.1002/ece3.1289},
volume = {4},
year = {2014},
}
@inproceedings{2260,
abstract = {Direct Anonymous Attestation (DAA) is one of the most complex cryptographic protocols deployed in practice. It allows an embedded secure processor known as a Trusted Platform Module (TPM) to attest to the configuration of its host computer without violating the owner’s privacy. DAA has been standardized by the Trusted Computing Group and ISO/IEC.
The security of the DAA standard and all existing schemes is analyzed in the random-oracle model. We provide the first constructions of DAA in the standard model, that is, without relying on random oracles. Our constructions use new building blocks, including the first efficient signatures of knowledge in the standard model, which have many applications beyond DAA.
},
author = {Bernhard, David and Fuchsbauer, Georg and Ghadafi, Essam},
location = {Banff, AB, Canada},
pages = {518 -- 533},
publisher = {Springer},
title = {{Efficient signatures of knowledge and DAA in the standard model}},
doi = {10.1007/978-3-642-38980-1_33},
volume = {7954},
year = {2013},
}
@article{2264,
abstract = {Faithful progression through the cell cycle is crucial to the maintenance and developmental potential of stem cells. Here, we demonstrate that neural stem cells (NSCs) and intermediate neural progenitor cells (NPCs) employ a zinc-finger transcription factor specificity protein 2 (Sp2) as a cell cycle regulator in two temporally and spatially distinct progenitor domains. Differential conditional deletion of Sp2 in early embryonic cerebral cortical progenitors, and perinatal olfactory bulb progenitors disrupted transitions through G1, G2 and M phases, whereas DNA synthesis appeared intact. Cell-autonomous function of Sp2 was identified by deletion of Sp2 using mosaic analysis with double markers, which clearly established that conditional Sp2-null NSCs and NPCs are M phase arrested in vivo. Importantly, conditional deletion of Sp2 led to a decline in the generation of NPCs and neurons in the developing and postnatal brains. Our findings implicate Sp2-dependent mechanisms as novel regulators of cell cycle progression, the absence of which disrupts neurogenesis in the embryonic and postnatal brain.},
author = {Liang, Huixuan and Xiao, Guanxi and Yin, Haifeng and Hippenmeyer, Simon and Horowitz, Jonathan and Ghashghaei, Troy},
journal = {Development},
number = {3},
pages = {552 -- 561},
publisher = {Company of Biologists},
title = {{Neural development is dependent on the function of specificity protein 2 in cell cycle progression}},
doi = {10.1242/dev.085621},
volume = {140},
year = {2013},
}
@inproceedings{2270,
abstract = {Representation languages for coalitional games are a key research area in algorithmic game theory. There is an inher-
ent tradeoff between how general a language is, allowing it to capture more elaborate games, and how hard it is computationally to optimize and solve such games. One prominent such language is the simple yet expressive
Weighted Graph Games (WGGs) representation (Deng and Papadimitriou 1994), which maintains knowledge about synergies between agents in the form of an edge weighted graph. We consider the problem of finding the optimal coalition structure in WGGs. The agents in such games are vertices in a graph, and the value of a coalition is the sum of the weights of the edges present between coalition members. The optimal coalition structure is a partition of the agents to coalitions, that maximizes the sum of utilities obtained by the coalitions. We show that finding the optimal coalition structure is not only hard for general graphs, but is also intractable for restricted families such as planar graphs which are amenable for many other combinatorial problems. We then provide algorithms with constant factor approximations for planar, minorfree and bounded degree graphs.},
author = {Bachrach, Yoram and Kohli, Pushmeet and Kolmogorov, Vladimir and Zadimoghaddam, Morteza},
location = {Bellevue, WA, United States},
pages = {81--87},
publisher = {AAAI Press},
title = {{Optimal Coalition Structures in Cooperative Graph Games}},
year = {2013},
}
@inproceedings{2272,
abstract = {We consider Conditional Random Fields (CRFs) with pattern-based potentials defined on a chain. In this model the energy of a string (labeling) x1...xn is the sum of terms over intervals [i,j] where each term is non-zero only if the substring xi...xj equals a prespecified pattern α. Such CRFs can be naturally applied to many sequence tagging problems.
We present efficient algorithms for the three standard inference tasks in a CRF, namely computing (i) the partition function, (ii) marginals, and (iii) computing the MAP. Their complexities are respectively O(nL), O(nLℓmax) and O(nLmin{|D|,log(ℓmax+1)}) where L is the combined length of input patterns, ℓmax is the maximum length of a pattern, and D is the input alphabet. This improves on the previous algorithms of (Ye et al., 2009) whose complexities are respectively O(nL|D|), O(n|Γ|L2ℓ2max) and O(nL|D|), where |Γ| is the number of input patterns.
In addition, we give an efficient algorithm for sampling. Finally, we consider the case of non-positive weights. (Komodakis & Paragios, 2009) gave an O(nL) algorithm for computing the MAP. We present a modification that has the same worst-case complexity but can beat it in the best case. },
author = {Takhanov, Rustem and Kolmogorov, Vladimir},
booktitle = {ICML'13 Proceedings of the 30th International Conference on International},
location = {Atlanta, GA, USA},
number = {3},
pages = {145 -- 153},
publisher = {International Machine Learning Society},
title = {{Inference algorithms for pattern-based CRFs on sequence data}},
volume = {28},
year = {2013},
}
@techreport{2273,
abstract = {We propose a new family of message passing techniques for MAP estimation in graphical models which we call Sequential Reweighted Message Passing (SRMP). Special cases include well-known techniques such as Min-Sum Diusion (MSD) and a faster Sequential Tree-Reweighted Message Passing (TRW-S). Importantly, our derivation is simpler than the original derivation of TRW-S, and does not involve a decomposition into trees. This allows easy generalizations. We present such a generalization for the case of higher-order graphical models, and test it on several real-world problems with promising results.},
author = {Vladimir Kolmogorov},
publisher = {IST Austria},
title = {{Reweighted message passing revisited}},
year = {2013},
}
@techreport{2274,
abstract = {Proofs of work (PoW) have been suggested by Dwork and Naor (Crypto'92) as protection to a shared resource. The basic idea is to ask the service requestor to dedicate some non-trivial amount of computational work to every request. The original applications included prevention of spam and protection against denial of service attacks. More recently, PoWs have been used to prevent double spending in the Bitcoin digital currency system.
In this work, we put forward an alternative concept for PoWs -- so-called proofs of space (PoS), where a service requestor must dedicate a significant amount of disk space as opposed to computation. We construct secure PoS schemes in the random oracle model, using graphs with high "pebbling complexity" and Merkle hash-trees. },
author = {Dziembowski, Stefan and Faust, Sebastian and Kolmogorov, Vladimir and Pietrzak, Krzysztof Z},
publisher = {IST Austria},
title = {{Proofs of Space}},
year = {2013},
}
@inproceedings{2276,
abstract = {The problem of minimizing the Potts energy function frequently occurs in computer vision applications. One way to tackle this NP-hard problem was proposed by Kovtun [19, 20]. It identifies a part of an optimal solution by running k maxflow computations, where k is the number of labels. The number of “labeled” pixels can be significant in some applications, e.g. 50-93% in our tests for stereo. We show how to reduce the runtime to O (log k) maxflow computations (or one parametric maxflow computation). Furthermore, the output of our algorithm allows to speed-up the subsequent alpha expansion for the unlabeled part, or can be used as it is for time-critical applications. To derive our technique, we generalize the algorithm of Felzenszwalb et al. [7] for Tree Metrics . We also show a connection to k-submodular functions from combinatorial optimization, and discuss k-submodular relaxations for general energy functions.},
author = {Gridchyn, Igor and Kolmogorov, Vladimir},
location = {Sydney, Australia},
pages = {2320 -- 2327},
publisher = {IEEE},
title = {{Potts model, parametric maxflow and k-submodular functions}},
doi = {10.1109/ICCV.2013.288},
year = {2013},
}
@article{2277,
abstract = {Redundancies and correlations in the responses of sensory neurons may seem to waste neural resources, but they can also carry cues about structured stimuli and may help the brain to correct for response errors. To investigate the effect of stimulus structure on redundancy in retina, we measured simultaneous responses from populations of retinal ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure; these stimuli and recordings are publicly available online. Responding to spatio-temporally structured stimuli such as natural movies, pairs of ganglion cells were modestly more correlated than in response to white noise checkerboards, but they were much less correlated than predicted by a non-adapting functional model of retinal response. Meanwhile, responding to stimuli with purely spatial correlations, pairs of ganglion cells showed increased correlations consistent with a static, non-adapting receptive field and nonlinearity. We found that in response to spatio-temporally correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the pattern of pairwise correlations across stimuli where receptive field measurements were possible.},
author = {Simmons, Kristina and Prentice, Jason and Tkacik, Gasper and Homann, Jan and Yee, Heather and Palmer, Stephanie and Nelson, Philip and Balasubramanian, Vijay},
journal = {PLoS Computational Biology},
number = {12},
publisher = {Public Library of Science},
title = {{Transformation of stimulus correlations by the retina}},
doi = {10.1371/journal.pcbi.1003344},
volume = {9},
year = {2013},
}
@inproceedings{2279,
abstract = {We consider two-player games played on weighted directed graphs with mean-payoff and total-payoff objectives, two classical quantitative objectives. While for single-dimensional games the complexity and memory bounds for both objectives coincide, we show that in contrast to multi-dimensional mean-payoff games that are known to be coNP-complete, multi-dimensional total-payoff games are undecidable. We introduce conservative approximations of these objectives, where the payoff is considered over a local finite window sliding along a play, instead of the whole play. For single dimension, we show that (i) if the window size is polynomial, deciding the winner takes polynomial time, and (ii) the existence of a bounded window can be decided in NP ∩ coNP, and is at least as hard as solving mean-payoff games. For multiple dimensions, we show that (i) the problem with fixed window size is EXPTIME-complete, and (ii) there is no primitive-recursive algorithm to decide the existence of a bounded window.},
author = {Chatterjee, Krishnendu and Doyen, Laurent and Randour, Mickael and Raskin, Jean},
location = {Hanoi, Vietnam},
pages = {118 -- 132},
publisher = {Springer},
title = {{Looking at mean-payoff and total-payoff through windows}},
doi = {10.1007/978-3-319-02444-8_10},
volume = {8172},
year = {2013},
}
@article{2280,
abstract = {The problem of packing ellipsoids of different sizes and shapes into an ellipsoidal container so as to minimize a measure of overlap between ellipsoids is considered. A bilevel optimization formulation is given, together with an algorithm for the general case and a simpler algorithm for the special case in which all ellipsoids are in fact spheres. Convergence results are proved and computational experience is described and illustrated. The motivating application-chromosome organization in the human cell nucleus-is discussed briefly, and some illustrative results are presented.},
author = {Uhler, Caroline and Wright, Stephen},
journal = {SIAM Review},
number = {4},
pages = {671 -- 706},
publisher = {Society for Industrial and Applied Mathematics },
title = {{Packing ellipsoids with overlap}},
doi = {10.1137/120872309},
volume = {55},
year = {2013},
}
@article{2282,
abstract = {Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the enveloping cell layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish epiboly. The control of EVL cell-division orientation by tension involves cell elongation and requires myosin II activity to align the mitotic spindle with the main tension axis. We also found that in the absence of tension-oriented cell divisions and in the presence of increased tissue tension, EVL cells undergo ectopic fusions, suggesting that the reduction of tension anisotropy by oriented cell divisions is required to prevent EVL cells from fusing. We conclude that cell-division orientation by tension constitutes a key mechanism for limiting tension anisotropy and thus promoting tissue spreading during EVL epiboly.},
author = {Campinho, Pedro and Behrndt, Martin and Ranft, Jonas and Risler, Thomas and Minc, Nicolas and Heisenberg, Carl-Philipp J},
journal = {Nature Cell Biology},
pages = {1405 -- 1414},
publisher = {Nature Publishing Group},
title = {{Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly}},
doi = {10.1038/ncb2869},
volume = {15},
year = {2013},
}
@article{2284,
abstract = {Background: The brood of ants and other social insects is highly susceptible to pathogens, particularly those that penetrate the soft larval and pupal cuticle. We here test whether the presence of a pupal cocoon, which occurs in some ant species but not in others, affects the sanitary brood care and fungal infection patterns after exposure to the entomopathogenic fungus Metarhizium brunneum. We use a) a comparative approach analysing four species with either naked or cocooned pupae and b) a within-species analysis of a single ant species, in which both pupal types co-exist in the same colony. Results: We found that the presence of a cocoon did not compromise fungal pathogen detection by the ants and that species with cocooned pupae increased brood grooming after pathogen exposure. All tested ant species further removed brood from their nests, which was predominantly expressed towards larvae and naked pupae treated with the live fungal pathogen. In contrast, cocooned pupae exposed to live fungus were not removed at higher rates than cocooned pupae exposed to dead fungus or a sham control. Consistent with this, exposure to the live fungus caused high numbers of infections and fungal outgrowth in larvae and naked pupae, but not in cocooned pupae. Moreover, the ants consistently removed the brood prior to fungal outgrowth, ensuring a clean brood chamber. Conclusion: Our study suggests that the pupal cocoon has a protective effect against fungal infection, causing an adaptive change in sanitary behaviours by the ants. It further demonstrates that brood removal-originally described for honeybees as "hygienic behaviour"-is a widespread sanitary behaviour in ants, which likely has important implications on disease dynamics in social insect colonies.},
author = {Tragust, Simon and Ugelvig, Line V and Chapuisat, Michel and Heinze, Jürgen and Cremer, Sylvia},
journal = {BMC Evolutionary Biology},
number = {1},
publisher = {BioMed Central},
title = {{Pupal cocoons affect sanitary brood care and limit fungal infections in ant colonies}},
doi = {10.1186/1471-2148-13-225},
volume = {13},
year = {2013},
}
@article{2286,
abstract = {The spatiotemporal control of cell divisions is a key factor in epithelial morphogenesis and patterning. Mao et al (2013) now describe how differential rates of proliferation within the Drosophila wing disc epithelium give rise to anisotropic tissue tension in peripheral/proximal regions of the disc. Such global tissue tension anisotropy in turn determines the orientation of cell divisions by controlling epithelial cell elongation.},
author = {Campinho, Pedro and Heisenberg, Carl-Philipp J},
journal = {EMBO Journal},
number = {21},
pages = {2783 -- 2784},
publisher = {Wiley-Blackwell},
title = {{The force and effect of cell proliferation}},
doi = {10.1038/emboj.2013.225},
volume = {32},
year = {2013},
}
@article{2287,
abstract = {Negative frequency-dependent selection should result in equal sex ratios in large populations of dioecious flowering plants, but deviations from equality are commonly reported. A variety of ecological and genetic factors can explain biased sex ratios, although the mechanisms involved are not well understood. Most dioecious species are long-lived and/or clonal complicating efforts to identify stages during the life cycle when biases develop. We investigated the demographic correlates of sex-ratio variation in two chromosome races of Rumex hastatulus, an annual, wind-pollinated colonizer of open habitats from the southern USA. We examined sex ratios in 46 populations and evaluated the hypothesis that the proximity of males in the local mating environment, through its influence on gametophytic selection, is the primary cause of female-biased sex ratios. Female-biased sex ratios characterized most populations of R. hastatulus (mean sex ratio = 0.62), with significant female bias in 89% of populations. Large, high-density populations had the highest proportion of females, whereas smaller, low-density populations had sex ratios closer to equality. Progeny sex ratios were more female biased when males were in closer proximity to females, a result consistent with the gametophytic selection hypothesis. Our results suggest that interactions between demographic and genetic factors are probably the main cause of female-biased sex ratios in R. hastatulus. The annual life cycle of this species may limit the scope for selection against males and may account for the weaker degree of bias in comparison with perennial Rumex species.},
author = {Pickup, Melinda and Barrett, Spencer},
journal = {Ecology and Evolution},
number = {3},
pages = {629 -- 639},
publisher = {Wiley-Blackwell},
title = {{The influence of demography and local mating environment on sex ratios in a wind-pollinated dioecious plant}},
doi = {10.1002/ece3.465},
volume = {3},
year = {2013},
}
@article{2289,
abstract = {Formal verification aims to improve the quality of software by detecting errors before they do harm. At the basis of formal verification is the logical notion of correctness, which purports to capture whether or not a program behaves as desired. We suggest that the boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion against multiple criteria. We therefore propose to introduce quantitative fitness measures for programs, specifically for measuring the function, performance, and robustness of reactive programs such as concurrent processes. This article describes the goals of the ERC Advanced Investigator Project QUAREM. The project aims to build and evaluate a theory of quantitative fitness measures for reactive models. Such a theory must strive to obtain quantitative generalizations of the paradigms that have been success stories in qualitative reactive modeling, such as compositionality, property-preserving abstraction and abstraction refinement, model checking, and synthesis. The theory will be evaluated not only in the context of software and hardware engineering, but also in the context of systems biology. In particular, we will use the quantitative reactive models and fitness measures developed in this project for testing hypotheses about the mechanisms behind data from biological experiments.},
author = {Henzinger, Thomas A},
journal = {Computer Science Research and Development},
number = {4},
pages = {331 -- 344},
publisher = {Springer},
title = {{Quantitative reactive modeling and verification}},
doi = {10.1007/s00450-013-0251-7},
volume = {28},
year = {2013},
}
@article{2290,
abstract = {The plant hormone indole-acetic acid (auxin) is essential for many aspects of plant development. Auxin-mediated growth regulation typically involves the establishment of an auxin concentration gradient mediated by polarly localized auxin transporters. The localization of auxin carriers and their amount at the plasma membrane are controlled by membrane trafficking processes such as secretion, endocytosis, and recycling. In contrast to endocytosis or recycling, how the secretory pathway mediates the localization of auxin carriers is not well understood. In this study we have used the differential cell elongation process during apical hook development to elucidate the mechanisms underlying the post-Golgi trafficking of auxin carriers in Arabidopsis. We show that differential cell elongation during apical hook development is defective in Arabidopsis mutant echidna (ech). ECH protein is required for the trans-Golgi network (TGN)-mediated trafficking of the auxin influx carrier AUX1 to the plasma membrane. In contrast, ech mutation only marginally perturbs the trafficking of the highly related auxin influx carrier LIKE-AUX1-3 or the auxin efflux carrier PIN-FORMED-3, both also involved in hook development. Electron tomography reveals that the trafficking defects in ech mutant are associated with the perturbation of secretory vesicle genesis from the TGN. Our results identify differential mechanisms for the post-Golgi trafficking of de novo-synthesized auxin carriers to plasma membrane from the TGN and reveal how trafficking of auxin influx carriers mediates the control of differential cell elongation in apical hook development.},
author = {Boutté, Yohann and Jonsson, Kristoffer and Mcfarlane, Heather and Johnson, Errin and Gendre, Delphine and Swarup, Ranjan and Friml, Jirí and Samuels, Lacey and Robert, Stéphanie and Bhalerao, Rishikesh},
journal = {PNAS},
number = {40},
pages = {16259 -- 16264},
publisher = {National Academy of Sciences},
title = {{ECHIDNA mediated post Golgi trafficking of auxin carriers for differential cell elongation}},
doi = {10.1073/pnas.1309057110},
volume = {110},
year = {2013},
}
@inproceedings{2291,
abstract = {Cryptographic access control promises to offer easily distributed trust and broader applicability, while reducing reliance on low-level online monitors. Traditional implementations of cryptographic access control rely on simple cryptographic primitives whereas recent endeavors employ primitives with richer functionality and security guarantees. Worryingly, few of the existing cryptographic access-control schemes come with precise guarantees, the gap between the policy specification and the implementation being analyzed only informally, if at all. In this paper we begin addressing this shortcoming. Unlike prior work that targeted ad-hoc policy specification, we look at the well-established Role-Based Access Control (RBAC) model, as used in a typical file system. In short, we provide a precise syntax for a computational version of RBAC, offer rigorous definitions for cryptographic policy enforcement of a large class of RBAC security policies, and demonstrate that an implementation based on attribute-based encryption meets our security notions. We view our main contribution as being at the conceptual level. Although we work with RBAC for concreteness, our general methodology could guide future research for uses of cryptography in other access-control models.
},
author = {Ferrara, Anna and Fuchsbauer, Georg and Warinschi, Bogdan},
location = {New Orleans, LA, United States},
pages = {115 -- 129},
publisher = {IEEE},
title = {{Cryptographically enforced RBAC}},
doi = {10.1109/CSF.2013.15},
year = {2013},
}
@inproceedings{2293,
abstract = {Many computer vision problems have an asymmetric distribution of information between training and test time. In this work, we study the case where we are given additional information about the training data, which however will not be available at test time. This situation is called learning using privileged information (LUPI). We introduce two maximum-margin techniques that are able to make use of this additional source of information, and we show that the framework is applicable to several scenarios that have been studied in computer vision before. Experiments with attributes, bounding boxes, image tags and rationales as additional information in object classification show promising results.},
author = {Sharmanska, Viktoriia and Quadrianto, Novi and Lampert, Christoph},
location = {Sydney, Australia},
pages = {825 -- 832},
publisher = {IEEE},
title = {{Learning to rank using privileged information}},
doi = {10.1109/ICCV.2013.107},
year = {2013},
}
@inproceedings{2294,
abstract = {In this work we propose a system for automatic classification of Drosophila embryos into developmental stages.
While the system is designed to solve an actual problem in biological research, we believe that the principle underly-
ing it is interesting not only for biologists, but also for researchers in computer vision. The main idea is to combine two orthogonal sources of information: one is a classifier trained on strongly invariant features, which makes it applicable to images of very different conditions, but also leads to rather noisy predictions. The other is a label propagation step based on a more powerful similarity measure that however is only consistent within specific subsets of the data at a time.
In our biological setup, the information sources are the shape and the staining patterns of embryo images. We show
experimentally that while neither of the methods can be used by itself to achieve satisfactory results, their combina-
tion achieves prediction quality comparable to human performance.},
author = {Kazmar, Tomas and Kvon, Evgeny and Stark, Alexander and Lampert, Christoph},
location = {Sydney, Australia},
publisher = {IEEE},
title = {{Drosophila Embryo Stage Annotation using Label Propagation}},
doi = {10.1109/ICCV.2013.139},
year = {2013},
}
@inproceedings{2295,
abstract = {We consider partially observable Markov decision processes (POMDPs) with ω-regular conditions specified as parity objectives. The qualitative analysis problem given a POMDP and a parity objective asks whether there is a strategy to ensure that the objective is satisfied with probability 1 (resp. positive probability). While the qualitative analysis problems are known to be undecidable even for very special cases of parity objectives, we establish decidability (with optimal EXPTIME-complete complexity) of the qualitative analysis problems for POMDPs with all parity objectives under finite-memory strategies. We also establish asymptotically optimal (exponential) memory bounds.},
author = {Chatterjee, Krishnendu and Chmelik, Martin and Tracol, Mathieu},
location = {Torino, Italy},
pages = {165 -- 180},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{What is decidable about partially observable Markov decision processes with omega-regular objectives}},
doi = {10.4230/LIPIcs.CSL.2013.165},
volume = {23},
year = {2013},
}