@article{2359,
abstract = {The validity of substituting a c-number z for the k = 0 mode operator a0 is established rigorously in full generality, thereby verifying one aspect of Bogoliubov's 1947 theory. This substitution not only yields the correct value of thermodynamic quantities such as the pressure or ground state energy, but also the value of |z|2 that maximizes the partition function equals the true amount of condensation in the presence of a gauge-symmetry-breaking term. This point had previously been elusive.},
author = {Lieb, Élliott H and Robert Seiringer and Yngvason, Jakob},
journal = {Physical Review Letters},
number = {8},
publisher = {American Physical Society},
title = {{Justification of c-number substitutions in bosonic hamiltonians}},
doi = {10.1103/PhysRevLett.94.080401},
volume = {94},
year = {2005},
}
@article{2361,
abstract = {The strong subadditivity of entropy plays a key role in several areas of physics and mathematics. It states that the entropy S[±]=- Tr(Ï±lnÏ±) of a density matrix Ï±123 on the product of three Hilbert spaces satisfies S[Ï±123]- S[Ï±12]≤S[Ï±23]-S[Ï±2]. We strengthen this to S[Ï±123]-S[Ï±12] ≤αnα(S[Ï±23α]-S[Ï±2α]), where the nα are weights and the Ï±23α are partitions of Ï±23. Correspondingly, there is a strengthening of the theorem that the map A|Trexp[L+lnA] is concave. As applications we prove some monotonicity and convexity properties of the Wehrl coherent state entropy and entropy inequalities for quantum gases.},
author = {Lieb, Élliott H and Robert Seiringer},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {6},
publisher = {American Physical Society},
title = {{Stronger subadditivity of entropy}},
doi = {10.1103/PhysRevA.71.062329},
volume = {71},
year = {2005},
}
@article{2362,
abstract = {Recent developments in the physics of low-density trapped gases make it worthwhile to verify old, well-known results that, while plausible, were based on perturbation theory and assumptions about pseudopotentials. We use and extend recently developed techniques to give a rigorous derivation of the asymptotic formula for the ground-state energy of a dilute gas of N fermions interacting with a short-range, positive potential of scattering length a. For spin-12 fermions, this is E∼E0+(22m)2πNa, where E0 is the energy of the noninteracting system and is the density. A similar formula holds in two dimensions (2D), with a replaced by ln(a2). Obviously this 2D energy is not the expectation value of a density-independent pseudopotential.},
author = {Lieb, Élliott H and Robert Seiringer and Solovej, Jan P},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {5},
publisher = {American Physical Society},
title = {{Ground state energy of the low density Fermi gas}},
doi = {10.1103/PhysRevA.71.053605},
volume = {71},
year = {2005},
}
@article{2867,
abstract = {The plant hormone auxin elicits many specific context-dependent developmental responses. Auxin promotes degradation of Aux/IAA proteins that prevent transcription factors of the auxin response factor (ARF) family from regulating auxin-responsive target genes. Aux/IAAs and ARFs are represented by large gene families in Arabidopsis. Here we show that stabilization of BDL/IAA12 or its sister protein IAA13 prevents MP/ARF5-dependent embryonic root formation whereas stabilized SHY2/IAA3 interferes with seedling growth. Although both bdl and shy2-2 proteins inhibited MP/ARF5-dependent reporter gene activation, shy2-2 was much less efficient than bdl to interfere with embryonic root initiation when expressed from the BDL promoter. Similarly, MP was much more efficient than ARF16 in this process. When expressed from the SHY2 promoter, both shy2-2 and bdl inhibited cell elongation and auxin-induced gene expression in the seedling hypocotyl. By contrast, gravitropism and auxin-induced gene expression in the root, which were promoted by functionally redundant NPH4/ARF7 and ARF19 proteins, were inhibited by shy2-2, but not by bdl protein. Our results suggest that auxin signals are converted into specific responses by matching pairs of coexpressed ARF and Aux/IAA proteins.},
author = {Weijers, Dolf and Eva Benková and Jäger, Katja E and Schlereth, Alexandra and Hamann, Thorsten and Kientz, Marika and Wilmoth, Jill C and Reed, Jason W and Jürgens, Gerd},
journal = {EMBO Journal},
number = {10},
pages = {1874 -- 1885},
publisher = {Wiley-Blackwell},
title = {{Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators}},
doi = {10.1038/sj.emboj.7600659},
volume = {24},
year = {2005},
}
@article{8028,
abstract = {Transmission of signals within the brain is essential for cognitive function, but it is not clear how neural circuits support reliable and accurate signal propagation over a sufficiently large dynamic range. Two modes of propagation have been studied: synfire chains, in which synchronous activity travels through feedforward layers of a neuronal network, and the propagation of fluctuations in firing rate across these layers. In both cases, a sufficient amount of noise, which was added to previous models from an external source, had to be included to support stable propagation. Sparse, randomly connected networks of spiking model neurons can generate chaotic patterns of activity. We investigate whether this activity, which is a more realistic noise source, is sufficient to allow for signal transmission. We find that, for rate-coded signals but not for synfire chains, such networks support robust and accurate signal reproduction through up to six layers if appropriate adjustments are made in synaptic strengths. We investigate the factors affecting transmission and show that multiple signals can propagate simultaneously along different pathways. Using this feature, we show how different types of logic gates can arise within the architecture of the random network through the strengthening of specific synapses.},
author = {Vogels, Tim P and Abbott, L. F.},
issn = {0270-6474},
journal = {Journal of Neuroscience},
number = {46},
pages = {10786--10795},
publisher = {Society for Neuroscience},
title = {{Signal propagation and logic gating in networks of integrate-and-fire neurons}},
doi = {10.1523/jneurosci.3508-05.2005},
volume = {25},
year = {2005},
}
@article{212,
abstract = {For any n ≧ 2, let F ∈ ℤ [ x 1, … , xn ] be a form of degree d≧ 2, which produces a geometrically irreducible hypersurface in ℙn–1. This paper is concerned with the number N(F;B) of rational points on F = 0 which have height at most B. For any ε > 0 we establish the estimate N(F; B) = O(B n− 2+ ε ), whenever either n ≦ 5 or the hypersurface is not a union of lines. Here the implied constant depends at most upon d, n and ε.},
author = {Timothy Browning and Heath-Brown, Roger},
journal = {Journal fur die Reine und Angewandte Mathematik},
number = {584},
pages = {83 -- 115},
publisher = {Walter de Gruyter and Co },
title = {{Counting rational points on hypersurfaces}},
doi = {https://doi.org/10.1515/crll.2005.2005.584.83},
year = {2005},
}
@article{214,
abstract = {Given an absolutely irreducible ternary form F, the purpose of this paper is to produce better upper bounds for the number of integer solutions to the equation F=0, that are restricted to lie in very lopsided boxes. As an application of the main result, a new paucity estimate is obtained for equal sums of two like powers.},
author = {Timothy Browning and Heath-Brown, Roger},
journal = {Mathematische Zeitschrift},
number = {2},
pages = {233 -- 247},
publisher = {Unknown},
title = {{Plane curves in boxes and equal sums of two powers}},
doi = {10.1007/s00209-004-0719-z},
volume = {251},
year = {2005},
}
@inbook{1444,
abstract = {The paper surveys the mirror symmetry conjectures of Hausel-Thaddeus and Hausel-Rodriguez-Villegas concerning the equality of certain Hodge numbers of SL(n, ℂ) vs. PGL(n, ℂ) flat connections and character varieties for curves, respectively. Several new results and conjectures and their relations to works of Hitchin, Gothen, Garsia-Haiman and Earl-Kirwan are explained. These use the representation theory of finite groups of Lie-type via the arithmetic of character varieties and lead to an unexpected conjecture for a Hard Lefschetz theorem for their cohomology.},
author = {Tamas Hausel},
booktitle = {Geometric Methods in Algebra and Number Theory},
pages = {193 -- 217},
publisher = {Springer},
title = {{Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve}},
doi = {10.1007/0-8176-4417-2_9},
volume = {235},
year = {2005},
}
@article{1447,
abstract = {Building on a recent paper [8], here we argue that the combinatorics of matroids are intimately related to the geometry and topology of toric hyperkähler varieties. We show that just like toric varieties occupy a central role in Stanley’s proof for the necessity of McMullen’s conjecture (or g-inequalities) about the classification of face vectors of simplicial polytopes, the topology of toric hyperkähler varieties leads to new restrictions on face vectors of matroid complexes. Namely in this paper we will give two proofs that the injectivity part of the Hard Lefschetz theorem survives for toric hyperkähler varieties. We explain how this implies the g-inequalities for rationally representable matroids. We show how the geometrical intuition in the first proof, coupled with results of Chari [3], leads to a proof of the g-inequalities for general matroid complexes, which is a recent result of Swartz [20]. The geometrical idea in the second proof will show that a pure O-sequence should satisfy the g-inequalities, thus showing that our result is in fact a consequence of a long-standing conjecture of Stanley.},
author = {Tamas Hausel},
journal = {Open Mathematics},
number = {1},
pages = {26 -- 38},
publisher = {Central European Science Journals},
title = {{Quaternionic geometry of matroids}},
doi = {10.2478/BF02475653},
volume = {3},
year = {2005},
}
@article{1463,
abstract = {We study an integration theory in circle equivariant cohomology in order to prove a theorem relating the cohomology ring of a hyperkähler quotient to the cohomology ring of the quotient by a maximal abelian subgroup, analogous to a theorem of Martin for symplectic quotients. We discuss applications of this theorem to quiver varieties, and compute as an example the ordinary and equivariant cohomology rings of a hyperpolygon space.},
author = {Tamas Hausel and Proudfoot, Nicholas J},
journal = {Topology},
number = {1},
pages = {231 -- 248},
publisher = {Elsevier},
title = {{Abelianization for hyperkähler quotients}},
doi = {10.1016/j.top.2004.04.002},
volume = {44},
year = {2005},
}