@article{6297, abstract = {Cell-cell and cell-glycocalyx interactions under flow are important for the behaviour of circulating cells in blood and lymphatic vessels. However, such interactions are not well understood due in part to a lack of tools to study them in defined environments. Here, we develop a versatile in vitro platform for the study of cell-glycocalyx interactions in well-defined physical and chemical settings under flow. Our approach is demonstrated with the interaction between hyaluronan (HA, a key component of the endothelial glycocalyx) and its cell receptor CD44. We generate HA brushes in situ within a microfluidic device, and demonstrate the tuning of their physical (thickness and softness) and chemical (density of CD44 binding sites) properties using characterisation with reflection interference contrast microscopy (RICM) and application of polymer theory. We highlight the interactions of HA brushes with CD44-displaying beads and cells under flow. Observations of CD44+ beads on a HA brush with RICM enabled the 3-dimensional trajectories to be generated, and revealed interactions in the form of stop and go phases with reduced rolling velocity and reduced distance between the bead and the HA brush, compared to uncoated beads. Combined RICM and bright-field microscopy of CD44+ AKR1 T-lymphocytes revealed complementary information about the dynamics of cell rolling and cell morphology, and highlighted the formation of tethers and slings, as they interacted with a HA brush under flow. This platform can readily incorporate more complex models of the glycocalyx, and should permit the study of how mechanical and biochemical factors are orchestrated to enable highly selective blood cell-vessel wall interactions under flow.}, author = {Davies, Heather S. and Baranova, Natalia S. and El Amri, Nouha and Coche-Guérente, Liliane and Verdier, Claude and Bureau, Lionel and Richter, Ralf P. and Débarre, Delphine}, issn = {0945-053X}, journal = {Matrix Biology}, pages = {47--59}, publisher = {Elsevier}, title = {{An integrated assay to probe endothelial glycocalyx-blood cell interactions under flow in mechanically and biochemically well-defined environments}}, doi = {10.1016/j.matbio.2018.12.002}, volume = {78-79}, year = {2019}, } @article{6310, abstract = {An asymptotic formula is established for the number of rational points of bounded anticanonical height which lie on a certain Zariskiopen subset of an arbitrary smooth biquadratic hypersurface in sufficiently many variables. The proof uses the Hardy–Littlewood circle method.}, author = {Browning, Timothy D and Hu, L.Q.}, issn = {10902082}, journal = {Advances in Mathematics}, pages = {920--940}, publisher = {Elsevier}, title = {{Counting rational points on biquadratic hypersurfaces}}, doi = {10.1016/j.aim.2019.04.031}, volume = {349}, year = {2019}, } @article{6261, abstract = {Nitrate regulation of root stem cell activity is auxin-dependent.}, author = {Wang, Y and Gong, Z and Friml, Jiří and Zhang, J}, issn = {1532-2548}, journal = {Plant Physiology}, number = {1}, pages = {22--25}, publisher = {ASPB}, title = {{Nitrate modulates the differentiation of root distal stem cells}}, doi = {10.1104/pp.18.01305}, volume = {180}, year = {2019}, } @article{6352, abstract = {Chronic overuse of common pharmaceuticals, e.g. acetaminophen (paracetamol), often leads to the development of acute liver failure (ALF). This study aimed to elucidate the effect of cultured mesenchymal stem cells (MSCs) proteome on the onset of liver damage and regeneration dynamics in animals with ALF induced by acetaminophen, to test the liver protective efficacy of MSCs proteome depending on the oxygen tension in cell culture, and to blueprint protein components responsible for the effect. Protein compositions prepared from MSCs cultured in mild hypoxic (5% and 10% O2) and normal (21% O2) conditions were used to treat ALF induced in mice by injection of acetaminophen. To test the effect of reduced oxygen tension in cell culture on resulting MSCs proteome content we applied a combination of high performance liquid chromatography and mass-spectrometry (LC–MS/MS) for the identification of proteins in lysates of MSCs cultured at different O2 levels. The treatment of acetaminophen-administered animals with proteins released from cultured MSCs resulted in the inhibition of inflammatory reactions in damaged liver; the area of hepatocyte necrosis being reduced in the first 24 h. Compositions obtained from MSCs cultured at lower O2 level were shown to be more potent than a composition prepared from normoxic cells. A comparative characterization of protein pattern and identification of individual components done by a cytokine assay and proteomics analysis of protein compositions revealed that even moderate hypoxia produces discrete changes in the expression of various subsets of proteins responsible for intracellular respiration and cell signaling. The application of proteins prepared from MSCs grown in vitro at reduced oxygen tension significantly accelerates healing process in damaged liver tissue. The proteomics data obtained for different preparations offer new information about the potential candidates in the MSCs protein repertoire sensitive to oxygen tension in culture medium, which can be involved in the generalized mechanisms the cells use to respond to acute liver failure.}, author = {Temnov, Andrey Alexandrovich and Rogov, Konstantin Arkadevich and Sklifas, Alla Nikolaevna and Klychnikova, Elena Valerievna and Hartl, Markus and Djinovic-Carugo, Kristina and Charnagalov, Alexej}, issn = {15734978}, journal = {Molecular Biology Reports}, publisher = {Springer}, title = {{Protective properties of the cultured stem cell proteome studied in an animal model of acetaminophen-induced acute liver failure}}, doi = {10.1007/s11033-019-04765-z}, year = {2019}, } @article{6348, abstract = {High-speed optical telecommunication is enabled by wavelength-division multiplexing, whereby hundreds of individually stabilized lasers encode information within a single-mode optical fibre. Higher bandwidths require higher total optical power, but the power sent into the fibre is limited by optical nonlinearities within the fibre, and energy consumption by the light sources starts to become a substantial cost factor1. Optical frequency combs have been suggested to remedy this problem by generating numerous discrete, equidistant laser lines within a monolithic device; however, at present their stability and coherence allow them to operate only within small parameter ranges2,3,4. Here we show that a broadband frequency comb realized through the electro-optic effect within a high-quality whispering-gallery-mode resonator can operate at low microwave and optical powers. Unlike the usual third-order Kerr nonlinear optical frequency combs, our combs rely on the second-order nonlinear effect, which is much more efficient. Our result uses a fixed microwave signal that is mixed with an optical-pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to work with microwave powers that are three orders of magnitude lower than those in commercially available devices. We emphasize the practical relevance of our results to high rates of data communication. To circumvent the limitations imposed by nonlinear effects in optical communication fibres, one has to solve two problems: to provide a compact and fully integrated, yet high-quality and coherent, frequency comb generator; and to calculate nonlinear signal propagation in real time5. We report a solution to the first problem.}, author = {Rueda Sanchez, Alfredo R and Sedlmeir, Florian and Kumari, Madhuri and Leuchs, Gerd and Schwefel, Harald G.L.}, issn = {14764687}, journal = {Nature}, number = {7752}, pages = {378--381}, publisher = {Springer Nature}, title = {{Resonant electro-optic frequency comb}}, doi = {10.1038/s41586-019-1110-x}, volume = {568}, year = {2019}, } @article{6338, abstract = {Hippocampal activity patterns representing movement trajectories are reactivated in immobility and sleep periods, a process associated with memory recall, consolidation, and decision making. It is thought that only fixed, behaviorally relevant patterns can be reactivated, which are stored across hippocampal synaptic connections. To test whether some generalized rules govern reactivation, we examined trajectory reactivation following non-stereotypical exploration of familiar open-field environments. We found that random trajectories of varying lengths and timescales were reactivated, resembling that of Brownian motion of particles. The animals’ behavioral trajectory did not follow Brownian diffusion demonstrating that the exact behavioral experience is not reactivated. Therefore, hippocampal circuits are able to generate random trajectories of any recently active map by following diffusion dynamics. This ability of hippocampal circuits to generate representations of all behavioral outcome combinations, experienced or not, may underlie a wide variety of hippocampal-dependent cognitive functions such as learning, generalization, and planning.}, author = {Stella, Federico and Baracskay, Peter and O'Neill, Joseph and Csicsvari, Jozsef L}, journal = {Neuron}, pages = {450--461}, publisher = {Elsevier}, title = {{Hippocampal reactivation of random trajectories resembling Brownian diffusion}}, doi = {10.1016/j.neuron.2019.01.052}, volume = {102}, year = {2019}, } @article{5878, abstract = {We consider the motion of a droplet bouncing on a vibrating bath of the same fluid in the presence of a central potential. We formulate a rotation symmetry-reduced description of this system, which allows for the straightforward application of dynamical systems theory tools. As an illustration of the utility of the symmetry reduction, we apply it to a model of the pilot-wave system with a central harmonic force. We begin our analysis by identifying local bifurcations and the onset of chaos. We then describe the emergence of chaotic regions and their merging bifurcations, which lead to the formation of a global attractor. In this final regime, the droplet’s angular momentum spontaneously changes its sign as observed in the experiments of Perrard et al.}, author = {Budanur, Nazmi B and Fleury, Marc}, issn = {1089-7682}, journal = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, number = {1}, publisher = {AIP Publishing}, title = {{State space geometry of the chaotic pilot-wave hydrodynamics}}, doi = {10.1063/1.5058279}, volume = {29}, year = {2019}, } @inproceedings{6428, abstract = {Safety and security are major concerns in the development of Cyber-Physical Systems (CPS). Signal temporal logic (STL) was proposedas a language to specify and monitor the correctness of CPS relativeto formalized requirements. Incorporating STL into a developmentprocess enables designers to automatically monitor and diagnosetraces, compute robustness estimates based on requirements, andperform requirement falsification, leading to productivity gains inverification and validation activities; however, in its current formSTL is agnostic to the input/output classification of signals, andthis negatively impacts the relevance of the analysis results.In this paper we propose to make the interface explicit in theSTL language by introducing input/output signal declarations. Wethen define new measures of input vacuity and output robustnessthat better reflect the nature of the system and the specification in-tent. The resulting framework, which we call interface-aware signaltemporal logic (IA-STL), aids verification and validation activities.We demonstrate the benefits of IA-STL on several CPS analysisactivities: (1) robustness-driven sensitivity analysis, (2) falsificationand (3) fault localization. We describe an implementation of our en-hancement to STL and associated notions of robustness and vacuityin a prototype extension of Breach, a MATLAB®/Simulink®toolboxfor CPS verification and validation. We explore these methodologi-cal improvements and evaluate our results on two examples fromthe automotive domain: a benchmark powertrain control systemand a hydrogen fuel cell system.}, author = {Ferrere, Thomas and Nickovic, Dejan and Donzé, Alexandre and Ito, Hisahiro and Kapinski, James}, booktitle = {Proceedings of the 2019 22nd ACM International Conference on Hybrid Systems: Computation and Control}, isbn = {9781450362825}, location = {Montreal, Canada}, pages = {57--66}, publisher = {ACM}, title = {{Interface-aware signal temporal logic}}, doi = {10.1145/3302504.3311800}, year = {2019}, } @article{6442, abstract = {This paper investigates the use of fundamental solutions for animating detailed linear water surface waves. We first propose an analytical solution for efficiently animating circular ripples in closed form. We then show how to adapt the method of fundamental solutions (MFS) to create ambient waves interacting with complex obstacles. Subsequently, we present a novel wavelet-based discretization which outperforms the state of the art MFS approach for simulating time-varying water surface waves with moving obstacles. Our results feature high-resolution spatial details, interactions with complex boundaries, and large open ocean domains. Our method compares favorably with previous work as well as known analytical solutions. We also present comparisons between our method and real world examples.}, author = {Schreck, Camille and Hafner, Christian and Wojtan, Christopher J}, journal = {ACM Transactions on Graphics}, number = {4}, publisher = {ACM}, title = {{Fundamental solutions for water wave animation}}, doi = {10.1145/3306346.3323002}, volume = {38}, year = {2019}, } @article{6413, abstract = {Phase-field methods have long been used to model the flow of immiscible fluids. Their ability to naturally capture interface topological changes is widely recognized, but their accuracy in simulating flows of real fluids in practical geometries is not established. We here quantitatively investigate the convergence of the phase-field method to the sharp-interface limit with simulations of two-phase pipe flow. We focus on core-annular flows, in which a highly viscous fluid is lubricated by a less viscous fluid, and validate our simulations with an analytic laminar solution, a formal linear stability analysis and also in the fully nonlinear regime. We demonstrate the ability of the phase-field method to accurately deal with non-rectangular geometry, strong advection, unsteady fluctuations and large viscosity contrast. We argue that phase-field methods are very promising for quantitatively studying moderately turbulent flows, especially at high concentrations of the disperse phase.}, author = {Song, Baofang and Plana, Carlos and Lopez Alonso, Jose M and Avila, Marc}, issn = {03019322}, journal = {International Journal of Multiphase Flow}, pages = {14--24}, publisher = {Elsevier}, title = {{Phase-field simulation of core-annular pipe flow}}, doi = {10.1016/j.ijmultiphaseflow.2019.04.027}, volume = {117}, year = {2019}, }