@article{6052, abstract = {Expansion microscopy is a relatively new approach to super-resolution imaging that uses expandable hydrogels to isotropically increase the physical distance between fluorophores in biological samples such as cell cultures or tissue slices. The classic gel recipe results in an expansion factor of ~4×, with a resolution of 60–80 nm. We have recently developed X10 microscopy, which uses a gel that achieves an expansion factor of ~10×, with a resolution of ~25 nm. Here, we provide a step-by-step protocol for X10 expansion microscopy. A typical experiment consists of seven sequential stages: (i) immunostaining, (ii) anchoring, (iii) polymerization, (iv) homogenization, (v) expansion, (vi) imaging, and (vii) validation. The protocol presented here includes recommendations for optimization, pitfalls and their solutions, and detailed guidelines that should increase reproducibility. Although our protocol focuses on X10 expansion microscopy, we detail which of these suggestions are also applicable to classic fourfold expansion microscopy. We exemplify our protocol using primary hippocampal neurons from rats, but our approach can be used with other primary cells or cultured cell lines of interest. This protocol will enable any researcher with basic experience in immunostainings and access to an epifluorescence microscope to perform super-resolution microscopy with X10. The procedure takes 3 d and requires ~5 h of actively handling the sample for labeling and expansion, and another ~3 h for imaging and analysis.}, author = {Truckenbrodt, Sven M and Sommer, Christoph M and Rizzoli, Silvio O and Danzl, Johann G}, journal = {Nature Protocols}, number = {3}, pages = {832–863}, publisher = {Nature Publishing Group}, title = {{A practical guide to optimization in X10 expansion microscopy}}, doi = {10.1038/s41596-018-0117-3}, volume = {14}, year = {2019}, } @article{6025, abstract = {Non-canonical Wnt signaling plays a central role for coordinated cell polarization and directed migration in metazoan development. While spatiotemporally restricted activation of non-canonical Wnt-signaling drives cell polarization in epithelial tissues, it remains unclear whether such instructive activity is also critical for directed mesenchymal cell migration. Here, we developed a light-activated version of the non-canonical Wnt receptor Frizzled 7 (Fz7) to analyze how restricted activation of non-canonical Wnt signaling affects directed anterior axial mesendoderm (prechordal plate, ppl) cell migration within the zebrafish gastrula. We found that Fz7 signaling is required for ppl cell protrusion formation and migration and that spatiotemporally restricted ectopic activation is capable of redirecting their migration. Finally, we show that uniform activation of Fz7 signaling in ppl cells fully rescues defective directed cell migration in fz7 mutant embryos. Together, our findings reveal that in contrast to the situation in epithelial cells, non-canonical Wnt signaling functions permissively rather than instructively in directed mesenchymal cell migration during gastrulation.}, author = {Capek, Daniel and Smutny, Michael and Tichy, Alexandra Madelaine and Morri, Maurizio and Janovjak, Harald L and Heisenberg, Carl-Philipp J}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration}}, doi = {10.7554/eLife.42093}, volume = {8}, year = {2019}, } @article{6022, abstract = {The evolution of new species is made easier when traits under divergent ecological selection are also mating cues. Such ecological mating cues are now considered more common than previously thought, but we still know little about the genetic changes underlying their evolution or more generally about the genetic basis for assortative mating behaviors. Both tight physical linkage and the existence of large-effect preference loci will strengthen genetic associations between behavioral and ecological barriers, promoting the evolution of assortative mating. The warning patterns of Heliconius melpomene and H. cydno are under disruptive selection due to increased predation of nonmimetic hybrids and are used during mate recognition. We carried out a genome-wide quantitative trait locus (QTL) analysis of preference behaviors between these species and showed that divergent male preference has a simple genetic basis. We identify three QTLs that together explain a large proportion (approximately 60%) of the difference in preference behavior observed between the parental species. One of these QTLs is just 1.2 (0-4.8) centiMorgans (cM) from the major color pattern gene optix, and, individually, all three have a large effect on the preference phenotype. Genomic divergence between H. cydno and H. melpomene is high but broadly heterogenous, and admixture is reduced at the preference-optix color pattern locus but not the other preference QTLs. The simple genetic architecture we reveal will facilitate the evolution and maintenance of new species despite ongoing gene flow by coupling behavioral and ecological aspects of reproductive isolation.}, author = {Merrill, Richard M. and Rastas, Pasi and Martin, Simon H. and Melo Hurtado, Maria C and Barker, Sarah and Davey, John and Mcmillan, W. Owen and Jiggins, Chris D.}, journal = {PLoS Biology}, number = {2}, publisher = {Public Library of Science}, title = {{Genetic dissection of assortative mating behavior}}, doi = {10.1371/journal.pbio.2005902}, volume = {17}, year = {2019}, } @article{6023, abstract = {Multicellular development requires coordinated cell polarization relative to body axes, and translation to oriented cell division 1–3 . In plants, it is unknown how cell polarities are connected to organismal axes and translated to division. Here, we identify Arabidopsis SOSEKI proteins that integrate apical–basal and radial organismal axes to localize to polar cell edges. Localization does not depend on tissue context, requires cell wall integrity and is defined by a transferrable, protein-specific motif. A Domain of Unknown Function in SOSEKI proteins resembles the DIX oligomerization domain in the animal Dishevelled polarity regulator. The DIX-like domain self-interacts and is required for edge localization and for influencing division orientation, together with a second domain that defines the polar membrane domain. Our work shows that SOSEKI proteins locally interpret global polarity cues and can influence cell division orientation. Furthermore, this work reveals that, despite fundamental differences, cell polarity mechanisms in plants and animals converge on a similar protein domain.}, author = {Yoshida, Saiko and Van Der Schuren, Alja and Van Dop, Maritza and Van Galen, Luc and Saiga, Shunsuke and Adibi, Milad and Möller, Barbara and Ten Hove, Colette A. and Marhavy, Peter and Smith, Richard and Friml, Jiří and Weijers, Dolf}, journal = {Nature Plants}, number = {2}, pages = {160--166}, publisher = {Springer Nature}, title = {{A SOSEKI-based coordinate system interprets global polarity cues in arabidopsis}}, doi = {10.1038/s41477-019-0363-6}, volume = {5}, year = {2019}, } @article{6053, abstract = {Recent technical developments in the fields of quantum electromechanics and optomechanics have spawned nanoscale mechanical transducers with the sensitivity to measure mechanical displacements at the femtometre scale and the ability to convert electromagnetic signals at the single photon level. A key challenge in this field is obtaining strong coupling between motion and electromagnetic fields without adding additional decoherence. Here we present an electromechanical transducer that integrates a high-frequency (0.42 GHz) hypersonic phononic crystal with a superconducting microwave circuit. The use of a phononic bandgap crystal enables quantum-level transduction of hypersonic mechanical motion and concurrently eliminates decoherence caused by acoustic radiation. Devices with hypersonic mechanical frequencies provide a natural pathway for integration with Josephson junction quantum circuits, a leading quantum computing technology, and nanophotonic systems capable of optical networking and distributing quantum information.}, author = {Kalaee, Mahmoud and Mirhosseini, Mohammad and Dieterle, Paul B. and Peruzzo, Matilda and Fink, Johannes M and Painter, Oskar}, issn = {1748-3395}, journal = {Nature Nanotechnology}, number = {4}, pages = {334–339}, publisher = {Springer Nature}, title = {{Quantum electromechanics of a hypersonic crystal}}, doi = {10.1038/s41565-019-0377-2}, volume = {14}, year = {2019}, } @article{6050, abstract = {We answer a question of David Hilbert: given two circles it is not possible in general to construct their centers using only a straightedge. On the other hand, we give infinitely many families of pairs of circles for which such construction is possible. }, author = {Akopyan, Arseniy and Fedorov, Roman}, journal = {Proceedings of the American Mathematical Society}, pages = {91--102}, publisher = {AMS}, title = {{Two circles and only a straightedge}}, doi = {10.1090/proc/14240}, volume = {147}, year = {2019}, } @article{6095, abstract = {Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients.}, author = {Faria, Rui and Chaube, Pragya and Morales, Hernán E. and Larsson, Tomas and Lemmon, Alan R. and Lemmon, Emily M. and Rafajlović, Marina and Panova, Marina and Ravinet, Mark and Johannesson, Kerstin and Westram, Anja M and Butlin, Roger K.}, issn = {1365-294X}, journal = {Molecular Ecology}, number = {6}, pages = {1375--1393}, publisher = {Wiley}, title = {{Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes}}, doi = {10.1111/mec.14972}, volume = {28}, year = {2019}, } @article{6049, abstract = {In this article it is shown that large systems with many interacting units endowing multiple phases display self-oscillations in the presence of linear feedback between the control and order parameters, where an Andronov–Hopf bifurcation takes over the phase transition. This is simply illustrated through the mean field Landau theory whose feedback dynamics turn out to be described by the Van der Pol equation and it is then validated for the fully connected Ising model following heat bath dynamics. Despite its simplicity, this theory accounts potentially for a rich range of phenomena: here it is applied to describe in a stylized way (i) excess demand-price cycles due to strong herding in a simple agent-based market model; (ii) congestion waves in queuing networks triggered by user feedback to delays in overloaded conditions; and (iii) metabolic network oscillations resulting from cell growth control in a bistable phenotypic landscape.}, author = {De Martino, Daniele}, journal = {Journal of Physics A: Mathematical and Theoretical}, number = {4}, publisher = {IOP Publishing}, title = {{Feedback-induced self-oscillations in large interacting systems subjected to phase transitions}}, doi = {10.1088/1751-8121/aaf2dd}, volume = {52}, year = {2019}, } @article{6091, abstract = {Cortical networks are characterized by sparse connectivity, with synapses found at only a subset of axo-dendritic contacts. Yet within these networks, neurons can exhibit high connection probabilities, suggesting that cell-intrinsic factors, not proximity, determine connectivity. Here, we identify ephrin-B3 (eB3) as a factor that determines synapse density by mediating a cell-cell competition that requires ephrin-B-EphB signaling. In a microisland culture system designed to isolate cell-cell competition, we find that eB3 determines winning and losing neurons in a contest for synapses. In a Mosaic Analysis with Double Markers (MADM) genetic mouse model system in vivo the relative levels of eB3 control spine density in layer 5 and 6 neurons. MADM cortical neurons in vitro reveal that eB3 controls synapse density independently of action potential-driven activity. Our findings illustrate a new class of competitive mechanism mediated by trans-synaptic organizing proteins which control the number of synapses neurons receive relative to neighboring neurons.}, author = {Henderson, Nathan T. and Le Marchand, Sylvain J. and Hruska, Martin and Hippenmeyer, Simon and Luo, Liqun and Dalva, Matthew B.}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Ephrin-B3 controls excitatory synapse density through cell-cell competition for EphBs}}, doi = {10.7554/eLife.41563}, volume = {8}, year = {2019}, } @article{6046, abstract = {Sudden stress often triggers diverse, temporally structured gene expression responses in microbes, but it is largely unknown how variable in time such responses are and if genes respond in the same temporal order in every single cell. Here, we quantified timing variability of individual promoters responding to sublethal antibiotic stress using fluorescent reporters, microfluidics, and time‐lapse microscopy. We identified lower and upper bounds that put definite constraints on timing variability, which varies strongly among promoters and conditions. Timing variability can be interpreted using results from statistical kinetics, which enable us to estimate the number of rate‐limiting molecular steps underlying different responses. We found that just a few critical steps control some responses while others rely on dozens of steps. To probe connections between different stress responses, we then tracked the temporal order and response time correlations of promoter pairs in individual cells. Our results support that, when bacteria are exposed to the antibiotic nitrofurantoin, the ensuing oxidative stress and SOS responses are part of the same causal chain of molecular events. In contrast, under trimethoprim, the acid stress response and the SOS response are part of different chains of events running in parallel. Our approach reveals fundamental constraints on gene expression timing and provides new insights into the molecular events that underlie the timing of stress responses.}, author = {Mitosch, Karin and Rieckh, Georg and Bollenbach, Mark Tobias}, journal = {Molecular systems biology}, number = {2}, publisher = {Embo Press}, title = {{Temporal order and precision of complex stress responses in individual bacteria}}, doi = {10.15252/msb.20188470}, volume = {15}, year = {2019}, }