@article{9121, abstract = {We show that the energy gap for the BCS gap equation is Ξ=μ(8e−2+o(1))exp(π2μ−−√a) in the low density limit μ→0. Together with the similar result for the critical temperature by Hainzl and Seiringer (Lett Math Phys 84: 99–107, 2008), this shows that, in the low density limit, the ratio of the energy gap and critical temperature is a universal constant independent of the interaction potential V. The results hold for a class of potentials with negative scattering length a and no bound states.}, author = {Lauritsen, Asbjørn Bækgaard}, issn = {1573-0530}, journal = {Letters in Mathematical Physics}, keywords = {Mathematical Physics, Statistical and Nonlinear Physics}, publisher = {Springer Nature}, title = {{The BCS energy gap at low density}}, doi = {10.1007/s11005-021-01358-5}, volume = {111}, year = {2021}, } @article{9234, abstract = {In this paper, we present two new inertial projection-type methods for solving multivalued variational inequality problems in finite-dimensional spaces. We establish the convergence of the sequence generated by these methods when the multivalued mapping associated with the problem is only required to be locally bounded without any monotonicity assumption. Furthermore, the inertial techniques that we employ in this paper are quite different from the ones used in most papers. Moreover, based on the weaker assumptions on the inertial factor in our methods, we derive several special cases of our methods. Finally, we present some experimental results to illustrate the profits that we gain by introducing the inertial extrapolation steps.}, author = {Izuchukwu, Chinedu and Shehu, Yekini}, issn = {1572-9427}, journal = {Networks and Spatial Economics}, keywords = {Computer Networks and Communications, Software, Artificial Intelligence}, number = {2}, pages = {291--323}, publisher = {Springer Nature}, title = {{New inertial projection methods for solving multivalued variational inequality problems beyond monotonicity}}, doi = {10.1007/s11067-021-09517-w}, volume = {21}, year = {2021}, } @article{9111, abstract = {We study the probabilistic convergence between the mapper graph and the Reeb graph of a topological space X equipped with a continuous function f:X→R. We first give a categorification of the mapper graph and the Reeb graph by interpreting them in terms of cosheaves and stratified covers of the real line R. We then introduce a variant of the classic mapper graph of Singh et al. (in: Eurographics symposium on point-based graphics, 2007), referred to as the enhanced mapper graph, and demonstrate that such a construction approximates the Reeb graph of (X,f) when it is applied to points randomly sampled from a probability density function concentrated on (X,f). Our techniques are based on the interleaving distance of constructible cosheaves and topological estimation via kernel density estimates. Following Munch and Wang (In: 32nd international symposium on computational geometry, volume 51 of Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, Germany, pp 53:1–53:16, 2016), we first show that the mapper graph of (X,f), a constructible R-space (with a fixed open cover), approximates the Reeb graph of the same space. We then construct an isomorphism between the mapper of (X,f) to the mapper of a super-level set of a probability density function concentrated on (X,f). Finally, building on the approach of Bobrowski et al. (Bernoulli 23(1):288–328, 2017b), we show that, with high probability, we can recover the mapper of the super-level set given a sufficiently large sample. Our work is the first to consider the mapper construction using the theory of cosheaves in a probabilistic setting. It is part of an ongoing effort to combine sheaf theory, probability, and statistics, to support topological data analysis with random data.}, author = {Brown, Adam and Bobrowski, Omer and Munch, Elizabeth and Wang, Bei}, issn = {2367-1734}, journal = {Journal of Applied and Computational Topology}, number = {1}, pages = {99--140}, publisher = {Springer Nature}, title = {{Probabilistic convergence and stability of random mapper graphs}}, doi = {10.1007/s41468-020-00063-x}, volume = {5}, year = {2021}, } @article{9252, abstract = {This paper analyses the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat‐dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.}, author = {Szep, Eniko and Sachdeva, Himani and Barton, Nicholas H}, issn = {1558-5646}, journal = {Evolution}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics, General Agricultural and Biological Sciences}, number = {5}, pages = {1030--1045}, publisher = {Wiley}, title = {{Polygenic local adaptation in metapopulations: A stochastic eco‐evolutionary model}}, doi = {10.1111/evo.14210}, volume = {75}, year = {2021}, } @article{9374, abstract = {If there are no constraints on the process of speciation, then the number of species might be expected to match the number of available niches and this number might be indefinitely large. One possible constraint is the opportunity for allopatric divergence. In 1981, Felsenstein used a simple and elegant model to ask if there might also be genetic constraints. He showed that progress towards speciation could be described by the build‐up of linkage disequilibrium among divergently selected loci and between these loci and those contributing to other forms of reproductive isolation. Therefore, speciation is opposed by recombination, because it tends to break down linkage disequilibria. Felsenstein then introduced a crucial distinction between “two‐allele” models, which are subject to this effect, and “one‐allele” models, which are free from the recombination constraint. These fundamentally important insights have been the foundation for both empirical and theoretical studies of speciation ever since.}, author = {Butlin, Roger K. and Servedio, Maria R. and Smadja, Carole M. and Bank, Claudia and Barton, Nicholas H and Flaxman, Samuel M. and Giraud, Tatiana and Hopkins, Robin and Larson, Erica L. and Maan, Martine E. and Meier, Joana and Merrill, Richard and Noor, Mohamed A. F. and Ortiz‐Barrientos, Daniel and Qvarnström, Anna}, issn = {1558-5646}, journal = {Evolution}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics, General Agricultural and Biological Sciences}, number = {5}, pages = {978--988}, publisher = {Wiley}, title = {{Homage to Felsenstein 1981, or why are there so few/many species?}}, doi = {10.1111/evo.14235}, volume = {75}, year = {2021}, } @misc{13062, abstract = {This paper analyzes the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat-dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.}, author = {Szep, Eniko and Sachdeva, Himani and Barton, Nicholas H}, publisher = {Dryad}, title = {{Supplementary code for: Polygenic local adaptation in metapopulations: A stochastic eco-evolutionary model}}, doi = {10.5061/DRYAD.8GTHT76P1}, year = {2021}, } @article{10838, abstract = {Combining hybrid zone analysis with genomic data is a promising approach to understanding the genomic basis of adaptive divergence. It allows for the identification of genomic regions underlying barriers to gene flow. It also provides insights into spatial patterns of allele frequency change, informing about the interplay between environmental factors, dispersal and selection. However, when only a single hybrid zone is analysed, it is difficult to separate patterns generated by selection from those resulting from chance. Therefore, it is beneficial to look for repeatable patterns across replicate hybrid zones in the same system. We applied this approach to the marine snail Littorina saxatilis, which contains two ecotypes, adapted to wave-exposed rocks vs. high-predation boulder fields. The existence of numerous hybrid zones between ecotypes offered the opportunity to test for the repeatability of genomic architectures and spatial patterns of divergence. We sampled and phenotyped snails from seven replicate hybrid zones on the Swedish west coast and genotyped them for thousands of single nucleotide polymorphisms. Shell shape and size showed parallel clines across all zones. Many genomic regions showing steep clines and/or high differentiation were shared among hybrid zones, consistent with a common evolutionary history and extensive gene flow between zones, and supporting the importance of these regions for divergence. In particular, we found that several large putative inversions contribute to divergence in all locations. Additionally, we found evidence for consistent displacement of clines from the boulder–rock transition. Our results demonstrate patterns of spatial variation that would not be accessible without continuous spatial sampling, a large genomic data set and replicate hybrid zones.}, author = {Westram, Anja M and Faria, Rui and Johannesson, Kerstin and Butlin, Roger}, issn = {1365-294X}, journal = {Molecular Ecology}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics}, number = {15}, pages = {3797--3814}, publisher = {Wiley}, title = {{Using replicate hybrid zones to understand the genomic basis of adaptive divergence}}, doi = {10.1111/mec.15861}, volume = {30}, year = {2021}, } @article{9288, abstract = {• The phenylpropanoid pathway serves a central role in plant metabolism, providing numerous compounds involved in diverse physiological processes. Most carbon entering the pathway is incorporated into lignin. Although several phenylpropanoid pathway mutants show seedling growth arrest, the role for lignin in seedling growth and development is unexplored. • We use complementary pharmacological and genetic approaches to block CINNAMATE‐4‐HYDROXYLASE (C4H) functionality in Arabidopsis seedlings and a set of molecular and biochemical techniques to investigate the underlying phenotypes. • Blocking C4H resulted in reduced lateral rooting and increased adventitious rooting apically in the hypocotyl. These phenotypes coincided with an inhibition in auxin transport. The upstream accumulation in cis‐cinnamic acid was found to likely cause polar auxin transport inhibition. Conversely, a downstream depletion in lignin perturbed phloem‐mediated auxin transport. Restoring lignin deposition effectively reestablished phloem transport and, accordingly, auxin homeostasis. • Our results show that the accumulation of bioactive intermediates and depletion in lignin jointly cause the aberrant phenotypes upon blocking C4H, and demonstrate that proper deposition of lignin is essential for the establishment of auxin distribution in seedlings. Our data position the phenylpropanoid pathway and lignin in a new physiological framework, consolidating their importance in plant growth and development.}, author = {El Houari, I and Van Beirs, C and Arents, HE and Han, Huibin and Chanoca, A and Opdenacker, D and Pollier, J and Storme, V and Steenackers, W and Quareshy, M and Napier, R and Beeckman, T and Friml, Jiří and De Rybel, B and Boerjan, W and Vanholme, B}, issn = {1469-8137}, journal = {New Phytologist}, number = {6}, pages = {2275--2291}, publisher = {Wiley}, title = {{Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport}}, doi = {10.1111/nph.17349}, volume = {230}, year = {2021}, } @article{10836, author = {Pranger, Christina L. and Fazekas-Singer, Judit and Köhler, Verena K. and Pali‐Schöll, Isabella and Fiocchi, Alessandro and Karagiannis, Sophia N. and Zenarruzabeitia, Olatz and Borrego, Francisco and Jensen‐Jarolim, Erika}, issn = {1398-9995}, journal = {Allergy}, keywords = {Immunology, Immunology and Allergy}, number = {5}, pages = {1553--1556}, publisher = {Wiley}, title = {{PIPE‐cloned human IgE and IgG4 antibodies: New tools for investigating cow's milk allergy and tolerance}}, doi = {10.1111/all.14604}, volume = {76}, year = {2021}, } @article{8608, abstract = {To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments.}, author = {Ke, M and Ma, Z and Wang, D and Sun, Y and Wen, C and Huang, D and Chen, Z and Yang, L and Tan, Shutang and Li, R and Friml, Jiří and Miao, Y and Chen, X}, issn = {1469-8137}, journal = {New Phytologist}, number = {2}, pages = {963--978}, publisher = {Wiley}, title = {{Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana}}, doi = {10.1111/nph.16915}, volume = {229}, year = {2021}, }