@article{1187,
abstract = {We construct efficient authentication protocols and message authentication codes (MACs) whose security can be reduced to the learning parity with noise (LPN) problem. Despite a large body of work—starting with the (Formula presented.) protocol of Hopper and Blum in 2001—until now it was not even known how to construct an efficient authentication protocol from LPN which is secure against man-in-the-middle attacks. A MAC implies such a (two-round) protocol.},
author = {Kiltz, Eike and Pietrzak, Krzysztof Z and Venturi, Daniele and Cash, David and Jain, Abhishek},
journal = {Journal of Cryptology},
number = {4},
pages = {1238 -- 1275},
publisher = {Springer},
title = {{Efficient authentication from hard learning problems}},
doi = {10.1007/s00145-016-9247-3},
volume = {30},
year = {2017},
}
@article{1191,
abstract = {Variation in genotypes may be responsible for differences in dispersal rates, directional biases, and growth rates of individuals. These traits may favor certain genotypes and enhance their spatiotemporal spreading into areas occupied by the less advantageous genotypes. We study how these factors influence the speed of spreading in the case of two competing genotypes under the assumption that spatial variation of the total population is small compared to the spatial variation of the frequencies of the genotypes in the population. In that case, the dynamics of the frequency of one of the genotypes is approximately described by a generalized Fisher–Kolmogorov–Petrovskii–Piskunov (F–KPP) equation. This generalized F–KPP equation with (nonlinear) frequency-dependent diffusion and advection terms admits traveling wave solutions that characterize the invasion of the dominant genotype. Our existence results generalize the classical theory for traveling waves for the F–KPP with constant coefficients. Moreover, in the particular case of the quadratic (monostable) nonlinear growth–decay rate in the generalized F–KPP we study in detail the influence of the variance in diffusion and mean displacement rates of the two genotypes on the minimal wave propagation speed.},
author = {Kollár, Richard and Novak, Sebastian},
journal = {Bulletin of Mathematical Biology},
number = {3},
pages = {525--559},
publisher = {Springer},
title = {{Existence of traveling waves for the generalized F–KPP equation}},
doi = {10.1007/s11538-016-0244-3},
volume = {79},
year = {2017},
}
@inproceedings{1192,
abstract = {The main result of this paper is a generalization of the classical blossom algorithm for finding perfect matchings. Our algorithm can efficiently solve Boolean CSPs where each variable appears in exactly two constraints (we call it edge CSP) and all constraints are even Δ-matroid relations (represented by lists of tuples). As a consequence of this, we settle the complexity classification of planar Boolean CSPs started by Dvorak and Kupec. Knowing that edge CSP is tractable for even Δ-matroid constraints allows us to extend the tractability result to a larger class of Δ-matroids that includes many classes that were known to be tractable before, namely co-independent, compact, local and binary.},
author = {Kazda, Alexandr and Kolmogorov, Vladimir and Rolinek, Michal},
isbn = {978-161197478-2},
location = {Barcelona, Spain},
pages = {307 -- 326},
publisher = {SIAM},
title = {{Even delta-matroids and the complexity of planar Boolean CSPs}},
doi = {10.1137/1.9781611974782.20},
year = {2017},
}
@inproceedings{1194,
abstract = {Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples. },
author = {Chatterjee, Krishnendu and Novotny, Petr and Zikelic, Djordje},
issn = {07308566},
location = {Paris, France},
number = {1},
pages = {145 -- 160},
publisher = {ACM},
title = {{Stochastic invariants for probabilistic termination}},
doi = {10.1145/3009837.3009873},
volume = {52},
year = {2017},
}
@article{1198,
abstract = {We consider a model of fermions interacting via point interactions, defined via a certain weighted Dirichlet form. While for two particles the interaction corresponds to infinite scattering length, the presence of further particles effectively decreases the interaction strength. We show that the model becomes trivial in the thermodynamic limit, in the sense that the free energy density at any given particle density and temperature agrees with the corresponding expression for non-interacting particles.},
author = {Moser, Thomas and Seiringer, Robert},
issn = {03779017},
journal = {Letters in Mathematical Physics},
number = {3},
pages = { 533 -- 552},
publisher = {Springer},
title = {{Triviality of a model of particles with point interactions in the thermodynamic limit}},
doi = {10.1007/s11005-016-0915-x},
volume = {107},
year = {2017},
}
@article{1199,
abstract = {Much of quantitative genetics is based on the ‘infinitesimal model’, under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4Ne by the ‘drift load’, and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects.},
author = {Barton, Nicholas H},
journal = {Heredity},
pages = {96 -- 109},
publisher = {Nature Publishing Group},
title = {{How does epistasis influence the response to selection?}},
doi = {10.1038/hdy.2016.109},
volume = {118},
year = {2017},
}
@article{1207,
abstract = {The eigenvalue distribution of the sum of two large Hermitian matrices, when one of them is conjugated by a Haar distributed unitary matrix, is asymptotically given by the free convolution of their spectral distributions. We prove that this convergence also holds locally in the bulk of the spectrum, down to the optimal scales larger than the eigenvalue spacing. The corresponding eigenvectors are fully delocalized. Similar results hold for the sum of two real symmetric matrices, when one is conjugated by Haar orthogonal matrix.},
author = {Bao, Zhigang and Erdös, László and Schnelli, Kevin},
issn = {00103616},
journal = {Communications in Mathematical Physics},
number = {3},
pages = {947 -- 990},
publisher = {Springer},
title = {{Local law of addition of random matrices on optimal scale}},
doi = {10.1007/s00220-016-2805-6},
volume = {349},
year = {2017},
}
@article{1208,
abstract = {We study parameter estimation in linear Gaussian covariance models, which are p-dimensional Gaussian models with linear constraints on the covariance matrix. Maximum likelihood estimation for this class of models leads to a non-convex optimization problem which typically has many local maxima. Using recent results on the asymptotic distribution of extreme eigenvalues of the Wishart distribution, we provide sufficient conditions for any hill climbing method to converge to the global maximum. Although we are primarily interested in the case in which n≫p, the proofs of our results utilize large sample asymptotic theory under the scheme n/p→γ>1. Remarkably, our numerical simulations indicate that our results remain valid for p as small as 2. An important consequence of this analysis is that, for sample sizes n≃14p, maximum likelihood estimation for linear Gaussian covariance models behaves as if it were a convex optimization problem. © 2016 The Royal Statistical Society and Blackwell Publishing Ltd.},
author = {Zwiernik, Piotr and Uhler, Caroline and Richards, Donald},
issn = {13697412},
journal = {Journal of the Royal Statistical Society. Series B: Statistical Methodology},
number = {4},
pages = {1269 -- 1292},
publisher = {Wiley-Blackwell},
title = {{Maximum likelihood estimation for linear Gaussian covariance models}},
doi = {10.1111/rssb.12217},
volume = {79},
year = {2017},
}
@article{1211,
abstract = {Systems such as fluid flows in channels and pipes or the complex Ginzburg–Landau system, defined over periodic domains, exhibit both continuous symmetries, translational and rotational, as well as discrete symmetries under spatial reflections or complex conjugation. The simplest, and very common symmetry of this type is the equivariance of the defining equations under the orthogonal group O(2). We formulate a novel symmetry reduction scheme for such systems by combining the method of slices with invariant polynomial methods, and show how it works by applying it to the Kuramoto–Sivashinsky system in one spatial dimension. As an example, we track a relative periodic orbit through a sequence of bifurcations to the onset of chaos. Within the symmetry-reduced state space we are able to compute and visualize the unstable manifolds of relative periodic orbits, their torus bifurcations, a transition to chaos via torus breakdown, and heteroclinic connections between various relative periodic orbits. It would be very hard to carry through such analysis in the full state space, without a symmetry reduction such as the one we present here.},
author = {Budanur, Nazmi B and Cvitanović, Predrag},
journal = {Journal of Statistical Physics},
number = {3-4},
pages = {636--655},
publisher = {Springer},
title = {{Unstable manifolds of relative periodic orbits in the symmetry reduced state space of the Kuramoto–Sivashinsky system}},
doi = {10.1007/s10955-016-1672-z},
volume = {167},
year = {2017},
}
@article{1228,
abstract = {Since 2006, reprogrammed cells have increasingly been used as a biomedical research technique in addition to neuro-psychiatric methods. These rapidly evolving techniques allow for the generation of neuronal sub-populations, and have sparked interest not only in monogenetic neuro-psychiatric diseases, but also in poly-genetic and poly-aetiological disorders such as schizophrenia (SCZ) and bipolar disorder (BPD). This review provides a summary of 19 publications on reprogrammed adult somatic cells derived from patients with SCZ, and five publications using this technique in patients with BPD. As both disorders are complex and heterogeneous, there is a plurality of hypotheses to be tested in vitro. In SCZ, data on alterations of dopaminergic transmission in vitro are sparse, despite the great explanatory power of the so-called DA hypothesis of SCZ. Some findings correspond to perturbations of cell energy metabolism, and observations in reprogrammed cells suggest neuro-developmental alterations. Some studies also report on the efficacy of medicinal compounds to revert alterations observed in cellular models. However, due to the paucity of replication studies, no comprehensive conclusions can be drawn from studies using reprogrammed cells at the present time. In the future, findings from cell culture methods need to be integrated with clinical, epidemiological, pharmacological and imaging data in order to generate a more comprehensive picture of SCZ and BPD.},
author = {Sauerzopf, Ulrich and Sacco, Roberto and Novarino, Gaia and Niello, Marco and Weidenauer, Ana and Praschak Rieder, Nicole and Sitte, Harald and Willeit, Matthaeus},
journal = {European Journal of Neuroscience},
number = {1},
pages = {45 -- 57},
publisher = {Wiley-Blackwell},
title = {{Are reprogrammed cells a useful tool for studying dopamine dysfunction in psychotic disorders? A review of the current evidence}},
doi = {10.1111/ejn.13418},
volume = {45},
year = {2017},
}