--- _id: '9728' abstract: - lang: eng text: "Most real-world flows are multiphase, yet we know little about them compared to their single-phase counterparts. Multiphase flows are more difficult to investigate as their dynamics occur in large parameter space and involve complex phenomena such as preferential concentration, turbulence modulation, non-Newtonian rheology, etc. Over the last few decades, experiments in particle-laden flows have taken a back seat in favour of ever-improving computational resources. However, computers are still not powerful enough to simulate a real-world fluid with millions of finite-size particles. Experiments are essential not only because they offer a reliable way to investigate real-world multiphase flows but also because they serve to validate numerical studies and steer the research in a relevant direction. In this work, we have experimentally investigated particle-laden flows in pipes, and in particular, examined the effect of particles on the laminar-turbulent transition and the drag scaling in turbulent flows.\r\n\r\nFor particle-laden pipe flows, an earlier study [Matas et al., 2003] reported how the sub-critical (i.e., hysteretic) transition that occurs via localised turbulent structures called puffs is affected by the addition of particles. In this study, in addition to this known transition, we found a super-critical transition to a globally fluctuating state with increasing particle concentration. At the same time, the Newtonian-type transition via puffs is delayed to larger Reynolds numbers. At an even higher concentration, only the globally fluctuating state is found. The dynamics of particle-laden flows are hence determined by two competing instabilities that give rise to three flow regimes: Newtonian-type turbulence at low, a particle-induced globally fluctuating state at high, and a coexistence state at intermediate concentrations.\r\n\r\nThe effect of particles on turbulent drag is ambiguous, with studies reporting drag reduction, no net change, and even drag increase. The ambiguity arises because, in addition to particle concentration, particle shape, size, and density also affect the net drag. Even similar particles might affect the flow dissimilarly in different Reynolds number and concentration ranges. In the present study, we explored a wide range of both Reynolds number and concentration, using spherical as well as cylindrical particles. We found that the spherical particles do not reduce drag while the cylindrical particles are drag-reducing within a specific Reynolds number interval. The interval strongly depends on the particle concentration and the relative size of the pipe and particles. Within this interval, the magnitude of drag reduction reaches a maximum. These drag reduction maxima appear to fall onto a distinct power-law curve irrespective of the pipe diameter and particle concentration, and this curve can be considered as the maximum drag reduction asymptote for a given fibre shape. Such an asymptote is well known for polymeric flows but had not been identified for particle-laden flows prior to this work." acknowledged_ssus: - _id: M-Shop alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Nishchal full_name: Agrawal, Nishchal id: 469E6004-F248-11E8-B48F-1D18A9856A87 last_name: Agrawal citation: ama: Agrawal N. Transition to turbulence and drag reduction in particle-laden pipe flows. 2021. doi:10.15479/at:ista:9728 apa: Agrawal, N. (2021). Transition to turbulence and drag reduction in particle-laden pipe flows. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:9728 chicago: Agrawal, Nishchal. “Transition to Turbulence and Drag Reduction in Particle-Laden Pipe Flows.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:9728. ieee: N. Agrawal, “Transition to turbulence and drag reduction in particle-laden pipe flows,” Institute of Science and Technology Austria, 2021. ista: Agrawal N. 2021. Transition to turbulence and drag reduction in particle-laden pipe flows. Institute of Science and Technology Austria. mla: Agrawal, Nishchal. Transition to Turbulence and Drag Reduction in Particle-Laden Pipe Flows. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:9728. short: N. Agrawal, Transition to Turbulence and Drag Reduction in Particle-Laden Pipe Flows, Institute of Science and Technology Austria, 2021. date_created: 2021-07-27T13:40:30Z date_published: 2021-07-29T00:00:00Z date_updated: 2024-02-28T13:14:39Z day: '29' ddc: - '532' degree_awarded: PhD department: - _id: GradSch - _id: BjHo doi: 10.15479/at:ista:9728 file: - access_level: closed checksum: 77436be3563a90435024307b1b5ee7e8 content_type: application/x-zip-compressed creator: nagrawal date_created: 2021-07-28T13:32:02Z date_updated: 2022-07-29T22:30:05Z embargo_to: open_access file_id: '9744' file_name: Transition to Turbulence and Drag Reduction in Particle-Laden Pipe Flows.zip file_size: 22859658 relation: source_file - access_level: open_access checksum: 72a891d7daba85445c29b868c22575ed content_type: application/pdf creator: nagrawal date_created: 2021-07-28T13:32:05Z date_updated: 2022-07-29T22:30:05Z embargo: 2022-07-28 file_id: '9745' file_name: Transition to Turbulence and Drag Reduction in Particle-Laden Pipe Flows.pdf file_size: 18658048 relation: main_file file_date_updated: 2022-07-29T22:30:05Z has_accepted_license: '1' keyword: - Drag Reduction - Transition to Turbulence - Multiphase Flows - particle Laden Flows - Complex Flows - Experiments - Fluid Dynamics language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '118' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6189' relation: part_of_dissertation status: public status: public supervisor: - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 title: Transition to turbulence and drag reduction in particle-laden pipe flows tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '10673' abstract: - lang: eng text: We propose a neural information processing system obtained by re-purposing the function of a biological neural circuit model to govern simulated and real-world control tasks. Inspired by the structure of the nervous system of the soil-worm, C. elegans, we introduce ordinary neural circuits (ONCs), defined as the model of biological neural circuits reparameterized for the control of alternative tasks. We first demonstrate that ONCs realize networks with higher maximum flow compared to arbitrary wired networks. We then learn instances of ONCs to control a series of robotic tasks, including the autonomous parking of a real-world rover robot. For reconfiguration of the purpose of the neural circuit, we adopt a search-based optimization algorithm. Ordinary neural circuits perform on par and, in some cases, significantly surpass the performance of contemporary deep learning models. ONC networks are compact, 77% sparser than their counterpart neural controllers, and their neural dynamics are fully interpretable at the cell-level. acknowledgement: "RH and RG are partially supported by Horizon-2020 ECSEL Project grant No. 783163 (iDev40), Productive 4.0, and ATBMBFW CPS-IoT Ecosystem. ML was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23\r\n(Wittgenstein Award). AA is supported by the National Science Foundation (NSF) Graduate Research Fellowship\r\nProgram. RH and DR are partially supported by The Boeing Company and JP Morgan Chase. This research work is\r\npartially drawn from the PhD dissertation of RH.\r\n" alternative_title: - PMLR article_processing_charge: No author: - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Hasani R, Lechner M, Amini A, Rus D, Grosu R. A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits. In: Proceedings of the 37th International Conference on Machine Learning. PMLR. ; 2020:4082-4093.' apa: 'Hasani, R., Lechner, M., Amini, A., Rus, D., & Grosu, R. (2020). A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits. In Proceedings of the 37th International Conference on Machine Learning (pp. 4082–4093). Virtual.' chicago: 'Hasani, Ramin, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. “A Natural Lottery Ticket Winner: Reinforcement Learning with Ordinary Neural Circuits.” In Proceedings of the 37th International Conference on Machine Learning, 4082–93. PMLR, 2020.' ieee: 'R. Hasani, M. Lechner, A. Amini, D. Rus, and R. Grosu, “A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits,” in Proceedings of the 37th International Conference on Machine Learning, Virtual, 2020, pp. 4082–4093.' ista: 'Hasani R, Lechner M, Amini A, Rus D, Grosu R. 2020. A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits. Proceedings of the 37th International Conference on Machine Learning. ML: Machine LearningPMLR, PMLR, , 4082–4093.' mla: 'Hasani, Ramin, et al. “A Natural Lottery Ticket Winner: Reinforcement Learning with Ordinary Neural Circuits.” Proceedings of the 37th International Conference on Machine Learning, 2020, pp. 4082–93.' short: R. Hasani, M. Lechner, A. Amini, D. Rus, R. Grosu, in:, Proceedings of the 37th International Conference on Machine Learning, 2020, pp. 4082–4093. conference: end_date: 2020-07-18 location: Virtual name: 'ML: Machine Learning' start_date: 2020-07-12 date_created: 2022-01-25T15:50:34Z date_published: 2020-01-01T00:00:00Z date_updated: 2022-01-26T11:14:27Z ddc: - '000' department: - _id: GradSch - _id: ToHe file: - access_level: open_access checksum: c9a4a29161777fc1a89ef451c040e3b1 content_type: application/pdf creator: cchlebak date_created: 2022-01-26T11:08:51Z date_updated: 2022-01-26T11:08:51Z file_id: '10691' file_name: 2020_PMLR_Hasani.pdf file_size: 2329798 relation: main_file success: 1 file_date_updated: 2022-01-26T11:08:51Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/3.0/ main_file_link: - open_access: '1' url: http://proceedings.mlr.press/v119/hasani20a.html oa: 1 oa_version: Published Version page: 4082-4093 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 37th International Conference on Machine Learning publication_identifier: issn: - 2640-3498 publication_status: published quality_controlled: '1' scopus_import: '1' series_title: PMLR status: public title: 'A natural lottery ticket winner: Reinforcement learning with ordinary neural circuits' tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/3.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) short: CC BY-NC-ND (3.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2020' ... --- _id: '7272' abstract: - lang: eng text: "Many systems rely on optimistic concurrent search trees for multi-core scalability. In principle, optimistic trees have a simple performance story: searches are read-only and so run in parallel, with writes to shared memory occurring only when modifying the data structure. However, this paper shows that in practice, obtaining the full performance benefits of optimistic search trees is not so simple.\r\n\r\nWe focus on optimistic binary search trees (BSTs) and perform a detailed performance analysis of 10 state-of-the-art BSTs on large scale x86-64 hardware, using both microbenchmarks and an in-memory database system. We find and explain significant unexpected performance differences between BSTs with similar tree structure and search implementations, which we trace to subtle performance-degrading interactions of BSTs with systems software and hardware subsystems. We further derive a prescriptive approach to avoid this performance degradation, as well as algorithmic insights on optimistic BST design. Our work underlines the gap between the theory and practice of multi-core performance, and calls for further research to help bridge this gap." article_processing_charge: No author: - first_name: Maya full_name: Arbel-Raviv, Maya last_name: Arbel-Raviv - first_name: Trevor A full_name: Brown, Trevor A id: 3569F0A0-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Adam full_name: Morrison, Adam last_name: Morrison citation: ama: 'Arbel-Raviv M, Brown TA, Morrison A. Getting to the root of concurrent binary search tree performance. In: Proceedings of the 2018 USENIX Annual Technical Conference. USENIX Association; 2020:295-306.' apa: 'Arbel-Raviv, M., Brown, T. A., & Morrison, A. (2020). Getting to the root of concurrent binary search tree performance. In Proceedings of the 2018 USENIX Annual Technical Conference (pp. 295–306). Boston, MA, United States: USENIX Association.' chicago: Arbel-Raviv, Maya, Trevor A Brown, and Adam Morrison. “Getting to the Root of Concurrent Binary Search Tree Performance.” In Proceedings of the 2018 USENIX Annual Technical Conference, 295–306. USENIX Association, 2020. ieee: M. Arbel-Raviv, T. A. Brown, and A. Morrison, “Getting to the root of concurrent binary search tree performance,” in Proceedings of the 2018 USENIX Annual Technical Conference, Boston, MA, United States, 2020, pp. 295–306. ista: 'Arbel-Raviv M, Brown TA, Morrison A. 2020. Getting to the root of concurrent binary search tree performance. Proceedings of the 2018 USENIX Annual Technical Conference. USENIX: Annual Technical Conference, 295–306.' mla: Arbel-Raviv, Maya, et al. “Getting to the Root of Concurrent Binary Search Tree Performance.” Proceedings of the 2018 USENIX Annual Technical Conference, USENIX Association, 2020, pp. 295–306. short: M. Arbel-Raviv, T.A. Brown, A. Morrison, in:, Proceedings of the 2018 USENIX Annual Technical Conference, USENIX Association, 2020, pp. 295–306. conference: end_date: 2018-07-13 location: Boston, MA, United States name: 'USENIX: Annual Technical Conference' start_date: 2018-07-11 date_created: 2020-01-14T07:27:08Z date_published: 2020-01-01T00:00:00Z date_updated: 2021-01-11T15:25:48Z day: '01' ddc: - '000' department: - _id: DaAl language: - iso: eng main_file_link: - open_access: '1' url: https://www.usenix.org/system/files/conference/atc18/atc18-arbel-raviv.pdf month: '01' oa: 1 oa_version: Published Version page: 295-306 project: - _id: 26450934-B435-11E9-9278-68D0E5697425 name: NSERC Postdoctoral fellowship publication: Proceedings of the 2018 USENIX Annual Technical Conference publication_identifier: isbn: - '9781939133021' publication_status: published publisher: USENIX Association quality_controlled: '1' scopus_import: '1' status: public title: Getting to the root of concurrent binary search tree performance type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7346' abstract: - lang: eng text: 'The Price of Anarchy (PoA) is a well-established game-theoretic concept to shed light on coordination issues arising in open distributed systems. Leaving agents to selfishly optimize comes with the risk of ending up in sub-optimal states (in terms of performance and/or costs), compared to a centralized system design. However, the PoA relies on strong assumptions about agents'' rationality (e.g., resources and information) and interactions, whereas in many distributed systems agents interact locally with bounded resources. They do so repeatedly over time (in contrast to "one-shot games"), and their strategies may evolve. Using a more realistic evolutionary game model, this paper introduces a realized evolutionary Price of Anarchy (ePoA). The ePoA allows an exploration of equilibrium selection in dynamic distributed systems with multiple equilibria, based on local interactions of simple memoryless agents. Considering a fundamental game related to virus propagation on networks, we present analytical bounds on the ePoA in basic network topologies and for different strategy update dynamics. In particular, deriving stationary distributions of the stochastic evolutionary process, we find that the Nash equilibria are not always the most abundant states, and that different processes can feature significant off-equilibrium behavior, leading to a significantly higher ePoA compared to the PoA studied traditionally in the literature. ' alternative_title: - LIPIcs article_number: '21' article_processing_charge: No author: - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid citation: ama: 'Schmid L, Chatterjee K, Schmid S. The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game. In: Proceedings of the 23rd International Conference on Principles of Distributed Systems. Vol 153. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.OPODIS.2019.21' apa: 'Schmid, L., Chatterjee, K., & Schmid, S. (2020). The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game. In Proceedings of the 23rd International Conference on Principles of Distributed Systems (Vol. 153). Neuchâtel, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.OPODIS.2019.21' chicago: 'Schmid, Laura, Krishnendu Chatterjee, and Stefan Schmid. “The Evolutionary Price of Anarchy: Locally Bounded Agents in a Dynamic Virus Game.” In Proceedings of the 23rd International Conference on Principles of Distributed Systems, Vol. 153. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.OPODIS.2019.21.' ieee: 'L. Schmid, K. Chatterjee, and S. Schmid, “The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game,” in Proceedings of the 23rd International Conference on Principles of Distributed Systems, Neuchâtel, Switzerland, 2020, vol. 153.' ista: 'Schmid L, Chatterjee K, Schmid S. 2020. The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game. Proceedings of the 23rd International Conference on Principles of Distributed Systems. OPODIS: International Conference on Principles of Distributed Systems, LIPIcs, vol. 153, 21.' mla: 'Schmid, Laura, et al. “The Evolutionary Price of Anarchy: Locally Bounded Agents in a Dynamic Virus Game.” Proceedings of the 23rd International Conference on Principles of Distributed Systems, vol. 153, 21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.OPODIS.2019.21.' short: L. Schmid, K. Chatterjee, S. Schmid, in:, Proceedings of the 23rd International Conference on Principles of Distributed Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2019-12-19 location: Neuchâtel, Switzerland name: 'OPODIS: International Conference on Principles of Distributed Systems' start_date: 2019-12-17 date_created: 2020-01-21T16:00:26Z date_published: 2020-02-10T00:00:00Z date_updated: 2023-02-23T13:05:49Z day: '10' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.OPODIS.2019.21 external_id: arxiv: - '1906.00110' file: - access_level: open_access checksum: 9a91916ac2c21ab42458fcda39ef0b8d content_type: application/pdf creator: dernst date_created: 2020-03-23T09:14:06Z date_updated: 2020-07-14T12:47:56Z file_id: '7608' file_name: 2019_LIPIcS_Schmid.pdf file_size: 630752 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 153' language: - iso: eng month: '02' oa: 1 oa_version: Preprint project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: Proceedings of the 23rd International Conference on Principles of Distributed Systems publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: 'The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 153 year: '2020' ... --- _id: '7348' abstract: - lang: eng text: 'The monitoring of event frequencies can be used to recognize behavioral anomalies, to identify trends, and to deduce or discard hypotheses about the underlying system. For example, the performance of a web server may be monitored based on the ratio of the total count of requests from the least and most active clients. Exact frequency monitoring, however, can be prohibitively expensive; in the above example it would require as many counters as there are clients. In this paper, we propose the efficient probabilistic monitoring of common frequency properties, including the mode (i.e., the most common event) and the median of an event sequence. We define a logic to express composite frequency properties as a combination of atomic frequency properties. Our main contribution is an algorithm that, under suitable probabilistic assumptions, can be used to monitor these important frequency properties with four counters, independent of the number of different events. Our algorithm samples longer and longer subwords of an infinite event sequence. We prove the almost-sure convergence of our algorithm by generalizing ergodic theory from increasing-length prefixes to increasing-length subwords of an infinite sequence. A similar algorithm could be used to learn a connected Markov chain of a given structure from observing its outputs, to arbitrary precision, for a given confidence. ' alternative_title: - LIPIcs article_number: '20' article_processing_charge: No author: - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Bernhard full_name: Kragl, Bernhard id: 320FC952-F248-11E8-B48F-1D18A9856A87 last_name: Kragl orcid: 0000-0001-7745-9117 citation: ama: 'Ferrere T, Henzinger TA, Kragl B. Monitoring event frequencies. In: 28th EACSL Annual Conference on Computer Science Logic. Vol 152. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CSL.2020.20' apa: 'Ferrere, T., Henzinger, T. A., & Kragl, B. (2020). Monitoring event frequencies. In 28th EACSL Annual Conference on Computer Science Logic (Vol. 152). Barcelona, Spain: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2020.20' chicago: Ferrere, Thomas, Thomas A Henzinger, and Bernhard Kragl. “Monitoring Event Frequencies.” In 28th EACSL Annual Conference on Computer Science Logic, Vol. 152. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CSL.2020.20. ieee: T. Ferrere, T. A. Henzinger, and B. Kragl, “Monitoring event frequencies,” in 28th EACSL Annual Conference on Computer Science Logic, Barcelona, Spain, 2020, vol. 152. ista: 'Ferrere T, Henzinger TA, Kragl B. 2020. Monitoring event frequencies. 28th EACSL Annual Conference on Computer Science Logic. CSL: Computer Science Logic, LIPIcs, vol. 152, 20.' mla: Ferrere, Thomas, et al. “Monitoring Event Frequencies.” 28th EACSL Annual Conference on Computer Science Logic, vol. 152, 20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CSL.2020.20. short: T. Ferrere, T.A. Henzinger, B. Kragl, in:, 28th EACSL Annual Conference on Computer Science Logic, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-01-16 location: Barcelona, Spain name: 'CSL: Computer Science Logic' start_date: 2020-01-13 date_created: 2020-01-21T11:22:21Z date_published: 2020-01-15T00:00:00Z date_updated: 2021-01-12T08:13:12Z day: '15' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CSL.2020.20 external_id: arxiv: - '1910.06097' file: - access_level: open_access checksum: b9a691d658d075c6369d3304d17fb818 content_type: application/pdf creator: bkragl date_created: 2020-01-21T11:21:04Z date_updated: 2020-07-14T12:47:56Z file_id: '7349' file_name: main.pdf file_size: 617206 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 152' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 28th EACSL Annual Conference on Computer Science Logic publication_identifier: isbn: - '9783959771320' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Monitoring event frequencies tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 152 year: '2020' ... --- _id: '7567' abstract: - lang: eng text: Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we mean that given an individual simplex we can recover the entire triangulation of Euclidean space by inductively reflecting in the faces of the simplex. In this paper we establish that the quality of the simplices in all Coxeter triangulations is O(1/d−−√) of the quality of regular simplex. We further investigate the Delaunay property for these triangulations. Moreover, we consider an extension of the Delaunay property, namely protection, which is a measure of non-degeneracy of a Delaunay triangulation. In particular, one family of Coxeter triangulations achieves the protection O(1/d2). We conjecture that both bounds are optimal for triangulations in Euclidean space. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Aruni full_name: Choudhary, Aruni last_name: Choudhary - first_name: Siargey full_name: Kachanovich, Siargey last_name: Kachanovich - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Choudhary A, Kachanovich S, Wintraecken M. Coxeter triangulations have good quality. Mathematics in Computer Science. 2020;14:141-176. doi:10.1007/s11786-020-00461-5 apa: Choudhary, A., Kachanovich, S., & Wintraecken, M. (2020). Coxeter triangulations have good quality. Mathematics in Computer Science. Springer Nature. https://doi.org/10.1007/s11786-020-00461-5 chicago: Choudhary, Aruni, Siargey Kachanovich, and Mathijs Wintraecken. “Coxeter Triangulations Have Good Quality.” Mathematics in Computer Science. Springer Nature, 2020. https://doi.org/10.1007/s11786-020-00461-5. ieee: A. Choudhary, S. Kachanovich, and M. Wintraecken, “Coxeter triangulations have good quality,” Mathematics in Computer Science, vol. 14. Springer Nature, pp. 141–176, 2020. ista: Choudhary A, Kachanovich S, Wintraecken M. 2020. Coxeter triangulations have good quality. Mathematics in Computer Science. 14, 141–176. mla: Choudhary, Aruni, et al. “Coxeter Triangulations Have Good Quality.” Mathematics in Computer Science, vol. 14, Springer Nature, 2020, pp. 141–76, doi:10.1007/s11786-020-00461-5. short: A. Choudhary, S. Kachanovich, M. Wintraecken, Mathematics in Computer Science 14 (2020) 141–176. date_created: 2020-03-05T13:30:18Z date_published: 2020-03-01T00:00:00Z date_updated: 2021-01-12T08:14:13Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s11786-020-00461-5 ec_funded: 1 file: - access_level: open_access checksum: 1d145f3ab50ccee735983cb89236e609 content_type: application/pdf creator: dernst date_created: 2020-11-20T10:18:02Z date_updated: 2020-11-20T10:18:02Z file_id: '8783' file_name: 2020_MathCompScie_Choudhary.pdf file_size: 872275 relation: main_file success: 1 file_date_updated: 2020-11-20T10:18:02Z has_accepted_license: '1' intvolume: ' 14' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 141-176 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Mathematics in Computer Science publication_identifier: eissn: - 1661-8289 issn: - 1661-8270 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Coxeter triangulations have good quality tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2020' ... --- _id: '7594' abstract: - lang: eng text: The concept of the entanglement between spin and orbital degrees of freedom plays a crucial role in our understanding of various phases and exotic ground states in a broad class of materials, including orbitally ordered materials and spin liquids. We investigate how the spin-orbital entanglement in a Mott insulator depends on the value of the spin-orbit coupling of the relativistic origin. To this end, we numerically diagonalize a one-dimensional spin-orbital model with Kugel-Khomskii exchange interactions between spins and orbitals on different sites supplemented by the on-site spin-orbit coupling. In the regime of small spin-orbit coupling with regard to the spin-orbital exchange, the ground state to a large extent resembles the one obtained in the limit of vanishing spin-orbit coupling. On the other hand, for large spin-orbit coupling the ground state can, depending on the model parameters, either still show negligible spin-orbital entanglement or evolve to a highly spin-orbitally-entangled phase with completely distinct properties that are described by an effective XXZ model. The presented results suggest that (i) the spin-orbital entanglement may be induced by large on-site spin-orbit coupling, as found in the 5d transition metal oxides, such as the iridates; (ii) for Mott insulators with weak spin-orbit coupling of Ising type, such as, e.g., the alkali hyperoxides, the effects of the spin-orbit coupling on the ground state can, in the first order of perturbation theory, be neglected. article_number: '013353' article_processing_charge: No article_type: original author: - first_name: Dorota full_name: Gotfryd, Dorota last_name: Gotfryd - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Jiri full_name: Chaloupka, Jiri last_name: Chaloupka - first_name: Andrzej M. full_name: Oles, Andrzej M. last_name: Oles - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld citation: ama: Gotfryd D, Paerschke E, Chaloupka J, Oles AM, Wohlfeld K. How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator. Physical Review Research. 2020;2(1). doi:10.1103/PhysRevResearch.2.013353 apa: Gotfryd, D., Paerschke, E., Chaloupka, J., Oles, A. M., & Wohlfeld, K. (2020). How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator. Physical Review Research. American Physical Society. https://doi.org/10.1103/PhysRevResearch.2.013353 chicago: Gotfryd, Dorota, Ekaterina Paerschke, Jiri Chaloupka, Andrzej M. Oles, and Krzysztof Wohlfeld. “How Spin-Orbital Entanglement Depends on the Spin-Orbit Coupling in a Mott Insulator.” Physical Review Research. American Physical Society, 2020. https://doi.org/10.1103/PhysRevResearch.2.013353. ieee: D. Gotfryd, E. Paerschke, J. Chaloupka, A. M. Oles, and K. Wohlfeld, “How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator,” Physical Review Research, vol. 2, no. 1. American Physical Society, 2020. ista: Gotfryd D, Paerschke E, Chaloupka J, Oles AM, Wohlfeld K. 2020. How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator. Physical Review Research. 2(1), 013353. mla: Gotfryd, Dorota, et al. “How Spin-Orbital Entanglement Depends on the Spin-Orbit Coupling in a Mott Insulator.” Physical Review Research, vol. 2, no. 1, 013353, American Physical Society, 2020, doi:10.1103/PhysRevResearch.2.013353. short: D. Gotfryd, E. Paerschke, J. Chaloupka, A.M. Oles, K. Wohlfeld, Physical Review Research 2 (2020). date_created: 2020-03-20T15:21:10Z date_published: 2020-03-20T00:00:00Z date_updated: 2021-01-12T08:14:23Z day: '20' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevResearch.2.013353 ec_funded: 1 file: - access_level: open_access checksum: 1be551fd5f5583635076017d7391ffdc content_type: application/pdf creator: dernst date_created: 2020-03-23T10:18:38Z date_updated: 2020-07-14T12:48:00Z file_id: '7610' file_name: 2020_PhysRevResearch_Gotfryd.pdf file_size: 1436735 relation: main_file file_date_updated: 2020-07-14T12:48:00Z has_accepted_license: '1' intvolume: ' 2' issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Research publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '7605' abstract: - lang: eng text: 'Union-Find (or Disjoint-Set Union) is one of the fundamental problems in computer science; it has been well-studied from both theoretical and practical perspectives in the sequential case. Recently, there has been mounting interest in analyzing this problem in the concurrent scenario, and several asymptotically-efficient algorithms have been proposed. Yet, to date, there is very little known about the practical performance of concurrent Union-Find. This work addresses this gap. We evaluate and analyze the performance of several concurrent Union-Find algorithms and optimization strategies across a wide range of platforms (Intel, AMD, and ARM) and workloads (social, random, and road networks, as well as integrations into more complex algorithms). We first observe that, due to the limited computational cost, the number of induced cache misses is the critical determining factor for the performance of existing algorithms. We introduce new techniques to reduce this cost by storing node priorities implicitly and by using plain reads and writes in a way that does not affect the correctness of the algorithms. Finally, we show that Union-Find implementations are an interesting application for Transactional Memory (TM): one of the fastest algorithm variants we discovered is a sequential one that uses coarse-grained locking with the lock elision optimization to reduce synchronization cost and increase scalability. ' alternative_title: - LIPIcs article_processing_charge: No author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Alexander full_name: Fedorov, Alexander last_name: Fedorov - first_name: Nikita full_name: Koval, Nikita id: 2F4DB10C-F248-11E8-B48F-1D18A9856A87 last_name: Koval citation: ama: 'Alistarh D-A, Fedorov A, Koval N. In search of the fastest concurrent union-find algorithm. In: 23rd International Conference on Principles of Distributed Systems. Vol 153. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020:15:1-15:16. doi:10.4230/LIPIcs.OPODIS.2019.15' apa: 'Alistarh, D.-A., Fedorov, A., & Koval, N. (2020). In search of the fastest concurrent union-find algorithm. In 23rd International Conference on Principles of Distributed Systems (Vol. 153, p. 15:1-15:16). Neuchatal, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.OPODIS.2019.15' chicago: Alistarh, Dan-Adrian, Alexander Fedorov, and Nikita Koval. “In Search of the Fastest Concurrent Union-Find Algorithm.” In 23rd International Conference on Principles of Distributed Systems, 153:15:1-15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.OPODIS.2019.15. ieee: D.-A. Alistarh, A. Fedorov, and N. Koval, “In search of the fastest concurrent union-find algorithm,” in 23rd International Conference on Principles of Distributed Systems, Neuchatal, Switzerland, 2020, vol. 153, p. 15:1-15:16. ista: 'Alistarh D-A, Fedorov A, Koval N. 2020. In search of the fastest concurrent union-find algorithm. 23rd International Conference on Principles of Distributed Systems. OPODIS: International Conference on Principles of Distributed Systems, LIPIcs, vol. 153, 15:1-15:16.' mla: Alistarh, Dan-Adrian, et al. “In Search of the Fastest Concurrent Union-Find Algorithm.” 23rd International Conference on Principles of Distributed Systems, vol. 153, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 15:1-15:16, doi:10.4230/LIPIcs.OPODIS.2019.15. short: D.-A. Alistarh, A. Fedorov, N. Koval, in:, 23rd International Conference on Principles of Distributed Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 15:1-15:16. conference: end_date: 2019-12-19 location: Neuchatal, Switzerland name: 'OPODIS: International Conference on Principles of Distributed Systems' start_date: 2019-12-17 date_created: 2020-03-22T23:00:46Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-02-23T13:12:12Z day: '01' ddc: - '000' department: - _id: DaAl doi: 10.4230/LIPIcs.OPODIS.2019.15 external_id: arxiv: - '1911.06347' file: - access_level: open_access checksum: d66f07ecb609d9f02433e39f80a447e9 content_type: application/pdf creator: dernst date_created: 2020-03-23T09:22:48Z date_updated: 2020-07-14T12:48:01Z file_id: '7609' file_name: 2019_LIPIcs_Alistarh.pdf file_size: 13074131 relation: main_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' intvolume: ' 153' language: - iso: eng license: https://creativecommons.org/licenses/by/3.0/ month: '02' oa: 1 oa_version: Published Version page: 15:1-15:16 publication: 23rd International Conference on Principles of Distributed Systems publication_identifier: isbn: - '9783959771337' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: In search of the fastest concurrent union-find algorithm tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 153 year: '2020' ... --- _id: '7601' abstract: - lang: eng text: Plasmodesmata (PD) are crucial structures for intercellular communication in multicellular plants with remorins being their crucial plant-specific structural and functional constituents. The PD biogenesis is an intriguing but poorly understood process. By expressing an Arabidopsis remorin protein in mammalian cells, we have reconstituted a PD-like filamentous structure, termed remorin filament (RF), connecting neighboring cells physically and physiologically. Notably, RFs are capable of transporting macromolecules intercellularly, in a way similar to plant PD. With further super-resolution microscopic analysis and biochemical characterization, we found that RFs are also composed of actin filaments, forming the core skeleton structure, aligned with the remorin protein. This unique heterologous filamentous structure might explain the molecular mechanism for remorin function as well as PD construction. Furthermore, remorin protein exhibits a specific distribution manner in the plasma membrane in mammalian cells, representing a lipid nanodomain, depending on its lipid modification status. Our studies not only provide crucial insights into the mechanism of PD biogenesis, but also uncovers unsuspected fundamental mechanistic and evolutionary links between intercellular communication systems of plants and animals. article_processing_charge: No author: - first_name: Zhuang full_name: Wei, Zhuang last_name: Wei - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Tao full_name: Liu, Tao last_name: Liu - first_name: Yuan full_name: Wu, Yuan last_name: Wu - first_name: Ji-Gang full_name: Lei, Ji-Gang last_name: Lei - first_name: ZhengJun full_name: Chen, ZhengJun last_name: Chen - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Hong-Wei full_name: Xue, Hong-Wei last_name: Xue - first_name: Kan full_name: Liao, Kan last_name: Liao citation: ama: Wei Z, Tan S, Liu T, et al. Plasmodesmata-like intercellular connections by plant remorin in animal cells. bioRxiv. 2020. doi:10.1101/791137 apa: Wei, Z., Tan, S., Liu, T., Wu, Y., Lei, J.-G., Chen, Z., … Liao, K. (2020). Plasmodesmata-like intercellular connections by plant remorin in animal cells. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/791137 chicago: Wei, Zhuang, Shutang Tan, Tao Liu, Yuan Wu, Ji-Gang Lei, ZhengJun Chen, Jiří Friml, Hong-Wei Xue, and Kan Liao. “Plasmodesmata-like Intercellular Connections by Plant Remorin in Animal Cells.” BioRxiv. Cold Spring Harbor Laboratory, 2020. https://doi.org/10.1101/791137. ieee: Z. Wei et al., “Plasmodesmata-like intercellular connections by plant remorin in animal cells,” bioRxiv. Cold Spring Harbor Laboratory, 2020. ista: Wei Z, Tan S, Liu T, Wu Y, Lei J-G, Chen Z, Friml J, Xue H-W, Liao K. 2020. Plasmodesmata-like intercellular connections by plant remorin in animal cells. bioRxiv, 10.1101/791137. mla: Wei, Zhuang, et al. “Plasmodesmata-like Intercellular Connections by Plant Remorin in Animal Cells.” BioRxiv, Cold Spring Harbor Laboratory, 2020, doi:10.1101/791137. short: Z. Wei, S. Tan, T. Liu, Y. Wu, J.-G. Lei, Z. Chen, J. Friml, H.-W. Xue, K. Liao, BioRxiv (2020). date_created: 2020-03-21T16:34:42Z date_published: 2020-02-19T00:00:00Z date_updated: 2021-01-12T08:14:26Z day: '19' department: - _id: JiFr doi: 10.1101/791137 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/791137 month: '02' oa: 1 oa_version: Preprint page: '22' publication: bioRxiv publication_status: published publisher: Cold Spring Harbor Laboratory status: public title: Plasmodesmata-like intercellular connections by plant remorin in animal cells type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7651' abstract: - lang: eng text: The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods. article_number: '20190721' article_processing_charge: No article_type: original author: - first_name: J. full_name: Larsson, J. last_name: Larsson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: S. full_name: Bengmark, S. last_name: Bengmark - first_name: T. full_name: Lundh, T. last_name: Lundh - first_name: R. K. full_name: Butlin, R. K. last_name: Butlin citation: ama: Larsson J, Westram AM, Bengmark S, Lundh T, Butlin RK. A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. 2020;17(163). doi:10.1098/rsif.2019.0721 apa: Larsson, J., Westram, A. M., Bengmark, S., Lundh, T., & Butlin, R. K. (2020). A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. The Royal Society. https://doi.org/10.1098/rsif.2019.0721 chicago: Larsson, J., Anja M Westram, S. Bengmark, T. Lundh, and R. K. Butlin. “A Developmentally Descriptive Method for Quantifying Shape in Gastropod Shells.” Journal of The Royal Society Interface. The Royal Society, 2020. https://doi.org/10.1098/rsif.2019.0721. ieee: J. Larsson, A. M. Westram, S. Bengmark, T. Lundh, and R. K. Butlin, “A developmentally descriptive method for quantifying shape in gastropod shells,” Journal of The Royal Society Interface, vol. 17, no. 163. The Royal Society, 2020. ista: Larsson J, Westram AM, Bengmark S, Lundh T, Butlin RK. 2020. A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. 17(163), 20190721. mla: Larsson, J., et al. “A Developmentally Descriptive Method for Quantifying Shape in Gastropod Shells.” Journal of The Royal Society Interface, vol. 17, no. 163, 20190721, The Royal Society, 2020, doi:10.1098/rsif.2019.0721. short: J. Larsson, A.M. Westram, S. Bengmark, T. Lundh, R.K. Butlin, Journal of The Royal Society Interface 17 (2020). date_created: 2020-04-08T15:19:17Z date_published: 2020-02-01T00:00:00Z date_updated: 2021-01-12T08:14:41Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1098/rsif.2019.0721 file: - access_level: open_access checksum: 4eb102304402f5c56432516b84df86d6 content_type: application/pdf creator: dernst date_created: 2020-04-14T12:31:16Z date_updated: 2020-07-14T12:48:01Z file_id: '7660' file_name: 2020_JournRoyalSociety_Larsson.pdf file_size: 1556190 relation: main_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' intvolume: ' 17' issue: '163' language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Journal of The Royal Society Interface publication_identifier: eissn: - 1742-5662 issn: - 1742-5689 publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: 1 status: public title: A developmentally descriptive method for quantifying shape in gastropod shells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2020' ... --- _id: '7803' abstract: - lang: eng text: "We settle the complexity of the (Δ+1)-coloring and (Δ+1)-list coloring problems in the CONGESTED CLIQUE model by presenting a simple deterministic algorithm for both problems running in a constant number of rounds. This matches the complexity of the recent breakthrough randomized constant-round (Δ+1)-list coloring algorithm due to Chang et al. (PODC'19), and significantly improves upon the state-of-the-art O(logΔ)-round deterministic (Δ+1)-coloring bound of Parter (ICALP'18).\r\nA remarkable property of our algorithm is its simplicity. Whereas the state-of-the-art randomized algorithms for this problem are based on the quite involved local coloring algorithm of Chang et al. (STOC'18), our algorithm can be described in just a few lines. At a high level, it applies a careful derandomization of a recursive procedure which partitions the nodes and their respective palettes into separate bins. We show that after O(1) recursion steps, the remaining uncolored subgraph within each bin has linear size, and thus can be solved locally by collecting it to a single node. This algorithm can also be implemented in the Massively Parallel Computation (MPC) model provided that each machine has linear (in n, the number of nodes in the input graph) space.\r\nWe also show an extension of our algorithm to the MPC regime in which machines have sublinear space: we present the first deterministic (Δ+1)-list coloring algorithm designed for sublinear-space MPC, which runs in O(logΔ+loglogn) rounds." article_processing_charge: No author: - first_name: Artur full_name: Czumaj, Artur last_name: Czumaj orcid: 0000-0002-5646-9524 - first_name: Peter full_name: Davies, Peter id: 11396234-BB50-11E9-B24C-90FCE5697425 last_name: Davies orcid: 0000-0002-5646-9524 - first_name: Merav full_name: Parter, Merav last_name: Parter citation: ama: 'Czumaj A, Davies P, Parter M. Simple, deterministic, constant-round coloring in the congested clique. In: Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing. Association for Computing Machinery; 2020:309-318. doi:10.1145/3382734.3405751' apa: 'Czumaj, A., Davies, P., & Parter, M. (2020). Simple, deterministic, constant-round coloring in the congested clique. In Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing (pp. 309–318). Salerno, Italy: Association for Computing Machinery. https://doi.org/10.1145/3382734.3405751' chicago: Czumaj, Artur, Peter Davies, and Merav Parter. “Simple, Deterministic, Constant-Round Coloring in the Congested Clique.” In Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing, 309–18. Association for Computing Machinery, 2020. https://doi.org/10.1145/3382734.3405751. ieee: A. Czumaj, P. Davies, and M. Parter, “Simple, deterministic, constant-round coloring in the congested clique,” in Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing, Salerno, Italy, 2020, pp. 309–318. ista: 'Czumaj A, Davies P, Parter M. 2020. Simple, deterministic, constant-round coloring in the congested clique. Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing. PODC: Symposium on Principles of Distributed Computing, 309–318.' mla: Czumaj, Artur, et al. “Simple, Deterministic, Constant-Round Coloring in the Congested Clique.” Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2020, pp. 309–18, doi:10.1145/3382734.3405751. short: A. Czumaj, P. Davies, M. Parter, in:, Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2020, pp. 309–318. conference: end_date: 2020-08-07 location: Salerno, Italy name: 'PODC: Symposium on Principles of Distributed Computing' start_date: 2020-08-03 date_created: 2020-05-06T09:02:14Z date_published: 2020-07-01T00:00:00Z date_updated: 2021-01-12T08:15:37Z day: '01' ddc: - '000' department: - _id: DaAl doi: 10.1145/3382734.3405751 ec_funded: 1 external_id: arxiv: - '2009.06043' file: - access_level: open_access checksum: 46fe4fc58a64eb04068115573f631d4c content_type: application/pdf creator: pdavies date_created: 2020-10-08T08:17:36Z date_updated: 2020-10-08T08:17:36Z file_id: '8624' file_name: ColoringArxiv.pdf file_size: 520051 relation: main_file success: 1 file_date_updated: 2020-10-08T08:17:36Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 309-318 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Simple, deterministic, constant-round coloring in the congested clique type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7806' abstract: - lang: eng text: "We consider the following decision problem EMBEDk→d in computational topology (where k ≤ d are fixed positive integers): Given a finite simplicial complex K of dimension k, does there exist a (piecewise-linear) embedding of K into ℝd?\r\nThe special case EMBED1→2 is graph planarity, which is decidable in linear time, as shown by Hopcroft and Tarjan. In higher dimensions, EMBED2→3 and EMBED3→3 are known to be decidable (as well as NP-hard), and recent results of Čadek et al. in computational homotopy theory, in combination with the classical Haefliger–Weber theorem in geometric topology, imply that EMBEDk→d can be solved in polynomial time for any fixed pair (k, d) of dimensions in the so-called metastable range .\r\nHere, by contrast, we prove that EMBEDk→d is algorithmically undecidable for almost all pairs of dimensions outside the metastable range, namely for . This almost completely resolves the decidability vs. undecidability of EMBEDk→d in higher dimensions and establishes a sharp dichotomy between polynomial-time solvability and undecidability.\r\nOur result complements (and in a wide range of dimensions strengthens) earlier results of Matoušek, Tancer, and the second author, who showed that EMBEDk→d is undecidable for 4 ≤ k ϵ {d – 1, d}, and NP-hard for all remaining pairs (k, d) outside the metastable range and satisfying d ≥ 4." article_processing_charge: No author: - first_name: Marek full_name: Filakovský, Marek id: 3E8AF77E-F248-11E8-B48F-1D18A9856A87 last_name: Filakovský - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 - first_name: Stephan Y full_name: Zhechev, Stephan Y id: 3AA52972-F248-11E8-B48F-1D18A9856A87 last_name: Zhechev citation: ama: 'Filakovský M, Wagner U, Zhechev SY. Embeddability of simplicial complexes is undecidable. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms. Vol 2020-January. SIAM; 2020:767-785. doi:10.1137/1.9781611975994.47' apa: 'Filakovský, M., Wagner, U., & Zhechev, S. Y. (2020). Embeddability of simplicial complexes is undecidable. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (Vol. 2020–January, pp. 767–785). Salt Lake City, UT, United States: SIAM. https://doi.org/10.1137/1.9781611975994.47' chicago: Filakovský, Marek, Uli Wagner, and Stephan Y Zhechev. “Embeddability of Simplicial Complexes Is Undecidable.” In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 2020–January:767–85. SIAM, 2020. https://doi.org/10.1137/1.9781611975994.47. ieee: M. Filakovský, U. Wagner, and S. Y. Zhechev, “Embeddability of simplicial complexes is undecidable,” in Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, Salt Lake City, UT, United States, 2020, vol. 2020–January, pp. 767–785. ista: 'Filakovský M, Wagner U, Zhechev SY. 2020. Embeddability of simplicial complexes is undecidable. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms vol. 2020–January, 767–785.' mla: Filakovský, Marek, et al. “Embeddability of Simplicial Complexes Is Undecidable.” Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 2020–January, SIAM, 2020, pp. 767–85, doi:10.1137/1.9781611975994.47. short: M. Filakovský, U. Wagner, S.Y. Zhechev, in:, Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2020, pp. 767–785. conference: end_date: 2020-01-08 location: Salt Lake City, UT, United States name: 'SODA: Symposium on Discrete Algorithms' start_date: 2020-01-05 date_created: 2020-05-10T22:00:48Z date_published: 2020-01-01T00:00:00Z date_updated: 2021-01-12T08:15:38Z day: '01' department: - _id: UlWa doi: 10.1137/1.9781611975994.47 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1137/1.9781611975994.47 month: '01' oa: 1 oa_version: Published Version page: 767-785 project: - _id: 26611F5C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31312 name: Algorithms for Embeddings and Homotopy Theory publication: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms publication_identifier: isbn: - '9781611975994' publication_status: published publisher: SIAM quality_controlled: '1' scopus_import: 1 status: public title: Embeddability of simplicial complexes is undecidable type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2020-January year: '2020' ... --- _id: '7814' abstract: - lang: eng text: 'Scientific research is to date largely restricted to wealthy laboratories in developed nations due to the necessity of complex and expensive equipment. This inequality limits the capacity of science to be used as a diplomatic channel. Maker movements use open-source technologies including additive manufacturing (3D printing) and laser cutting, together with low-cost computers for developing novel products. This movement is setting the groundwork for a revolution, allowing scientific equipment to be sourced at a fraction of the cost and has the potential to increase the availability of equipment for scientists around the world. Science education is increasingly recognized as another channel for science diplomacy. In this perspective, we introduce the idea that the Maker movement and open-source technologies have the potential to revolutionize science, technology, engineering and mathematics (STEM) education worldwide. We present an open-source STEM didactic tool called SCOPES (Sparking Curiosity through Open-source Platforms in Education and Science). SCOPES is self-contained, independent of local resources, and cost-effective. SCOPES can be adapted to communicate complex subjects from genetics to neurobiology, perform real-world biological experiments and explore digitized scientific samples. We envision such platforms will enhance science diplomacy by providing a means for scientists to share their findings with classrooms and for educators to incorporate didactic concepts into STEM lessons. By providing students the opportunity to design, perform, and share scientific experiments, students also experience firsthand the benefits of a multinational scientific community. We provide instructions on how to build and use SCOPES on our webpage: http://scopeseducation.org.' acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: PreCl - _id: EM-Fac article_number: '48' article_processing_charge: No article_type: original author: - first_name: Robert J full_name: Beattie, Robert J id: 2E26DF60-F248-11E8-B48F-1D18A9856A87 last_name: Beattie orcid: 0000-0002-8483-8753 - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler citation: ama: 'Beattie RJ, Hippenmeyer S, Pauler F. SCOPES: Sparking curiosity through Open-Source platforms in education and science. Frontiers in Education. 2020;5. doi:10.3389/feduc.2020.00048' apa: 'Beattie, R. J., Hippenmeyer, S., & Pauler, F. (2020). SCOPES: Sparking curiosity through Open-Source platforms in education and science. Frontiers in Education. Frontiers Media. https://doi.org/10.3389/feduc.2020.00048' chicago: 'Beattie, Robert J, Simon Hippenmeyer, and Florian Pauler. “SCOPES: Sparking Curiosity through Open-Source Platforms in Education and Science.” Frontiers in Education. Frontiers Media, 2020. https://doi.org/10.3389/feduc.2020.00048.' ieee: 'R. J. Beattie, S. Hippenmeyer, and F. Pauler, “SCOPES: Sparking curiosity through Open-Source platforms in education and science,” Frontiers in Education, vol. 5. Frontiers Media, 2020.' ista: 'Beattie RJ, Hippenmeyer S, Pauler F. 2020. SCOPES: Sparking curiosity through Open-Source platforms in education and science. Frontiers in Education. 5, 48.' mla: 'Beattie, Robert J., et al. “SCOPES: Sparking Curiosity through Open-Source Platforms in Education and Science.” Frontiers in Education, vol. 5, 48, Frontiers Media, 2020, doi:10.3389/feduc.2020.00048.' short: R.J. Beattie, S. Hippenmeyer, F. Pauler, Frontiers in Education 5 (2020). date_created: 2020-05-11T08:18:48Z date_published: 2020-05-08T00:00:00Z date_updated: 2021-01-12T08:15:42Z day: '08' ddc: - '570' department: - _id: SiHi doi: 10.3389/feduc.2020.00048 ec_funded: 1 file: - access_level: open_access checksum: a24ec24e38d843341ae620ec76c53688 content_type: application/pdf creator: dernst date_created: 2020-05-11T11:34:08Z date_updated: 2020-07-14T12:48:03Z file_id: '7818' file_name: 2020_FrontiersEduc_Beattie.pdf file_size: 1402146 relation: main_file file_date_updated: 2020-07-14T12:48:03Z has_accepted_license: '1' intvolume: ' 5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 264E56E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02416 name: Molecular Mechanisms Regulating Gliogenesis in the Cerebral Cortex - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Frontiers in Education publication_identifier: issn: - 2504-284X publication_status: published publisher: Frontiers Media quality_controlled: '1' status: public title: 'SCOPES: Sparking curiosity through Open-Source platforms in education and science' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2020' ... --- _id: '7866' abstract: - lang: eng text: In this paper, we establish convergence to equilibrium for a drift–diffusion–recombination system modelling the charge transport within certain semiconductor devices. More precisely, we consider a two-level system for electrons and holes which is augmented by an intermediate energy level for electrons in so-called trapped states. The recombination dynamics use the mass action principle by taking into account this additional trap level. The main part of the paper is concerned with the derivation of an entropy–entropy production inequality, which entails exponential convergence to the equilibrium via the so-called entropy method. The novelty of our approach lies in the fact that the entropy method is applied uniformly in a fast-reaction parameter which governs the lifetime of electrons on the trap level. Thus, the resulting decay estimate for the densities of electrons and holes extends to the corresponding quasi-steady-state approximation. acknowledgement: Open access funding provided by Austrian Science Fund (FWF). The second author has been supported by the International Research Training Group IGDK 1754 “Optimization and Numerical Analysis for Partial Differential Equations with Nonsmooth Structures”, funded by the German Research Council (DFG) and the Austrian Science Fund (FWF) under grant number [W 1244-N18]. article_processing_charge: No article_type: original author: - first_name: Klemens full_name: Fellner, Klemens last_name: Fellner - first_name: Michael full_name: Kniely, Michael id: 2CA2C08C-F248-11E8-B48F-1D18A9856A87 last_name: Kniely orcid: 0000-0001-5645-4333 citation: ama: Fellner K, Kniely M. Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model. Journal of Elliptic and Parabolic Equations. 2020;6:529-598. doi:10.1007/s41808-020-00068-8 apa: Fellner, K., & Kniely, M. (2020). Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model. Journal of Elliptic and Parabolic Equations. Springer Nature. https://doi.org/10.1007/s41808-020-00068-8 chicago: Fellner, Klemens, and Michael Kniely. “Uniform Convergence to Equilibrium for a Family of Drift–Diffusion Models with Trap-Assisted Recombination and the Limiting Shockley–Read–Hall Model.” Journal of Elliptic and Parabolic Equations. Springer Nature, 2020. https://doi.org/10.1007/s41808-020-00068-8. ieee: K. Fellner and M. Kniely, “Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model,” Journal of Elliptic and Parabolic Equations, vol. 6. Springer Nature, pp. 529–598, 2020. ista: Fellner K, Kniely M. 2020. Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model. Journal of Elliptic and Parabolic Equations. 6, 529–598. mla: Fellner, Klemens, and Michael Kniely. “Uniform Convergence to Equilibrium for a Family of Drift–Diffusion Models with Trap-Assisted Recombination and the Limiting Shockley–Read–Hall Model.” Journal of Elliptic and Parabolic Equations, vol. 6, Springer Nature, 2020, pp. 529–98, doi:10.1007/s41808-020-00068-8. short: K. Fellner, M. Kniely, Journal of Elliptic and Parabolic Equations 6 (2020) 529–598. date_created: 2020-05-17T22:00:45Z date_published: 2020-12-01T00:00:00Z date_updated: 2021-01-12T08:15:47Z day: '01' ddc: - '510' department: - _id: JuFi doi: 10.1007/s41808-020-00068-8 file: - access_level: open_access checksum: 6bc6832caacddceee1471291e93dcf1d content_type: application/pdf creator: dernst date_created: 2020-11-25T08:59:59Z date_updated: 2020-11-25T08:59:59Z file_id: '8802' file_name: 2020_JourEllipticParabEquat_Fellner.pdf file_size: 8408694 relation: main_file success: 1 file_date_updated: 2020-11-25T08:59:59Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 529-598 project: - _id: 3AC91DDA-15DF-11EA-824D-93A3E7B544D1 call_identifier: FWF name: FWF Open Access Fund publication: Journal of Elliptic and Parabolic Equations publication_identifier: eissn: - '22969039' issn: - '22969020' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2020' ... --- _id: '7919' abstract: - lang: eng text: We explore the time evolution of two impurities in a trapped one-dimensional Bose gas that follows a change of the boson-impurity interaction. We study the induced impurity-impurity interactions and their effect on the quench dynamics. In particular, we report on the size of the impurity cloud, the impurity-impurity entanglement, and the impurity-impurity correlation function. The presented numerical simulations are based upon the variational multilayer multiconfiguration time-dependent Hartree method for bosons. To analyze and quantify induced impurity-impurity correlations, we employ an effective two-body Hamiltonian with a contact interaction. We show that the effective model consistent with the mean-field attraction of two heavy impurities explains qualitatively our results for weak interactions. Our findings suggest that the quench dynamics in cold-atom systems can be a tool for studying impurity-impurity correlations. article_number: '023154 ' article_processing_charge: No article_type: original author: - first_name: S. I. full_name: Mistakidis, S. I. last_name: Mistakidis - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: P. full_name: Schmelcher, P. last_name: Schmelcher citation: ama: Mistakidis SI, Volosniev A, Schmelcher P. Induced correlations between impurities in a one-dimensional quenched Bose gas. Physical Review Research. 2020;2. doi:10.1103/physrevresearch.2.023154 apa: Mistakidis, S. I., Volosniev, A., & Schmelcher, P. (2020). Induced correlations between impurities in a one-dimensional quenched Bose gas. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.2.023154 chicago: Mistakidis, S. I., Artem Volosniev, and P. Schmelcher. “Induced Correlations between Impurities in a One-Dimensional Quenched Bose Gas.” Physical Review Research. American Physical Society, 2020. https://doi.org/10.1103/physrevresearch.2.023154. ieee: S. I. Mistakidis, A. Volosniev, and P. Schmelcher, “Induced correlations between impurities in a one-dimensional quenched Bose gas,” Physical Review Research, vol. 2. American Physical Society, 2020. ista: Mistakidis SI, Volosniev A, Schmelcher P. 2020. Induced correlations between impurities in a one-dimensional quenched Bose gas. Physical Review Research. 2, 023154. mla: Mistakidis, S. I., et al. “Induced Correlations between Impurities in a One-Dimensional Quenched Bose Gas.” Physical Review Research, vol. 2, 023154, American Physical Society, 2020, doi:10.1103/physrevresearch.2.023154. short: S.I. Mistakidis, A. Volosniev, P. Schmelcher, Physical Review Research 2 (2020). date_created: 2020-06-03T11:30:10Z date_published: 2020-05-11T00:00:00Z date_updated: 2023-02-23T13:20:16Z day: '11' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.2.023154 ec_funded: 1 file: - access_level: open_access checksum: e1c362fe094d6b246b3cd4a49722e78b content_type: application/pdf creator: dernst date_created: 2020-06-04T13:51:59Z date_updated: 2020-07-14T12:48:05Z file_id: '7926' file_name: 2020_PhysRevResearch_Mistakidis.pdf file_size: 1741098 relation: main_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' intvolume: ' 2' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Induced correlations between impurities in a one-dimensional quenched Bose gas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '7991' abstract: - lang: eng text: 'We define and study a discrete process that generalizes the convex-layer decomposition of a planar point set. Our process, which we call homotopic curve shortening (HCS), starts with a closed curve (which might self-intersect) in the presence of a set P⊂ ℝ² of point obstacles, and evolves in discrete steps, where each step consists of (1) taking shortcuts around the obstacles, and (2) reducing the curve to its shortest homotopic equivalent. We find experimentally that, if the initial curve is held fixed and P is chosen to be either a very fine regular grid or a uniformly random point set, then HCS behaves at the limit like the affine curve-shortening flow (ACSF). This connection between HCS and ACSF generalizes the link between "grid peeling" and the ACSF observed by Eppstein et al. (2017), which applied only to convex curves, and which was studied only for regular grids. We prove that HCS satisfies some properties analogous to those of ACSF: HCS is invariant under affine transformations, preserves convexity, and does not increase the total absolute curvature. Furthermore, the number of self-intersections of a curve, or intersections between two curves (appropriately defined), does not increase. Finally, if the initial curve is simple, then the number of inflection points (appropriately defined) does not increase.' alternative_title: - LIPIcs article_number: 12:1 - 12:15 article_processing_charge: No author: - first_name: Sergey full_name: Avvakumov, Sergey id: 3827DAC8-F248-11E8-B48F-1D18A9856A87 last_name: Avvakumov - first_name: Gabriel full_name: Nivasch, Gabriel last_name: Nivasch citation: ama: 'Avvakumov S, Nivasch G. Homotopic curve shortening and the affine curve-shortening flow. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.12' apa: 'Avvakumov, S., & Nivasch, G. (2020). Homotopic curve shortening and the affine curve-shortening flow. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.12' chicago: Avvakumov, Sergey, and Gabriel Nivasch. “Homotopic Curve Shortening and the Affine Curve-Shortening Flow.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.12. ieee: S. Avvakumov and G. Nivasch, “Homotopic curve shortening and the affine curve-shortening flow,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Avvakumov S, Nivasch G. 2020. Homotopic curve shortening and the affine curve-shortening flow. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 12:1-12:15.' mla: Avvakumov, Sergey, and Gabriel Nivasch. “Homotopic Curve Shortening and the Affine Curve-Shortening Flow.” 36th International Symposium on Computational Geometry, vol. 164, 12:1-12:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.12. short: S. Avvakumov, G. Nivasch, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:19Z date_published: 2020-06-01T00:00:00Z date_updated: 2021-01-12T08:16:23Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.12 external_id: arxiv: - '1909.00263' file: - access_level: open_access checksum: 6872df6549142f709fb6354a1b2f2c06 content_type: application/pdf creator: dernst date_created: 2020-06-23T11:13:49Z date_updated: 2020-07-14T12:48:06Z file_id: '8007' file_name: 2020_LIPIcsSoCG_Avvakumov.pdf file_size: 575896 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 26611F5C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31312 name: Algorithms for Embeddings and Homotopy Theory publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Homotopic curve shortening and the affine curve-shortening flow tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '7989' abstract: - lang: eng text: 'We prove general topological Radon-type theorems for sets in ℝ^d, smooth real manifolds or finite dimensional simplicial complexes. Combined with a recent result of Holmsen and Lee, it gives fractional Helly theorem, and consequently the existence of weak ε-nets as well as a (p,q)-theorem. More precisely: Let X be either ℝ^d, smooth real d-manifold, or a finite d-dimensional simplicial complex. Then if F is a finite, intersection-closed family of sets in X such that the ith reduced Betti number (with ℤ₂ coefficients) of any set in F is at most b for every non-negative integer i less or equal to k, then the Radon number of F is bounded in terms of b and X. Here k is the smallest integer larger or equal to d/2 - 1 if X = ℝ^d; k=d-1 if X is a smooth real d-manifold and not a surface, k=0 if X is a surface and k=d if X is a d-dimensional simplicial complex. Using the recent result of the author and Kalai, we manage to prove the following optimal bound on fractional Helly number for families of open sets in a surface: Let F be a finite family of open sets in a surface S such that the intersection of any subfamily of F is either empty, or path-connected. Then the fractional Helly number of F is at most three. This also settles a conjecture of Holmsen, Kim, and Lee about an existence of a (p,q)-theorem for open subsets of a surface.' alternative_title: - LIPIcs article_number: 61:1-61:13 article_processing_charge: No author: - first_name: Zuzana full_name: Patakova, Zuzana id: 48B57058-F248-11E8-B48F-1D18A9856A87 last_name: Patakova orcid: 0000-0002-3975-1683 citation: ama: 'Patakova Z. Bounding radon number via Betti numbers. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.61' apa: 'Patakova, Z. (2020). Bounding radon number via Betti numbers. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.61' chicago: Patakova, Zuzana. “Bounding Radon Number via Betti Numbers.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.61. ieee: Z. Patakova, “Bounding radon number via Betti numbers,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Patakova Z. 2020. Bounding radon number via Betti numbers. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 61:1-61:13.' mla: Patakova, Zuzana. “Bounding Radon Number via Betti Numbers.” 36th International Symposium on Computational Geometry, vol. 164, 61:1-61:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.61. short: Z. Patakova, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:18Z date_published: 2020-06-01T00:00:00Z date_updated: 2021-01-12T08:16:22Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.61 external_id: arxiv: - '1908.01677' file: - access_level: open_access checksum: d0996ca5f6eb32ce955ce782b4f2afbe content_type: application/pdf creator: dernst date_created: 2020-06-23T06:56:23Z date_updated: 2020-07-14T12:48:06Z file_id: '8005' file_name: 2020_LIPIcsSoCG_Patakova_61.pdf file_size: 645421 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Bounding radon number via Betti numbers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '7992' abstract: - lang: eng text: 'Let K be a convex body in ℝⁿ (i.e., a compact convex set with nonempty interior). Given a point p in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of K ∩ h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p through which there are at least n+1 distinct barycentric hyperplanes. Two years later, this was seemingly resolved affirmatively by showing that this is the case if p=p₀ is the point of maximal depth in K. However, while working on a related question, we noticed that one of the auxiliary claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s question. It follows from known results that for n ≥ 2, there are always at least three distinct barycentric cuts through the point p₀ ∈ K of maximal depth. Using tools related to Morse theory we are able to improve this bound: four distinct barycentric cuts through p₀ are guaranteed if n ≥ 3.' alternative_title: - LIPIcs article_number: 62:1 - 62:16 article_processing_charge: No author: - first_name: Zuzana full_name: Patakova, Zuzana id: 48B57058-F248-11E8-B48F-1D18A9856A87 last_name: Patakova orcid: 0000-0002-3975-1683 - first_name: Martin full_name: Tancer, Martin id: 38AC689C-F248-11E8-B48F-1D18A9856A87 last_name: Tancer orcid: 0000-0002-1191-6714 - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 citation: ama: 'Patakova Z, Tancer M, Wagner U. Barycentric cuts through a convex body. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.62' apa: 'Patakova, Z., Tancer, M., & Wagner, U. (2020). Barycentric cuts through a convex body. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.62' chicago: Patakova, Zuzana, Martin Tancer, and Uli Wagner. “Barycentric Cuts through a Convex Body.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.62. ieee: Z. Patakova, M. Tancer, and U. Wagner, “Barycentric cuts through a convex body,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Patakova Z, Tancer M, Wagner U. 2020. Barycentric cuts through a convex body. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 62:1-62:16.' mla: Patakova, Zuzana, et al. “Barycentric Cuts through a Convex Body.” 36th International Symposium on Computational Geometry, vol. 164, 62:1-62:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.62. short: Z. Patakova, M. Tancer, U. Wagner, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:20Z date_published: 2020-06-01T00:00:00Z date_updated: 2021-01-12T08:16:23Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.62 external_id: arxiv: - '2003.13536' file: - access_level: open_access checksum: ce1c9194139a664fb59d1efdfc88eaae content_type: application/pdf creator: dernst date_created: 2020-06-23T06:45:52Z date_updated: 2020-07-14T12:48:06Z file_id: '8004' file_name: 2020_LIPIcsSoCG_Patakova.pdf file_size: 750318 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Barycentric cuts through a convex body tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '7994' abstract: - lang: eng text: In the recent study of crossing numbers, drawings of graphs that can be extended to an arrangement of pseudolines (pseudolinear drawings) have played an important role as they are a natural combinatorial extension of rectilinear (or straight-line) drawings. A characterization of the pseudolinear drawings of K_n was found recently. We extend this characterization to all graphs, by describing the set of minimal forbidden subdrawings for pseudolinear drawings. Our characterization also leads to a polynomial-time algorithm to recognize pseudolinear drawings and construct the pseudolines when it is possible. alternative_title: - LIPIcs article_number: 9:1 - 9:14 article_processing_charge: No author: - first_name: Alan M full_name: Arroyo Guevara, Alan M id: 3207FDC6-F248-11E8-B48F-1D18A9856A87 last_name: Arroyo Guevara orcid: 0000-0003-2401-8670 - first_name: Julien full_name: Bensmail, Julien last_name: Bensmail - first_name: R. full_name: Bruce Richter, R. last_name: Bruce Richter citation: ama: 'Arroyo Guevara AM, Bensmail J, Bruce Richter R. Extending drawings of graphs to arrangements of pseudolines. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.9' apa: 'Arroyo Guevara, A. M., Bensmail, J., & Bruce Richter, R. (2020). Extending drawings of graphs to arrangements of pseudolines. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.9' chicago: Arroyo Guevara, Alan M, Julien Bensmail, and R. Bruce Richter. “Extending Drawings of Graphs to Arrangements of Pseudolines.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.9. ieee: A. M. Arroyo Guevara, J. Bensmail, and R. Bruce Richter, “Extending drawings of graphs to arrangements of pseudolines,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Arroyo Guevara AM, Bensmail J, Bruce Richter R. 2020. Extending drawings of graphs to arrangements of pseudolines. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 9:1-9:14.' mla: Arroyo Guevara, Alan M., et al. “Extending Drawings of Graphs to Arrangements of Pseudolines.” 36th International Symposium on Computational Geometry, vol. 164, 9:1-9:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.9. short: A.M. Arroyo Guevara, J. Bensmail, R. Bruce Richter, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:21Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-02-23T13:22:12Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.9 ec_funded: 1 external_id: arxiv: - '1804.09317' file: - access_level: open_access checksum: 93571b76cf97d5b7c8aabaeaa694dd7e content_type: application/pdf creator: dernst date_created: 2020-06-23T11:06:23Z date_updated: 2020-07-14T12:48:06Z file_id: '8006' file_name: 2020_LIPIcsSoCG_Arroyo.pdf file_size: 592661 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Extending drawings of graphs to arrangements of pseudolines tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '8011' abstract: - lang: eng text: 'Relaxation to a thermal state is the inevitable fate of nonequilibrium interacting quantum systems without special conservation laws. While thermalization in one-dimensional systems can often be suppressed by integrability mechanisms, in two spatial dimensions thermalization is expected to be far more effective due to the increased phase space. In this work we propose a general framework for escaping or delaying the emergence of the thermal state in two-dimensional arrays of Rydberg atoms via the mechanism of quantum scars, i.e., initial states that fail to thermalize. The suppression of thermalization is achieved in two complementary ways: by adding local perturbations or by adjusting the driving Rabi frequency according to the local connectivity of the lattice. We demonstrate that these mechanisms allow us to realize robust quantum scars in various two-dimensional lattices, including decorated lattices with nonconstant connectivity. In particular, we show that a small decrease of the Rabi frequency at the corners of the lattice is crucial for mitigating the strong boundary effects in two-dimensional systems. Our results identify synchronization as an important tool for future experiments on two-dimensional quantum scars.' article_number: '022065' article_processing_charge: No article_type: original author: - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis - first_name: C. J. full_name: Turner, C. J. last_name: Turner - first_name: Z. full_name: Papić, Z. last_name: Papić - first_name: D. A. full_name: Abanin, D. A. last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. 2020;2(2). doi:10.1103/physrevresearch.2.022065 apa: Michailidis, A., Turner, C. J., Papić, Z., Abanin, D. A., & Serbyn, M. (2020). Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.2.022065 chicago: Michailidis, Alexios, C. J. Turner, Z. Papić, D. A. Abanin, and Maksym Serbyn. “Stabilizing Two-Dimensional Quantum Scars by Deformation and Synchronization.” Physical Review Research. American Physical Society, 2020. https://doi.org/10.1103/physrevresearch.2.022065. ieee: A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and M. Serbyn, “Stabilizing two-dimensional quantum scars by deformation and synchronization,” Physical Review Research, vol. 2, no. 2. American Physical Society, 2020. ista: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. 2020. Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. 2(2), 022065. mla: Michailidis, Alexios, et al. “Stabilizing Two-Dimensional Quantum Scars by Deformation and Synchronization.” Physical Review Research, vol. 2, no. 2, 022065, American Physical Society, 2020, doi:10.1103/physrevresearch.2.022065. short: A. Michailidis, C.J. Turner, Z. Papić, D.A. Abanin, M. Serbyn, Physical Review Research 2 (2020). date_created: 2020-06-23T12:00:19Z date_published: 2020-06-22T00:00:00Z date_updated: 2021-01-12T08:16:30Z day: '22' ddc: - '530' department: - _id: MaSe doi: 10.1103/physrevresearch.2.022065 ec_funded: 1 file: - access_level: open_access checksum: e6959dc8220f14a008d1933858795e6d content_type: application/pdf creator: dernst date_created: 2020-06-29T14:41:27Z date_updated: 2020-07-14T12:48:08Z file_id: '8050' file_name: 2020_PhysicalReviewResearch_Michailidis.pdf file_size: 2066011 relation: main_file file_date_updated: 2020-07-14T12:48:08Z has_accepted_license: '1' intvolume: ' 2' issue: '2' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Stabilizing two-dimensional quantum scars by deformation and synchronization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '8063' abstract: - lang: eng text: "We present a generative model of images that explicitly reasons over the set\r\nof objects they show. Our model learns a structured latent representation that\r\nseparates objects from each other and from the background; unlike prior works,\r\nit explicitly represents the 2D position and depth of each object, as well as\r\nan embedding of its segmentation mask and appearance. The model can be trained\r\nfrom images alone in a purely unsupervised fashion without the need for object\r\nmasks or depth information. Moreover, it always generates complete objects,\r\neven though a significant fraction of training images contain occlusions.\r\nFinally, we show that our model can infer decompositions of novel images into\r\ntheir constituent objects, including accurate prediction of depth ordering and\r\nsegmentation of occluded parts." article_number: '2004.00642' article_processing_charge: No author: - first_name: Titas full_name: Anciukevicius, Titas last_name: Anciukevicius - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 - first_name: Paul M full_name: Henderson, Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 citation: ama: Anciukevicius T, Lampert C, Henderson PM. Object-centric image generation with factored depths, locations, and appearances. arXiv. apa: Anciukevicius, T., Lampert, C., & Henderson, P. M. (n.d.). Object-centric image generation with factored depths, locations, and appearances. arXiv. chicago: Anciukevicius, Titas, Christoph Lampert, and Paul M Henderson. “Object-Centric Image Generation with Factored Depths, Locations, and Appearances.” ArXiv, n.d. ieee: T. Anciukevicius, C. Lampert, and P. M. Henderson, “Object-centric image generation with factored depths, locations, and appearances,” arXiv. . ista: Anciukevicius T, Lampert C, Henderson PM. Object-centric image generation with factored depths, locations, and appearances. arXiv, 2004.00642. mla: Anciukevicius, Titas, et al. “Object-Centric Image Generation with Factored Depths, Locations, and Appearances.” ArXiv, 2004.00642. short: T. Anciukevicius, C. Lampert, P.M. Henderson, ArXiv (n.d.). date_created: 2020-06-29T23:55:23Z date_published: 2020-04-01T00:00:00Z date_updated: 2021-01-12T08:16:44Z day: '01' ddc: - '004' department: - _id: ChLa external_id: arxiv: - '2004.00642' language: - iso: eng license: https://creativecommons.org/licenses/by-sa/4.0/ main_file_link: - open_access: '1' url: https://arxiv.org/abs/2004.00642 month: '04' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted status: public title: Object-centric image generation with factored depths, locations, and appearances tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8081' abstract: - lang: eng text: "Here, we employ micro- and nanosized cellulose particles, namely paper fines and cellulose\r\nnanocrystals, to induce hierarchical organization over a wide length scale. After processing\r\nthem into carbonaceous materials, we demonstrate that these hierarchically organized materials\r\noutperform the best materials for supercapacitors operating with organic electrolytes reported\r\nin literature in terms of specific energy/power (Ragone plot) while showing hardly any capacity\r\nfade over 4,000 cycles. The highly porous materials feature a specific surface area as high as\r\n2500 m2ˑg-1 and exhibit pore sizes in the range of 0.5 to 200 nm as proven by scanning electron\r\nmicroscopy and N2 physisorption. The carbonaceous materials have been further investigated\r\nby X-ray photoelectron spectroscopy and RAMAN spectroscopy. Since paper fines are an\r\nunderutilized side stream in any paper production process, they are a cheap and highly available\r\nfeedstock to prepare carbonaceous materials with outstanding performance in electrochemical\r\napplications. " acknowledgement: 'The authors M.A.H., S.S., R.E., and W.B. acknowledge the industrial partners Sappi Gratkorn, Zellstoff Pöls and Mondi Frantschach, the Austrian Research Promotion Agency (FFG), COMET, BMVIT, BMWFJ, the Province of Styria and Carinthia for their financial support of the K-project Flippr²-Process Integration. E.M. and S.A.F. are indebted to the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 636069). W. T. and S. E. thank FWO (G.0C60.13N) and the European Union’s European Fund for Regional Development and Flanders Innovation & Entrepreneurship (Accelerate3 project, Interreg Vlaanderen-Nederland program) for financial support. W. T. also thanks the Provincie West-Vlaanderen (Belgium) for his Provincial Chair in Advanced Materials. S. B. thanks the European Regional Development Fund (EFRE) and the province of Upper Austria for financial support through the program IWB 2014-2020 (project BioCarb-K). AMR gratefully acknowledges funding support through the SC EPSCoR/IDeAProgram under Award #18-SR03, and the NASA EPSCoR Program under Award #NNH17ZHA002C. Icons in Scheme 1 were provided by Good Ware, monkik, photo3idea_studio, and OCHA from www.flaticon.com.' article_processing_charge: No author: - first_name: 'Mathias A. ' full_name: 'Hobisch, Mathias A. ' last_name: Hobisch - first_name: 'Eléonore ' full_name: 'Mourad, Eléonore ' last_name: Mourad - first_name: 'Wolfgang J. ' full_name: 'Fischer, Wolfgang J. ' last_name: Fischer - first_name: 'Christian ' full_name: 'Prehal, Christian ' last_name: Prehal - first_name: 'Samuel ' full_name: 'Eyley, Samuel ' last_name: Eyley - first_name: 'Anthony ' full_name: 'Childress, Anthony ' last_name: Childress - first_name: 'Armin ' full_name: 'Zankel, Armin ' last_name: Zankel - first_name: 'Andreas ' full_name: 'Mautner, Andreas ' last_name: Mautner - first_name: 'Stefan ' full_name: 'Breitenbach, Stefan ' last_name: Breitenbach - first_name: 'Apparao M. ' full_name: 'Rao, Apparao M. ' last_name: Rao - first_name: 'Wim ' full_name: 'Thielemans, Wim ' last_name: Thielemans - first_name: Stefan Alexander full_name: Freunberger, Stefan Alexander id: A8CA28E6-CE23-11E9-AD2D-EC27E6697425 last_name: Freunberger orcid: 0000-0003-2902-5319 - first_name: 'Rene ' full_name: 'Eckhart, Rene ' last_name: Eckhart - first_name: 'Wolfgang ' full_name: 'Bauer, Wolfgang ' last_name: Bauer - first_name: 'Stefan ' full_name: 'Spirk, Stefan ' last_name: Spirk citation: ama: Hobisch MA, Mourad E, Fischer WJ, et al. High specific capacitance supercapacitors from hierarchically organized all-cellulose composites. apa: Hobisch, M. A., Mourad, E., Fischer, W. J., Prehal, C., Eyley, S., Childress, A., … Spirk, S. (n.d.). High specific capacitance supercapacitors from hierarchically organized all-cellulose composites. chicago: Hobisch, Mathias A. , Eléonore Mourad, Wolfgang J. Fischer, Christian Prehal, Samuel Eyley, Anthony Childress, Armin Zankel, et al. “High Specific Capacitance Supercapacitors from Hierarchically Organized All-Cellulose Composites,” n.d. ieee: M. A. Hobisch et al., “High specific capacitance supercapacitors from hierarchically organized all-cellulose composites.” . ista: Hobisch MA, Mourad E, Fischer WJ, Prehal C, Eyley S, Childress A, Zankel A, Mautner A, Breitenbach S, Rao AM, Thielemans W, Freunberger SA, Eckhart R, Bauer W, Spirk S. High specific capacitance supercapacitors from hierarchically organized all-cellulose composites. mla: Hobisch, Mathias A., et al. High Specific Capacitance Supercapacitors from Hierarchically Organized All-Cellulose Composites. short: M.A. Hobisch, E. Mourad, W.J. Fischer, C. Prehal, S. Eyley, A. Childress, A. Zankel, A. Mautner, S. Breitenbach, A.M. Rao, W. Thielemans, S.A. Freunberger, R. Eckhart, W. Bauer, S. Spirk, (n.d.). date_created: 2020-07-02T20:24:42Z date_published: 2020-07-13T00:00:00Z date_updated: 2022-06-17T08:39:49Z day: '13' ddc: - '540' department: - _id: StFr file: - access_level: open_access checksum: 6970d621984c03ebc2eee71adfe706dd content_type: application/pdf creator: sfreunbe date_created: 2020-07-02T20:21:59Z date_updated: 2020-07-14T12:48:09Z file_id: '8082' file_name: AM.pdf file_size: 1129852 relation: main_file - access_level: open_access checksum: cd74c7bd47d6e7163d54d67f074dcc36 content_type: application/pdf creator: cziletti date_created: 2020-07-08T12:14:04Z date_updated: 2020-07-14T12:48:09Z file_id: '8102' file_name: Supporting_Information.pdf file_size: 945565 relation: supplementary_material file_date_updated: 2020-07-14T12:48:09Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version publication_status: submitted status: public title: High specific capacitance supercapacitors from hierarchically organized all-cellulose composites type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8105' abstract: - lang: eng text: Physical and biological systems often exhibit intermittent dynamics with bursts or avalanches (active states) characterized by power-law size and duration distributions. These emergent features are typical of systems at the critical point of continuous phase transitions, and have led to the hypothesis that such systems may self-organize at criticality, i.e. without any fine tuning of parameters. Since the introduction of the Bak-Tang-Wiesenfeld (BTW) model, the paradigm of self-organized criticality (SOC) has been very fruitful for the analysis of emergent collective behaviors in a number of systems, including the brain. Although considerable effort has been devoted in identifying and modeling scaling features of burst and avalanche statistics, dynamical aspects related to the temporal organization of bursts remain often poorly understood or controversial. Of crucial importance to understand the mechanisms responsible for emergent behaviors is the relationship between active and quiet periods, and the nature of the correlations. Here we investigate the dynamics of active (θ-bursts) and quiet states (δ-bursts) in brain activity during the sleep-wake cycle. We show the duality of power-law (θ, active phase) and exponential-like (δ, quiescent phase) duration distributions, typical of SOC, jointly emerge with power-law temporal correlations and anti-correlated coupling between active and quiet states. Importantly, we demonstrate that such temporal organization shares important similarities with earthquake dynamics, and propose that specific power-law correlations and coupling between active and quiet states are distinctive characteristics of a class of systems with self-organization at criticality. article_number: '00005' article_processing_charge: No article_type: original author: - first_name: Fabrizio full_name: Lombardi, Fabrizio id: A057D288-3E88-11E9-986D-0CF4E5697425 last_name: Lombardi orcid: 0000-0003-2623-5249 - first_name: Jilin W.J.L. full_name: Wang, Jilin W.J.L. last_name: Wang - first_name: Xiyun full_name: Zhang, Xiyun last_name: Zhang - first_name: Plamen Ch full_name: Ivanov, Plamen Ch last_name: Ivanov citation: ama: Lombardi F, Wang JWJL, Zhang X, Ivanov PC. Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality. EPJ Web of Conferences. 2020;230. doi:10.1051/epjconf/202023000005 apa: Lombardi, F., Wang, J. W. J. L., Zhang, X., & Ivanov, P. C. (2020). Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality. EPJ Web of Conferences. EDP Sciences. https://doi.org/10.1051/epjconf/202023000005 chicago: Lombardi, Fabrizio, Jilin W.J.L. Wang, Xiyun Zhang, and Plamen Ch Ivanov. “Power-Law Correlations and Coupling of Active and Quiet States Underlie a Class of Complex Systems with Self-Organization at Criticality.” EPJ Web of Conferences. EDP Sciences, 2020. https://doi.org/10.1051/epjconf/202023000005. ieee: F. Lombardi, J. W. J. L. Wang, X. Zhang, and P. C. Ivanov, “Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality,” EPJ Web of Conferences, vol. 230. EDP Sciences, 2020. ista: Lombardi F, Wang JWJL, Zhang X, Ivanov PC. 2020. Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality. EPJ Web of Conferences. 230, 00005. mla: Lombardi, Fabrizio, et al. “Power-Law Correlations and Coupling of Active and Quiet States Underlie a Class of Complex Systems with Self-Organization at Criticality.” EPJ Web of Conferences, vol. 230, 00005, EDP Sciences, 2020, doi:10.1051/epjconf/202023000005. short: F. Lombardi, J.W.J.L. Wang, X. Zhang, P.C. Ivanov, EPJ Web of Conferences 230 (2020). date_created: 2020-07-12T16:20:33Z date_published: 2020-03-11T00:00:00Z date_updated: 2021-01-12T08:16:55Z day: '11' ddc: - '530' department: - _id: GaTk doi: 10.1051/epjconf/202023000005 file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2020-07-22T06:17:11Z date_updated: 2020-07-22T06:17:11Z file_id: '8144' file_name: 2020_EPJWebConf_Lombardi.pdf file_size: 2197543 relation: main_file success: 1 file_date_updated: 2020-07-22T06:17:11Z has_accepted_license: '1' intvolume: ' 230' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: EPJ Web of Conferences publication_identifier: issn: - 2100-014X publication_status: published publisher: EDP Sciences quality_controlled: '1' status: public title: Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 230 year: '2020' ... --- _id: '8135' abstract: - lang: eng text: Discrete Morse theory has recently lead to new developments in the theory of random geometric complexes. This article surveys the methods and results obtained with this new approach, and discusses some of its shortcomings. It uses simulations to illustrate the results and to form conjectures, getting numerical estimates for combinatorial, topological, and geometric properties of weighted and unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha and Wrap complexes contained in the mosaics. acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements No 78818 Alpha and No 638176). It is also partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF). alternative_title: - Abel Symposia article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko - first_name: Katharina full_name: Ölsböck, Katharina id: 4D4AA390-F248-11E8-B48F-1D18A9856A87 last_name: Ölsböck - first_name: Peter full_name: Synak, Peter id: 331776E2-F248-11E8-B48F-1D18A9856A87 last_name: Synak citation: ama: 'Edelsbrunner H, Nikitenko A, Ölsböck K, Synak P. Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. In: Topological Data Analysis. Vol 15. Springer Nature; 2020:181-218. doi:10.1007/978-3-030-43408-3_8' apa: Edelsbrunner, H., Nikitenko, A., Ölsböck, K., & Synak, P. (2020). Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. In Topological Data Analysis (Vol. 15, pp. 181–218). Springer Nature. https://doi.org/10.1007/978-3-030-43408-3_8 chicago: Edelsbrunner, Herbert, Anton Nikitenko, Katharina Ölsböck, and Peter Synak. “Radius Functions on Poisson–Delaunay Mosaics and Related Complexes Experimentally.” In Topological Data Analysis, 15:181–218. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-43408-3_8. ieee: H. Edelsbrunner, A. Nikitenko, K. Ölsböck, and P. Synak, “Radius functions on Poisson–Delaunay mosaics and related complexes experimentally,” in Topological Data Analysis, 2020, vol. 15, pp. 181–218. ista: Edelsbrunner H, Nikitenko A, Ölsböck K, Synak P. 2020. Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. Topological Data Analysis. , Abel Symposia, vol. 15, 181–218. mla: Edelsbrunner, Herbert, et al. “Radius Functions on Poisson–Delaunay Mosaics and Related Complexes Experimentally.” Topological Data Analysis, vol. 15, Springer Nature, 2020, pp. 181–218, doi:10.1007/978-3-030-43408-3_8. short: H. Edelsbrunner, A. Nikitenko, K. Ölsböck, P. Synak, in:, Topological Data Analysis, Springer Nature, 2020, pp. 181–218. date_created: 2020-07-19T22:00:59Z date_published: 2020-06-22T00:00:00Z date_updated: 2021-01-12T08:17:06Z day: '22' ddc: - '510' department: - _id: HeEd doi: 10.1007/978-3-030-43408-3_8 ec_funded: 1 file: - access_level: open_access checksum: 7b5e0de10675d787a2ddb2091370b8d8 content_type: application/pdf creator: dernst date_created: 2020-10-08T08:56:14Z date_updated: 2020-10-08T08:56:14Z file_id: '8628' file_name: 2020-B-01-PoissonExperimentalSurvey.pdf file_size: 2207071 relation: main_file success: 1 file_date_updated: 2020-10-08T08:56:14Z has_accepted_license: '1' intvolume: ' 15' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 181-218 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Topological Data Analysis publication_identifier: eissn: - '21978549' isbn: - '9783030434076' issn: - '21932808' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Radius functions on Poisson–Delaunay mosaics and related complexes experimentally type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2020' ... --- _id: '8181' author: - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 citation: ama: Hauschild R. Amplified centrosomes in dendritic cells promote immune cell effector functions. 2020. doi:10.15479/AT:ISTA:8181 apa: Hauschild, R. (2020). Amplified centrosomes in dendritic cells promote immune cell effector functions. IST Austria. https://doi.org/10.15479/AT:ISTA:8181 chicago: Hauschild, Robert. “Amplified Centrosomes in Dendritic Cells Promote Immune Cell Effector Functions.” IST Austria, 2020. https://doi.org/10.15479/AT:ISTA:8181. ieee: R. Hauschild, “Amplified centrosomes in dendritic cells promote immune cell effector functions.” IST Austria, 2020. ista: Hauschild R. 2020. Amplified centrosomes in dendritic cells promote immune cell effector functions, IST Austria, 10.15479/AT:ISTA:8181. mla: Hauschild, Robert. Amplified Centrosomes in Dendritic Cells Promote Immune Cell Effector Functions. IST Austria, 2020, doi:10.15479/AT:ISTA:8181. short: R. Hauschild, (2020). date_created: 2020-07-28T16:24:37Z date_published: 2020-08-24T00:00:00Z date_updated: 2021-01-11T15:29:08Z day: '24' department: - _id: Bio doi: 10.15479/AT:ISTA:8181 file: - access_level: open_access checksum: 878c60885ce30afb59a884dd5eef451c content_type: text/plain creator: rhauschild date_created: 2020-08-24T15:43:49Z date_updated: 2020-08-24T15:43:49Z file_id: '8290' file_name: centriolesDistance.m file_size: 6577 relation: main_file success: 1 - access_level: open_access checksum: 5a93ac7be2b66b28e4bd8b113ee6aade content_type: text/plain creator: rhauschild date_created: 2020-08-24T15:43:52Z date_updated: 2020-08-24T15:43:52Z file_id: '8291' file_name: goTracking.m file_size: 2680 relation: main_file success: 1 file_date_updated: 2020-08-24T15:43:52Z has_accepted_license: '1' license: https://opensource.org/licenses/BSD-3-Clause month: '08' oa: 1 publisher: IST Austria status: public title: Amplified centrosomes in dendritic cells promote immune cell effector functions tmp: legal_code_url: https://opensource.org/licenses/BSD-3-Clause name: The 3-Clause BSD License short: 3-Clause BSD type: software user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8294' abstract: - lang: eng text: 'Automated root growth analysis and tracking of root tips. ' author: - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 citation: ama: Hauschild R. RGtracker. 2020. doi:10.15479/AT:ISTA:8294 apa: Hauschild, R. (2020). RGtracker. IST Austria. https://doi.org/10.15479/AT:ISTA:8294 chicago: Hauschild, Robert. “RGtracker.” IST Austria, 2020. https://doi.org/10.15479/AT:ISTA:8294. ieee: R. Hauschild, “RGtracker.” IST Austria, 2020. ista: Hauschild R. 2020. RGtracker, IST Austria, 10.15479/AT:ISTA:8294. mla: Hauschild, Robert. RGtracker. IST Austria, 2020, doi:10.15479/AT:ISTA:8294. short: R. Hauschild, (2020). date_created: 2020-08-25T12:52:48Z date_published: 2020-09-10T00:00:00Z date_updated: 2021-01-12T08:17:56Z day: '10' ddc: - '570' department: - _id: Bio doi: 10.15479/AT:ISTA:8294 file: - access_level: open_access checksum: 108352149987ac6f066e4925bd56e35e content_type: text/plain creator: rhauschild date_created: 2020-09-08T14:26:31Z date_updated: 2020-09-08T14:26:31Z file_id: '8346' file_name: readme.txt file_size: 882 relation: main_file success: 1 - access_level: open_access checksum: ffd6c643b28e0cc7c6d0060a18a7e8ea content_type: application/octet-stream creator: rhauschild date_created: 2020-09-08T14:26:33Z date_updated: 2020-09-08T14:26:33Z file_id: '8347' file_name: RGtracker.mlappinstall file_size: 246121 relation: main_file success: 1 file_date_updated: 2020-09-08T14:26:33Z has_accepted_license: '1' month: '09' oa: 1 publisher: IST Austria status: public title: RGtracker tmp: legal_code_url: https://opensource.org/licenses/BSD-3-Clause name: The 3-Clause BSD License short: 3-Clause BSD type: software user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8322' abstract: - lang: eng text: "Reverse firewalls were introduced at Eurocrypt 2015 by Miro-nov and Stephens-Davidowitz, as a method for protecting cryptographic protocols against attacks on the devices of the honest parties. In a nutshell: a reverse firewall is placed outside of a device and its goal is to “sanitize” the messages sent by it, in such a way that a malicious device cannot leak its secrets to the outside world. It is typically assumed that the cryptographic devices are attacked in a “functionality-preserving way” (i.e. informally speaking, the functionality of the protocol remains unchanged under this attacks). In their paper, Mironov and Stephens-Davidowitz construct a protocol for passively-secure two-party computations with firewalls, leaving extension of this result to stronger models as an open question.\r\nIn this paper, we address this problem by constructing a protocol for secure computation with firewalls that has two main advantages over the original protocol from Eurocrypt 2015. Firstly, it is a multiparty computation protocol (i.e. it works for an arbitrary number n of the parties, and not just for 2). Secondly, it is secure in much stronger corruption settings, namely in the active corruption model. More precisely: we consider an adversary that can fully corrupt up to \U0001D45B−1 parties, while the remaining parties are corrupt in a functionality-preserving way.\r\nOur core techniques are: malleable commitments and malleable non-interactive zero-knowledge, which in particular allow us to create a novel protocol for multiparty augmented coin-tossing into the well with reverse firewalls (that is based on a protocol of Lindell from Crypto 2001)." acknowledgement: We would like to thank the anonymous reviewers for their helpful comments and suggestions. The work was initiated while the first author was in IIT Madras, India. Part of this work was done while the author was visiting the University of Warsaw. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (682815 - TOCNeT) and from the Foundation for Polish Science under grant TEAM/2016-1/4 founded within the UE 2014–2020 Smart Growth Operational Program. The last author was supported by the Independent Research Fund Denmark project BETHE and the Concordium Blockchain Research Center, Aarhus University, Denmark. alternative_title: - LNCS article_processing_charge: No author: - first_name: Suvradip full_name: Chakraborty, Suvradip id: B9CD0494-D033-11E9-B219-A439E6697425 last_name: Chakraborty - first_name: Stefan full_name: Dziembowski, Stefan last_name: Dziembowski - first_name: Jesper Buus full_name: Nielsen, Jesper Buus last_name: Nielsen citation: ama: 'Chakraborty S, Dziembowski S, Nielsen JB. Reverse firewalls for actively secure MPCs. In: Advances in Cryptology – CRYPTO 2020. Vol 12171. Springer Nature; 2020:732-762. doi:10.1007/978-3-030-56880-1_26' apa: 'Chakraborty, S., Dziembowski, S., & Nielsen, J. B. (2020). Reverse firewalls for actively secure MPCs. In Advances in Cryptology – CRYPTO 2020 (Vol. 12171, pp. 732–762). Santa Barbara, CA, United States: Springer Nature. https://doi.org/10.1007/978-3-030-56880-1_26' chicago: Chakraborty, Suvradip, Stefan Dziembowski, and Jesper Buus Nielsen. “Reverse Firewalls for Actively Secure MPCs.” In Advances in Cryptology – CRYPTO 2020, 12171:732–62. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-56880-1_26. ieee: S. Chakraborty, S. Dziembowski, and J. B. Nielsen, “Reverse firewalls for actively secure MPCs,” in Advances in Cryptology – CRYPTO 2020, Santa Barbara, CA, United States, 2020, vol. 12171, pp. 732–762. ista: 'Chakraborty S, Dziembowski S, Nielsen JB. 2020. Reverse firewalls for actively secure MPCs. Advances in Cryptology – CRYPTO 2020. CRYPTO: Annual International Cryptology Conference, LNCS, vol. 12171, 732–762.' mla: Chakraborty, Suvradip, et al. “Reverse Firewalls for Actively Secure MPCs.” Advances in Cryptology – CRYPTO 2020, vol. 12171, Springer Nature, 2020, pp. 732–62, doi:10.1007/978-3-030-56880-1_26. short: S. Chakraborty, S. Dziembowski, J.B. Nielsen, in:, Advances in Cryptology – CRYPTO 2020, Springer Nature, 2020, pp. 732–762. conference: end_date: 2020-08-21 location: Santa Barbara, CA, United States name: 'CRYPTO: Annual International Cryptology Conference' start_date: 2020-08-17 date_created: 2020-08-30T22:01:12Z date_published: 2020-08-10T00:00:00Z date_updated: 2021-01-12T08:18:08Z day: '10' department: - _id: KrPi doi: 10.1007/978-3-030-56880-1_26 ec_funded: 1 intvolume: ' 12171' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2019/1317 month: '08' oa: 1 oa_version: Preprint page: 732-762 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: Advances in Cryptology – CRYPTO 2020 publication_identifier: eissn: - '16113349' isbn: - '9783030568795' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Reverse firewalls for actively secure MPCs type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12171 year: '2020' ... --- _id: '8339' abstract: - lang: eng text: "Discrete Gaussian distributions over lattices are central to lattice-based cryptography, and to the computational and mathematical aspects of lattices more broadly. The literature contains a wealth of useful theorems about the behavior of discrete Gaussians under convolutions and related operations. Yet despite their structural similarities, most of these theorems are formally incomparable, and their proofs tend to be monolithic and written nearly “from scratch,” making them unnecessarily hard to verify, understand, and extend.\r\nIn this work we present a modular framework for analyzing linear operations on discrete Gaussian distributions. The framework abstracts away the particulars of Gaussians, and usually reduces proofs to the choice of appropriate linear transformations and elementary linear algebra. To showcase the approach, we establish several general properties of discrete Gaussians, and show how to obtain all prior convolution theorems (along with some new ones) as straightforward corollaries. As another application, we describe a self-reduction for Learning With Errors (LWE) that uses a fixed number of samples to generate an unlimited number of additional ones (having somewhat larger error). The distinguishing features of our reduction are its simple analysis in our framework, and its exclusive use of discrete Gaussians without any loss in parameters relative to a prior mixed discrete-and-continuous approach.\r\nAs a contribution of independent interest, for subgaussian random matrices we prove a singular value concentration bound with explicitly stated constants, and we give tighter heuristics for specific distributions that are commonly used for generating lattice trapdoors. These bounds yield improvements in the concrete bit-security estimates for trapdoor lattice cryptosystems." alternative_title: - LNCS article_processing_charge: No author: - first_name: Nicholas full_name: Genise, Nicholas last_name: Genise - first_name: Daniele full_name: Micciancio, Daniele last_name: Micciancio - first_name: Chris full_name: Peikert, Chris last_name: Peikert - first_name: Michael full_name: Walter, Michael id: 488F98B0-F248-11E8-B48F-1D18A9856A87 last_name: Walter orcid: 0000-0003-3186-2482 citation: ama: 'Genise N, Micciancio D, Peikert C, Walter M. Improved discrete Gaussian and subgaussian analysis for lattice cryptography. In: 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography. Vol 12110. Springer Nature; 2020:623-651. doi:10.1007/978-3-030-45374-9_21' apa: 'Genise, N., Micciancio, D., Peikert, C., & Walter, M. (2020). Improved discrete Gaussian and subgaussian analysis for lattice cryptography. In 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography (Vol. 12110, pp. 623–651). Edinburgh, United Kingdom: Springer Nature. https://doi.org/10.1007/978-3-030-45374-9_21' chicago: Genise, Nicholas, Daniele Micciancio, Chris Peikert, and Michael Walter. “Improved Discrete Gaussian and Subgaussian Analysis for Lattice Cryptography.” In 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, 12110:623–51. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-45374-9_21. ieee: N. Genise, D. Micciancio, C. Peikert, and M. Walter, “Improved discrete Gaussian and subgaussian analysis for lattice cryptography,” in 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, Edinburgh, United Kingdom, 2020, vol. 12110, pp. 623–651. ista: 'Genise N, Micciancio D, Peikert C, Walter M. 2020. Improved discrete Gaussian and subgaussian analysis for lattice cryptography. 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography. PKC: Public-Key Cryptography, LNCS, vol. 12110, 623–651.' mla: Genise, Nicholas, et al. “Improved Discrete Gaussian and Subgaussian Analysis for Lattice Cryptography.” 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, vol. 12110, Springer Nature, 2020, pp. 623–51, doi:10.1007/978-3-030-45374-9_21. short: N. Genise, D. Micciancio, C. Peikert, M. Walter, in:, 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, Springer Nature, 2020, pp. 623–651. conference: end_date: 2020-05-07 location: Edinburgh, United Kingdom name: 'PKC: Public-Key Cryptography' start_date: 2020-05-04 date_created: 2020-09-06T22:01:13Z date_published: 2020-05-15T00:00:00Z date_updated: 2023-02-23T13:31:06Z day: '15' department: - _id: KrPi doi: 10.1007/978-3-030-45374-9_21 ec_funded: 1 intvolume: ' 12110' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2020/337 month: '05' oa: 1 oa_version: Preprint page: 623-651 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography publication_identifier: eissn: - '16113349' isbn: - '9783030453732' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Improved discrete Gaussian and subgaussian analysis for lattice cryptography type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12110 year: '2020' ... --- _id: '8572' abstract: - lang: eng text: 'We present the results of the ARCH 2020 friendly competition for formal verification of continuous and hybrid systems with linear continuous dynamics. In its fourth edition, eight tools have been applied to solve eight different benchmark problems in the category for linear continuous dynamics (in alphabetical order): CORA, C2E2, HyDRA, Hylaa, Hylaa-Continuous, JuliaReach, SpaceEx, and XSpeed. This report is a snapshot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results provide one of the most complete assessments of tools for the safety verification of continuous and hybrid systems with linear continuous dynamics up to this date.' acknowledgement: "The authors gratefully acknowledge financial support by the European Commission project\r\njustITSELF under grant number 817629, by the Austrian Science Fund (FWF) under grant\r\nZ211-N23 (Wittgenstein Award), by the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 754411, and by the\r\nScience and Engineering Research Board (SERB) project with file number IMP/2018/000523.\r\nThis material is based upon work supported by the Air Force Office of Scientific Research under\r\naward number FA9550-19-1-0288. Any opinions, finding, and conclusions or recommendations\r\nexpressed in this material are those of the author(s) and do not necessarily reflect the views of\r\nthe United States Air Force." article_processing_charge: No author: - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff - first_name: Stanley full_name: Bak, Stanley last_name: Bak - first_name: Zongnan full_name: Bao, Zongnan last_name: Bao - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Daniel full_name: Freire, Daniel last_name: Freire - first_name: Niklas full_name: Kochdumper, Niklas last_name: Kochdumper - first_name: Yangge full_name: Li, Yangge last_name: Li - first_name: Sayan full_name: Mitra, Sayan last_name: Mitra - first_name: Rajarshi full_name: Ray, Rajarshi last_name: Ray - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Stefan full_name: Schupp, Stefan last_name: Schupp - first_name: Mark full_name: Wetzlinger, Mark last_name: Wetzlinger citation: ama: 'Althoff M, Bak S, Bao Z, et al. ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. In: EPiC Series in Computing. Vol 74. EasyChair; 2020:16-48. doi:10.29007/7dt2' apa: 'Althoff, M., Bak, S., Bao, Z., Forets, M., Frehse, G., Freire, D., … Wetzlinger, M. (2020). ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. In EPiC Series in Computing (Vol. 74, pp. 16–48). EasyChair. https://doi.org/10.29007/7dt2' chicago: 'Althoff, Matthias, Stanley Bak, Zongnan Bao, Marcelo Forets, Goran Frehse, Daniel Freire, Niklas Kochdumper, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Linear Dynamics.” In EPiC Series in Computing, 74:16–48. EasyChair, 2020. https://doi.org/10.29007/7dt2.' ieee: 'M. Althoff et al., “ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics,” in EPiC Series in Computing, 2020, vol. 74, pp. 16–48.' ista: 'Althoff M, Bak S, Bao Z, Forets M, Frehse G, Freire D, Kochdumper N, Li Y, Mitra S, Ray R, Schilling C, Schupp S, Wetzlinger M. 2020. ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. EPiC Series in Computing. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems vol. 74, 16–48.' mla: 'Althoff, Matthias, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Linear Dynamics.” EPiC Series in Computing, vol. 74, EasyChair, 2020, pp. 16–48, doi:10.29007/7dt2.' short: M. Althoff, S. Bak, Z. Bao, M. Forets, G. Frehse, D. Freire, N. Kochdumper, Y. Li, S. Mitra, R. Ray, C. Schilling, S. Schupp, M. Wetzlinger, in:, EPiC Series in Computing, EasyChair, 2020, pp. 16–48. conference: end_date: 2020-07-12 name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2020-07-12 date_created: 2020-09-26T14:49:43Z date_published: 2020-09-25T00:00:00Z date_updated: 2021-01-12T08:20:06Z day: '25' department: - _id: ToHe doi: 10.29007/7dt2 ec_funded: 1 intvolume: ' 74' language: - iso: eng main_file_link: - open_access: '1' url: https://easychair.org/publications/download/DRpS month: '09' oa: 1 oa_version: Published Version page: 16-48 project: - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: EPiC Series in Computing publication_status: published publisher: EasyChair quality_controlled: '1' status: public title: 'ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 74 year: '2020' ... --- _id: '8571' abstract: - lang: eng text: We present the results of a friendly competition for formal verification of continuous and hybrid systems with nonlinear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2020. This year, 6 tools Ariadne, CORA, DynIbex, Flow*, Isabelle/HOL, and JuliaReach (in alphabetic order) participated. These tools are applied to solve reachability analysis problems on six benchmark problems, two of them featuring hybrid dynamics. We do not rank the tools based on the results, but show the current status and discover the potential advantages of different tools. acknowledgement: Christian Schilling acknowledges support in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award) and the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 754411. article_processing_charge: No author: - first_name: Luca full_name: Geretti, Luca last_name: Geretti - first_name: Julien full_name: Alexandre Dit Sandretto, Julien last_name: Alexandre Dit Sandretto - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff - first_name: Luis full_name: Benet, Luis last_name: Benet - first_name: Alexandre full_name: Chapoutot, Alexandre last_name: Chapoutot - first_name: Xin full_name: Chen, Xin last_name: Chen - first_name: Pieter full_name: Collins, Pieter last_name: Collins - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Daniel full_name: Freire, Daniel last_name: Freire - first_name: Fabian full_name: Immler, Fabian last_name: Immler - first_name: Niklas full_name: Kochdumper, Niklas last_name: Kochdumper - first_name: David full_name: Sanders, David last_name: Sanders - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Geretti L, Alexandre Dit Sandretto J, Althoff M, et al. ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. In: EPiC Series in Computing. Vol 74. EasyChair; 2020:49-75. doi:10.29007/zkf6' apa: 'Geretti, L., Alexandre Dit Sandretto, J., Althoff, M., Benet, L., Chapoutot, A., Chen, X., … Schilling, C. (2020). ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. In EPiC Series in Computing (Vol. 74, pp. 49–75). EasyChair. https://doi.org/10.29007/zkf6' chicago: 'Geretti, Luca, Julien Alexandre Dit Sandretto, Matthias Althoff, Luis Benet, Alexandre Chapoutot, Xin Chen, Pieter Collins, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics.” In EPiC Series in Computing, 74:49–75. EasyChair, 2020. https://doi.org/10.29007/zkf6.' ieee: 'L. Geretti et al., “ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics,” in EPiC Series in Computing, 2020, vol. 74, pp. 49–75.' ista: 'Geretti L, Alexandre Dit Sandretto J, Althoff M, Benet L, Chapoutot A, Chen X, Collins P, Forets M, Freire D, Immler F, Kochdumper N, Sanders D, Schilling C. 2020. ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. EPiC Series in Computing. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems vol. 74, 49–75.' mla: 'Geretti, Luca, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics.” EPiC Series in Computing, vol. 74, EasyChair, 2020, pp. 49–75, doi:10.29007/zkf6.' short: L. Geretti, J. Alexandre Dit Sandretto, M. Althoff, L. Benet, A. Chapoutot, X. Chen, P. Collins, M. Forets, D. Freire, F. Immler, N. Kochdumper, D. Sanders, C. Schilling, in:, EPiC Series in Computing, EasyChair, 2020, pp. 49–75. conference: end_date: 2020-07-12 name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2020-07-12 date_created: 2020-09-26T14:41:29Z date_published: 2020-09-25T00:00:00Z date_updated: 2021-01-12T08:20:06Z day: '25' department: - _id: ToHe doi: 10.29007/zkf6 ec_funded: 1 intvolume: ' 74' language: - iso: eng main_file_link: - open_access: '1' url: https://easychair.org/publications/download/nrdD month: '09' oa: 1 oa_version: Published Version page: 49-75 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: EPiC Series in Computing publication_status: published publisher: EasyChair quality_controlled: '1' status: public title: 'ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 74 year: '2020' ... --- _id: '8600' abstract: - lang: eng text: 'A vector addition system with states (VASS) consists of a finite set of states and counters. A transition changes the current state to the next state, and every counter is either incremented, or decremented, or left unchanged. A state and value for each counter is a configuration; and a computation is an infinite sequence of configurations with transitions between successive configurations. A probabilistic VASS consists of a VASS along with a probability distribution over the transitions for each state. Qualitative properties such as state and configuration reachability have been widely studied for VASS. In this work we consider multi-dimensional long-run average objectives for VASS and probabilistic VASS. For a counter, the cost of a configuration is the value of the counter; and the long-run average value of a computation for the counter is the long-run average of the costs of the configurations in the computation. The multi-dimensional long-run average problem given a VASS and a threshold value for each counter, asks whether there is a computation such that for each counter the long-run average value for the counter does not exceed the respective threshold. For probabilistic VASS, instead of the existence of a computation, we consider whether the expected long-run average value for each counter does not exceed the respective threshold. Our main results are as follows: we show that the multi-dimensional long-run average problem (a) is NP-complete for integer-valued VASS; (b) is undecidable for natural-valued VASS (i.e., nonnegative counters); and (c) can be solved in polynomial time for probabilistic integer-valued VASS, and probabilistic natural-valued VASS when all computations are non-terminating.' alternative_title: - LIPIcs article_number: '23' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop citation: ama: 'Chatterjee K, Henzinger TA, Otop J. Multi-dimensional long-run average problems for vector addition systems with states. In: 31st International Conference on Concurrency Theory. Vol 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CONCUR.2020.23' apa: 'Chatterjee, K., Henzinger, T. A., & Otop, J. (2020). Multi-dimensional long-run average problems for vector addition systems with states. In 31st International Conference on Concurrency Theory (Vol. 171). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2020.23' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Jan Otop. “Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States.” In 31st International Conference on Concurrency Theory, Vol. 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CONCUR.2020.23. ieee: K. Chatterjee, T. A. Henzinger, and J. Otop, “Multi-dimensional long-run average problems for vector addition systems with states,” in 31st International Conference on Concurrency Theory, Virtual, 2020, vol. 171. ista: 'Chatterjee K, Henzinger TA, Otop J. 2020. Multi-dimensional long-run average problems for vector addition systems with states. 31st International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 171, 23.' mla: Chatterjee, Krishnendu, et al. “Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States.” 31st International Conference on Concurrency Theory, vol. 171, 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CONCUR.2020.23. short: K. Chatterjee, T.A. Henzinger, J. Otop, in:, 31st International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-04 location: Virtual name: 'CONCUR: Conference on Concurrency Theory' start_date: 2020-09-01 date_created: 2020-10-04T22:01:36Z date_published: 2020-08-06T00:00:00Z date_updated: 2021-01-12T08:20:15Z day: '06' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2020.23 external_id: arxiv: - '2007.08917' file: - access_level: open_access checksum: 5039752f644c4b72b9361d21a5e31baf content_type: application/pdf creator: dernst date_created: 2020-10-05T14:04:25Z date_updated: 2020-10-05T14:04:25Z file_id: '8610' file_name: 2020_LIPIcsCONCUR_Chatterjee.pdf file_size: 601231 relation: main_file success: 1 file_date_updated: 2020-10-05T14:04:25Z has_accepted_license: '1' intvolume: ' 171' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 31st International Conference on Concurrency Theory publication_identifier: isbn: - '9783959771603' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Multi-dimensional long-run average problems for vector addition systems with states tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2020' ... --- _id: '8599' abstract: - lang: eng text: A graph game is a two-player zero-sum game in which the players move a token throughout a graph to produce an infinite path, which determines the winner or payoff of the game. In bidding games, both players have budgets, and in each turn, we hold an "auction" (bidding) to determine which player moves the token. In this survey, we consider several bidding mechanisms and study their effect on the properties of the game. Specifically, bidding games, and in particular bidding games of infinite duration, have an intriguing equivalence with random-turn games in which in each turn, the player who moves is chosen randomly. We show how minor changes in the bidding mechanism lead to unexpected differences in the equivalence with random-turn games. acknowledgement: We would like to thank all our collaborators Milad Aghajohari, Ventsislav Chonev, Rasmus Ibsen-Jensen, Ismäel Jecker, Petr Novotný, Josef Tkadlec, and Ðorđe Žikelić; we hope the collaboration was as fun and meaningful for you as it was for us. alternative_title: - LIPIcs article_number: '2' article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Avni G, Henzinger TA. A survey of bidding games on graphs. In: 31st International Conference on Concurrency Theory. Vol 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CONCUR.2020.2' apa: 'Avni, G., & Henzinger, T. A. (2020). A survey of bidding games on graphs. In 31st International Conference on Concurrency Theory (Vol. 171). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2020.2' chicago: Avni, Guy, and Thomas A Henzinger. “A Survey of Bidding Games on Graphs.” In 31st International Conference on Concurrency Theory, Vol. 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CONCUR.2020.2. ieee: G. Avni and T. A. Henzinger, “A survey of bidding games on graphs,” in 31st International Conference on Concurrency Theory, Virtual, 2020, vol. 171. ista: 'Avni G, Henzinger TA. 2020. A survey of bidding games on graphs. 31st International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 171, 2.' mla: Avni, Guy, and Thomas A. Henzinger. “A Survey of Bidding Games on Graphs.” 31st International Conference on Concurrency Theory, vol. 171, 2, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CONCUR.2020.2. short: G. Avni, T.A. Henzinger, in:, 31st International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-04 location: Virtual name: 'CONCUR: Conference on Concurrency Theory' start_date: 2020-09-01 date_created: 2020-10-04T22:01:36Z date_published: 2020-08-06T00:00:00Z date_updated: 2021-01-12T08:20:13Z day: '06' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2020.2 file: - access_level: open_access checksum: 8f33b098e73724e0ac817f764d8e1a2d content_type: application/pdf creator: dernst date_created: 2020-10-05T14:13:19Z date_updated: 2020-10-05T14:13:19Z file_id: '8611' file_name: 2020_LIPIcsCONCUR_Avni.pdf file_size: 868510 relation: main_file success: 1 file_date_updated: 2020-10-05T14:13:19Z has_accepted_license: '1' intvolume: ' 171' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 31st International Conference on Concurrency Theory publication_identifier: isbn: - '9783959771603' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: A survey of bidding games on graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2020' ... --- _id: '8725' abstract: - lang: eng text: "The design and implementation of efficient concurrent data structures have\r\nseen significant attention. However, most of this work has focused on\r\nconcurrent data structures providing good \\emph{worst-case} guarantees. In real\r\nworkloads, objects are often accessed at different rates, since access\r\ndistributions may be non-uniform. Efficient distribution-adaptive data\r\nstructures are known in the sequential case, e.g. the splay-trees; however,\r\nthey often are hard to translate efficiently in the concurrent case.\r\n In this paper, we investigate distribution-adaptive concurrent data\r\nstructures and propose a new design called the splay-list. At a high level, the\r\nsplay-list is similar to a standard skip-list, with the key distinction that\r\nthe height of each element adapts dynamically to its access rate: popular\r\nelements ``move up,'' whereas rarely-accessed elements decrease in height. We\r\nshow that the splay-list provides order-optimal amortized complexity bounds for\r\na subset of operations while being amenable to efficient concurrent\r\nimplementation. Experimental results show that the splay-list can leverage\r\ndistribution-adaptivity to improve on the performance of classic concurrent\r\ndesigns, and can outperform the only previously-known distribution-adaptive\r\ndesign in certain settings." acknowledgement: "Vitaly Aksenov: Government of Russian Federation (Grant 08-08).\r\nDan Alistarh: ERC Starting Grant 805223 ScaleML." article_processing_charge: No author: - first_name: Vitaly full_name: Aksenov, Vitaly last_name: Aksenov - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Alexandra full_name: Drozdova, Alexandra last_name: Drozdova - first_name: Amirkeivan full_name: Mohtashami, Amirkeivan last_name: Mohtashami citation: ama: 'Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. The splay-list: A distribution-adaptive concurrent skip-list. In: 34th International Symposium on Distributed Computing. Vol 179. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020:3:1-3:18. doi:10.4230/LIPIcs.DISC.2020.3' apa: 'Aksenov, V., Alistarh, D.-A., Drozdova, A., & Mohtashami, A. (2020). The splay-list: A distribution-adaptive concurrent skip-list. In 34th International Symposium on Distributed Computing (Vol. 179, p. 3:1-3:18). Freiburg, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.DISC.2020.3' chicago: 'Aksenov, Vitaly, Dan-Adrian Alistarh, Alexandra Drozdova, and Amirkeivan Mohtashami. “The Splay-List: A Distribution-Adaptive Concurrent Skip-List.” In 34th International Symposium on Distributed Computing, 179:3:1-3:18. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.DISC.2020.3.' ieee: 'V. Aksenov, D.-A. Alistarh, A. Drozdova, and A. Mohtashami, “The splay-list: A distribution-adaptive concurrent skip-list,” in 34th International Symposium on Distributed Computing, Freiburg, Germany, 2020, vol. 179, p. 3:1-3:18.' ista: 'Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. 2020. The splay-list: A distribution-adaptive concurrent skip-list. 34th International Symposium on Distributed Computing. DISC: Symposium on Distributed ComputingLIPIcs vol. 179, 3:1-3:18.' mla: 'Aksenov, Vitaly, et al. “The Splay-List: A Distribution-Adaptive Concurrent Skip-List.” 34th International Symposium on Distributed Computing, vol. 179, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 3:1-3:18, doi:10.4230/LIPIcs.DISC.2020.3.' short: V. Aksenov, D.-A. Alistarh, A. Drozdova, A. Mohtashami, in:, 34th International Symposium on Distributed Computing, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 3:1-3:18. conference: end_date: 2020-10-16 location: Freiburg, Germany name: 'DISC: Symposium on Distributed Computing' start_date: 2020-10-12 date_created: 2020-11-05T15:26:17Z date_published: 2020-08-03T00:00:00Z date_updated: 2023-02-23T13:41:40Z day: '03' ddc: - '000' department: - _id: DaAl doi: 10.4230/LIPIcs.DISC.2020.3 ec_funded: 1 external_id: arxiv: - '2008.01009' file: - access_level: open_access checksum: a626a9c47df52b6f6d97edd910dae4ba content_type: application/pdf creator: dernst date_created: 2021-03-11T12:33:35Z date_updated: 2021-03-11T12:33:35Z file_id: '9237' file_name: 2020_LIPIcs_Aksenov.pdf file_size: 740358 relation: main_file success: 1 file_date_updated: 2021-03-11T12:33:35Z has_accepted_license: '1' intvolume: ' 179' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 3:1-3:18 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: 34th International Symposium on Distributed Computing publication_identifier: isbn: - '9783959771689' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' series_title: LIPIcs status: public title: 'The splay-list: A distribution-adaptive concurrent skip-list' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 179 year: '2020' ... --- _id: '8726' abstract: - lang: eng text: Several realistic spin-orbital models for transition metal oxides go beyond the classical expectations and could be understood only by employing the quantum entanglement. Experiments on these materials confirm that spin-orbital entanglement has measurable consequences. Here, we capture the essential features of spin-orbital entanglement in complex quantum matter utilizing 1D spin-orbital model which accommodates SU(2)⊗SU(2) symmetric Kugel-Khomskii superexchange as well as the Ising on-site spin-orbit coupling. Building on the results obtained for full and effective models in the regime of strong spin-orbit coupling, we address the question whether the entanglement found on superexchange bonds always increases when the Ising spin-orbit coupling is added. We show that (i) quantum entanglement is amplified by strong spin-orbit coupling and, surprisingly, (ii) almost classical disentangled states are possible. We complete the latter case by analyzing how the entanglement existing for intermediate values of spin-orbit coupling can disappear for higher values of this coupling. article_number: '53' article_processing_charge: No article_type: original author: - first_name: Dorota full_name: Gotfryd, Dorota last_name: Gotfryd - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld - first_name: Andrzej M. full_name: Oleś, Andrzej M. last_name: Oleś citation: ama: Gotfryd D, Paerschke E, Wohlfeld K, Oleś AM. Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. 2020;5(3). doi:10.3390/condmat5030053 apa: Gotfryd, D., Paerschke, E., Wohlfeld, K., & Oleś, A. M. (2020). Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. MDPI. https://doi.org/10.3390/condmat5030053 chicago: Gotfryd, Dorota, Ekaterina Paerschke, Krzysztof Wohlfeld, and Andrzej M. Oleś. “Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling.” Condensed Matter. MDPI, 2020. https://doi.org/10.3390/condmat5030053. ieee: D. Gotfryd, E. Paerschke, K. Wohlfeld, and A. M. Oleś, “Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling,” Condensed Matter, vol. 5, no. 3. MDPI, 2020. ista: Gotfryd D, Paerschke E, Wohlfeld K, Oleś AM. 2020. Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. 5(3), 53. mla: Gotfryd, Dorota, et al. “Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling.” Condensed Matter, vol. 5, no. 3, 53, MDPI, 2020, doi:10.3390/condmat5030053. short: D. Gotfryd, E. Paerschke, K. Wohlfeld, A.M. Oleś, Condensed Matter 5 (2020). date_created: 2020-11-06T07:21:00Z date_published: 2020-08-26T00:00:00Z date_updated: 2021-01-12T08:20:46Z day: '26' ddc: - '530' department: - _id: MiLe doi: 10.3390/condmat5030053 ec_funded: 1 external_id: arxiv: - '2009.11773' file: - access_level: open_access checksum: a57a698ff99a11b6665bafd1bac7afbc content_type: application/pdf creator: dernst date_created: 2020-11-06T07:24:40Z date_updated: 2020-11-06T07:24:40Z file_id: '8727' file_name: 2020_CondensedMatter_Gotfryd.pdf file_size: 768336 relation: main_file success: 1 file_date_updated: 2020-11-06T07:24:40Z has_accepted_license: '1' intvolume: ' 5' issue: '3' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Condensed Matter publication_identifier: issn: - 2410-3896 publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2020' ... --- _id: '9040' abstract: - lang: eng text: Machine learning and formal methods have complimentary benefits and drawbacks. In this work, we address the controller-design problem with a combination of techniques from both fields. The use of black-box neural networks in deep reinforcement learning (deep RL) poses a challenge for such a combination. Instead of reasoning formally about the output of deep RL, which we call the wizard, we extract from it a decision-tree based model, which we refer to as the magic book. Using the extracted model as an intermediary, we are able to handle problems that are infeasible for either deep RL or formal methods by themselves. First, we suggest, for the first time, a synthesis procedure that is based on a magic book. We synthesize a stand-alone correct-by-design controller that enjoys the favorable performance of RL. Second, we incorporate a magic book in a bounded model checking (BMC) procedure. BMC allows us to find numerous traces of the plant under the control of the wizard, which a user can use to increase the trustworthiness of the wizard and direct further training. acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). article_processing_charge: No author: - first_name: Par Alizadeh full_name: Alamdari, Par Alizadeh last_name: Alamdari - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Anna full_name: Lukina, Anna id: CBA4D1A8-0FE8-11E9-BDE6-07BFE5697425 last_name: Lukina citation: ama: 'Alamdari PA, Avni G, Henzinger TA, Lukina A. Formal methods with a touch of magic. In: Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design. TU Wien Academic Press; 2020:138-147. doi:10.34727/2020/isbn.978-3-85448-042-6_21' apa: 'Alamdari, P. A., Avni, G., Henzinger, T. A., & Lukina, A. (2020). Formal methods with a touch of magic. In Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design (pp. 138–147). Online Conference: TU Wien Academic Press. https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21' chicago: Alamdari, Par Alizadeh, Guy Avni, Thomas A Henzinger, and Anna Lukina. “Formal Methods with a Touch of Magic.” In Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, 138–47. TU Wien Academic Press, 2020. https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21. ieee: P. A. Alamdari, G. Avni, T. A. Henzinger, and A. Lukina, “Formal methods with a touch of magic,” in Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, Online Conference, 2020, pp. 138–147. ista: 'Alamdari PA, Avni G, Henzinger TA, Lukina A. 2020. Formal methods with a touch of magic. Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design. FMCAD: Formal Methods in Computer-Aided Design, 138–147.' mla: Alamdari, Par Alizadeh, et al. “Formal Methods with a Touch of Magic.” Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, TU Wien Academic Press, 2020, pp. 138–47, doi:10.34727/2020/isbn.978-3-85448-042-6_21. short: P.A. Alamdari, G. Avni, T.A. Henzinger, A. Lukina, in:, Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, TU Wien Academic Press, 2020, pp. 138–147. conference: end_date: 2020-09-24 location: Online Conference name: ' FMCAD: Formal Methods in Computer-Aided Design' start_date: 2020-09-21 date_created: 2021-01-24T23:01:10Z date_published: 2020-09-21T00:00:00Z date_updated: 2021-02-09T09:39:59Z day: '21' ddc: - '000' department: - _id: ToHe doi: 10.34727/2020/isbn.978-3-85448-042-6_21 file: - access_level: open_access checksum: d616d549a0ade78606b16f8a9540820f content_type: application/pdf creator: dernst date_created: 2021-02-09T09:39:02Z date_updated: 2021-02-09T09:39:02Z file_id: '9109' file_name: 2020_FMCAD_Alamdari.pdf file_size: 990999 relation: main_file success: 1 file_date_updated: 2021-02-09T09:39:02Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 138-147 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design publication_identifier: eissn: - 2708-7824 isbn: - '9783854480426' publication_status: published publisher: TU Wien Academic Press quality_controlled: '1' scopus_import: '1' status: public title: Formal methods with a touch of magic tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '9249' abstract: - lang: eng text: Rhombic dodecahedron is a space filling polyhedron which represents the close packing of spheres in 3D space and the Voronoi structures of the face centered cubic (FCC) lattice. In this paper, we describe a new coordinate system where every 3-integer coordinates grid point corresponds to a rhombic dodecahedron centroid. In order to illustrate the interest of the new coordinate system, we propose the characterization of 3D digital plane with its topological features, such as the interrelation between the thickness of the digital plane and the separability constraint we aim to obtain. We also present the characterization of 3D digital lines and study it as the intersection of multiple digital planes. Characterization of 3D digital sphere with relevant topological features is proposed as well along with the 48-symmetry appearing in the new coordinate system. acknowledgement: "This work has been partially supported by the European Research Council (ERC) under\r\nthe European Union’s Horizon 2020 research and innovation programme, grant no. 788183, and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, Austrian Science Fund (FWF), grant no. I 02979-N35. " article_processing_charge: No article_type: original author: - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Gaëlle full_name: Largeteau-Skapin, Gaëlle last_name: Largeteau-Skapin - first_name: Rita full_name: Zrour, Rita last_name: Zrour - first_name: Eric full_name: Andres, Eric last_name: Andres citation: ama: Biswas R, Largeteau-Skapin G, Zrour R, Andres E. Digital objects in rhombic dodecahedron grid. Mathematical Morphology - Theory and Applications. 2020;4(1):143-158. doi:10.1515/mathm-2020-0106 apa: Biswas, R., Largeteau-Skapin, G., Zrour, R., & Andres, E. (2020). Digital objects in rhombic dodecahedron grid. Mathematical Morphology - Theory and Applications. De Gruyter. https://doi.org/10.1515/mathm-2020-0106 chicago: Biswas, Ranita, Gaëlle Largeteau-Skapin, Rita Zrour, and Eric Andres. “Digital Objects in Rhombic Dodecahedron Grid.” Mathematical Morphology - Theory and Applications. De Gruyter, 2020. https://doi.org/10.1515/mathm-2020-0106. ieee: R. Biswas, G. Largeteau-Skapin, R. Zrour, and E. Andres, “Digital objects in rhombic dodecahedron grid,” Mathematical Morphology - Theory and Applications, vol. 4, no. 1. De Gruyter, pp. 143–158, 2020. ista: Biswas R, Largeteau-Skapin G, Zrour R, Andres E. 2020. Digital objects in rhombic dodecahedron grid. Mathematical Morphology - Theory and Applications. 4(1), 143–158. mla: Biswas, Ranita, et al. “Digital Objects in Rhombic Dodecahedron Grid.” Mathematical Morphology - Theory and Applications, vol. 4, no. 1, De Gruyter, 2020, pp. 143–58, doi:10.1515/mathm-2020-0106. short: R. Biswas, G. Largeteau-Skapin, R. Zrour, E. Andres, Mathematical Morphology - Theory and Applications 4 (2020) 143–158. date_created: 2021-03-16T08:55:19Z date_published: 2020-11-17T00:00:00Z date_updated: 2021-03-22T09:01:50Z day: '17' ddc: - '510' department: - _id: HeEd doi: 10.1515/mathm-2020-0106 ec_funded: 1 file: - access_level: open_access checksum: 4a1043fa0548a725d464017fe2483ce0 content_type: application/pdf creator: dernst date_created: 2021-03-22T08:56:37Z date_updated: 2021-03-22T08:56:37Z file_id: '9272' file_name: 2020_MathMorpholTheoryAppl_Biswas.pdf file_size: 3668725 relation: main_file success: 1 file_date_updated: 2021-03-22T08:56:37Z has_accepted_license: '1' intvolume: ' 4' issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 143-158 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Mathematical Morphology - Theory and Applications publication_identifier: issn: - 2353-3390 publication_status: published publisher: De Gruyter quality_controlled: '1' status: public title: Digital objects in rhombic dodecahedron grid tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2020' ... --- _id: '9299' abstract: - lang: eng text: We call a multigraph non-homotopic if it can be drawn in the plane in such a way that no two edges connecting the same pair of vertices can be continuously transformed into each other without passing through a vertex, and no loop can be shrunk to its end-vertex in the same way. It is easy to see that a non-homotopic multigraph on n>1 vertices can have arbitrarily many edges. We prove that the number of crossings between the edges of a non-homotopic multigraph with n vertices and m>4n edges is larger than cm2n for some constant c>0 , and that this bound is tight up to a polylogarithmic factor. We also show that the lower bound is not asymptotically sharp as n is fixed and m⟶∞ . acknowledgement: Supported by the National Research, Development and Innovation Office, NKFIH, KKP-133864, K-131529, K-116769, K-132696, by the Higher Educational Institutional Excellence Program 2019 NKFIH-1158-6/2019, the Austrian Science Fund (FWF), grant Z 342-N31, by the Ministry of Education and Science of the Russian Federation MegaGrant No. 075-15-2019-1926, and by the ERC Synergy Grant “Dynasnet” No. 810115. A full version can be found at https://arxiv.org/abs/2006.14908. article_processing_charge: No author: - first_name: János full_name: Pach, János id: E62E3130-B088-11EA-B919-BF823C25FEA4 last_name: Pach - first_name: Gábor full_name: Tardos, Gábor last_name: Tardos - first_name: Géza full_name: Tóth, Géza last_name: Tóth citation: ama: 'Pach J, Tardos G, Tóth G. Crossings between non-homotopic edges. In: 28th International Symposium on Graph Drawing and Network Visualization. Vol 12590. LNCS. Springer Nature; 2020:359-371. doi:10.1007/978-3-030-68766-3_28' apa: 'Pach, J., Tardos, G., & Tóth, G. (2020). Crossings between non-homotopic edges. In 28th International Symposium on Graph Drawing and Network Visualization (Vol. 12590, pp. 359–371). Virtual, Online: Springer Nature. https://doi.org/10.1007/978-3-030-68766-3_28' chicago: Pach, János, Gábor Tardos, and Géza Tóth. “Crossings between Non-Homotopic Edges.” In 28th International Symposium on Graph Drawing and Network Visualization, 12590:359–71. LNCS. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-68766-3_28. ieee: J. Pach, G. Tardos, and G. Tóth, “Crossings between non-homotopic edges,” in 28th International Symposium on Graph Drawing and Network Visualization, Virtual, Online, 2020, vol. 12590, pp. 359–371. ista: 'Pach J, Tardos G, Tóth G. 2020. Crossings between non-homotopic edges. 28th International Symposium on Graph Drawing and Network Visualization. GD: Graph Drawing and Network VisualizationLNCS vol. 12590, 359–371.' mla: Pach, János, et al. “Crossings between Non-Homotopic Edges.” 28th International Symposium on Graph Drawing and Network Visualization, vol. 12590, Springer Nature, 2020, pp. 359–71, doi:10.1007/978-3-030-68766-3_28. short: J. Pach, G. Tardos, G. Tóth, in:, 28th International Symposium on Graph Drawing and Network Visualization, Springer Nature, 2020, pp. 359–371. conference: end_date: 2020-09-18 location: Virtual, Online name: 'GD: Graph Drawing and Network Visualization' start_date: 2020-09-16 date_created: 2021-03-28T22:01:44Z date_published: 2020-09-20T00:00:00Z date_updated: 2021-04-06T11:32:32Z day: '20' department: - _id: HeEd doi: 10.1007/978-3-030-68766-3_28 external_id: arxiv: - '2006.14908' intvolume: ' 12590' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2006.14908 month: '09' oa: 1 oa_version: Preprint page: 359-371 project: - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize publication: 28th International Symposium on Graph Drawing and Network Visualization publication_identifier: eissn: - 1611-3349 isbn: - '9783030687656' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: LNCS status: public title: Crossings between non-homotopic edges type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12590 year: '2020' ... --- _id: '9632' abstract: - lang: eng text: "Second-order information, in the form of Hessian- or Inverse-Hessian-vector products, is a fundamental tool for solving optimization problems. Recently, there has been significant interest in utilizing this information in the context of deep\r\nneural networks; however, relatively little is known about the quality of existing approximations in this context. Our work examines this question, identifies issues with existing approaches, and proposes a method called WoodFisher to compute a faithful and efficient estimate of the inverse Hessian. Our main application is to neural network compression, where we build on the classic Optimal Brain Damage/Surgeon framework. We demonstrate that WoodFisher significantly outperforms popular state-of-the-art methods for oneshot pruning. Further, even when iterative, gradual pruning is allowed, our method results in a gain in test accuracy over the state-of-the-art approaches, for standard image classification datasets such as ImageNet ILSVRC. We examine how our method can be extended to take into account first-order information, as well as\r\nillustrate its ability to automatically set layer-wise pruning thresholds and perform compression in the limited-data regime. The code is available at the following link, https://github.com/IST-DASLab/WoodFisher." acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 805223 ScaleML). Also, we would like to thank Alexander Shevchenko, Alexandra Peste, and other members of the group for fruitful discussions. article_processing_charge: No author: - first_name: Sidak Pal full_name: Singh, Sidak Pal id: DD138E24-D89D-11E9-9DC0-DEF6E5697425 last_name: Singh - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Singh SP, Alistarh D-A. WoodFisher: Efficient second-order approximation for neural network compression. In: Advances in Neural Information Processing Systems. Vol 33. Curran Associates; 2020:18098-18109.' apa: 'Singh, S. P., & Alistarh, D.-A. (2020). WoodFisher: Efficient second-order approximation for neural network compression. In Advances in Neural Information Processing Systems (Vol. 33, pp. 18098–18109). Vancouver, Canada: Curran Associates.' chicago: 'Singh, Sidak Pal, and Dan-Adrian Alistarh. “WoodFisher: Efficient Second-Order Approximation for Neural Network Compression.” In Advances in Neural Information Processing Systems, 33:18098–109. Curran Associates, 2020.' ieee: 'S. P. Singh and D.-A. Alistarh, “WoodFisher: Efficient second-order approximation for neural network compression,” in Advances in Neural Information Processing Systems, Vancouver, Canada, 2020, vol. 33, pp. 18098–18109.' ista: 'Singh SP, Alistarh D-A. 2020. WoodFisher: Efficient second-order approximation for neural network compression. Advances in Neural Information Processing Systems. NeurIPS: Conference on Neural Information Processing Systems vol. 33, 18098–18109.' mla: 'Singh, Sidak Pal, and Dan-Adrian Alistarh. “WoodFisher: Efficient Second-Order Approximation for Neural Network Compression.” Advances in Neural Information Processing Systems, vol. 33, Curran Associates, 2020, pp. 18098–109.' short: S.P. Singh, D.-A. Alistarh, in:, Advances in Neural Information Processing Systems, Curran Associates, 2020, pp. 18098–18109. conference: end_date: 2020-12-12 location: Vancouver, Canada name: 'NeurIPS: Conference on Neural Information Processing Systems' start_date: 2020-12-06 date_created: 2021-07-04T22:01:26Z date_published: 2020-12-06T00:00:00Z date_updated: 2023-02-23T14:03:06Z day: '06' department: - _id: DaAl - _id: ToHe ec_funded: 1 external_id: arxiv: - '2004.14340' intvolume: ' 33' language: - iso: eng main_file_link: - open_access: '1' url: https://proceedings.neurips.cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html month: '12' oa: 1 oa_version: Published Version page: 18098-18109 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: Advances in Neural Information Processing Systems publication_identifier: isbn: - '9781713829546' issn: - '10495258' publication_status: published publisher: Curran Associates quality_controlled: '1' scopus_import: '1' status: public title: 'WoodFisher: Efficient second-order approximation for neural network compression' type: conference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 33 year: '2020' ... --- _id: '9630' abstract: - lang: eng text: Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context. acknowledgement: This research is partially supported by the Office of Naval Research, through grant no. N62909-18-1-2038, and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF). article_processing_charge: Yes article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Ziga full_name: Virk, Ziga id: 2E36B656-F248-11E8-B48F-1D18A9856A87 last_name: Virk - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: Edelsbrunner H, Virk Z, Wagner H. Topological data analysis in information space. Journal of Computational Geometry. 2020;11(2):162-182. doi:10.20382/jocg.v11i2a7 apa: Edelsbrunner, H., Virk, Z., & Wagner, H. (2020). Topological data analysis in information space. Journal of Computational Geometry. Carleton University. https://doi.org/10.20382/jocg.v11i2a7 chicago: Edelsbrunner, Herbert, Ziga Virk, and Hubert Wagner. “Topological Data Analysis in Information Space.” Journal of Computational Geometry. Carleton University, 2020. https://doi.org/10.20382/jocg.v11i2a7. ieee: H. Edelsbrunner, Z. Virk, and H. Wagner, “Topological data analysis in information space,” Journal of Computational Geometry, vol. 11, no. 2. Carleton University, pp. 162–182, 2020. ista: Edelsbrunner H, Virk Z, Wagner H. 2020. Topological data analysis in information space. Journal of Computational Geometry. 11(2), 162–182. mla: Edelsbrunner, Herbert, et al. “Topological Data Analysis in Information Space.” Journal of Computational Geometry, vol. 11, no. 2, Carleton University, 2020, pp. 162–82, doi:10.20382/jocg.v11i2a7. short: H. Edelsbrunner, Z. Virk, H. Wagner, Journal of Computational Geometry 11 (2020) 162–182. date_created: 2021-07-04T22:01:26Z date_published: 2020-12-14T00:00:00Z date_updated: 2021-08-11T12:26:34Z day: '14' ddc: - '510' - '000' department: - _id: HeEd doi: 10.20382/jocg.v11i2a7 file: - access_level: open_access checksum: f02d0b2b3838e7891a6c417fc34ffdcd content_type: application/pdf creator: asandaue date_created: 2021-08-11T11:55:11Z date_updated: 2021-08-11T11:55:11Z file_id: '9882' file_name: 2020_JournalOfComputationalGeometry_Edelsbrunner.pdf file_size: 1449234 relation: main_file success: 1 file_date_updated: 2021-08-11T11:55:11Z has_accepted_license: '1' intvolume: ' 11' issue: '2' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 162-182 project: - _id: 0aa4bc98-070f-11eb-9043-e6fff9c6a316 grant_number: I4887 name: Discretization in Geometry and Dynamics publication: Journal of Computational Geometry publication_identifier: eissn: - 1920180X publication_status: published publisher: Carleton University quality_controlled: '1' scopus_import: '1' status: public title: Topological data analysis in information space tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 11 year: '2020' ... --- _id: '9631' abstract: - lang: eng text: The ability to leverage large-scale hardware parallelism has been one of the key enablers of the accelerated recent progress in machine learning. Consequently, there has been considerable effort invested into developing efficient parallel variants of classic machine learning algorithms. However, despite the wealth of knowledge on parallelization, some classic machine learning algorithms often prove hard to parallelize efficiently while maintaining convergence. In this paper, we focus on efficient parallel algorithms for the key machine learning task of inference on graphical models, in particular on the fundamental belief propagation algorithm. We address the challenge of efficiently parallelizing this classic paradigm by showing how to leverage scalable relaxed schedulers in this context. We present an extensive empirical study, showing that our approach outperforms previous parallel belief propagation implementations both in terms of scalability and in terms of wall-clock convergence time, on a range of practical applications. acknowledgement: "We thank Marco Mondelli for discussions related to LDPC decoding, and Giorgi Nadiradze for discussions on analysis of relaxed schedulers. This project has received funding from the European Research Council (ERC) under the European\r\nUnion’s Horizon 2020 research and innovation programme (grant agreement No 805223 ScaleML)." article_processing_charge: No author: - first_name: Vitaly full_name: Aksenov, Vitaly last_name: Aksenov - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Janne full_name: Korhonen, Janne id: C5402D42-15BC-11E9-A202-CA2BE6697425 last_name: Korhonen citation: ama: 'Aksenov V, Alistarh D-A, Korhonen J. Scalable belief propagation via relaxed scheduling. In: Advances in Neural Information Processing Systems. Vol 33. Curran Associates; 2020:22361-22372.' apa: 'Aksenov, V., Alistarh, D.-A., & Korhonen, J. (2020). Scalable belief propagation via relaxed scheduling. In Advances in Neural Information Processing Systems (Vol. 33, pp. 22361–22372). Vancouver, Canada: Curran Associates.' chicago: Aksenov, Vitaly, Dan-Adrian Alistarh, and Janne Korhonen. “Scalable Belief Propagation via Relaxed Scheduling.” In Advances in Neural Information Processing Systems, 33:22361–72. Curran Associates, 2020. ieee: V. Aksenov, D.-A. Alistarh, and J. Korhonen, “Scalable belief propagation via relaxed scheduling,” in Advances in Neural Information Processing Systems, Vancouver, Canada, 2020, vol. 33, pp. 22361–22372. ista: 'Aksenov V, Alistarh D-A, Korhonen J. 2020. Scalable belief propagation via relaxed scheduling. Advances in Neural Information Processing Systems. NeurIPS: Conference on Neural Information Processing Systems vol. 33, 22361–22372.' mla: Aksenov, Vitaly, et al. “Scalable Belief Propagation via Relaxed Scheduling.” Advances in Neural Information Processing Systems, vol. 33, Curran Associates, 2020, pp. 22361–72. short: V. Aksenov, D.-A. Alistarh, J. Korhonen, in:, Advances in Neural Information Processing Systems, Curran Associates, 2020, pp. 22361–22372. conference: end_date: 2020-12-12 location: Vancouver, Canada name: 'NeurIPS: Conference on Neural Information Processing Systems' start_date: 2020-12-06 date_created: 2021-07-04T22:01:26Z date_published: 2020-12-06T00:00:00Z date_updated: 2023-02-23T14:03:03Z day: '06' department: - _id: DaAl ec_funded: 1 external_id: arxiv: - '2002.11505' intvolume: ' 33' language: - iso: eng main_file_link: - open_access: '1' url: https://proceedings.neurips.cc/paper/2020/hash/fdb2c3bab9d0701c4a050a4d8d782c7f-Abstract.html month: '12' oa: 1 oa_version: Published Version page: 22361-22372 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: Advances in Neural Information Processing Systems publication_identifier: isbn: - '9781713829546' issn: - '10495258' publication_status: published publisher: Curran Associates quality_controlled: '1' scopus_import: '1' status: public title: Scalable belief propagation via relaxed scheduling type: conference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 33 year: '2020' ... --- _id: '8533' abstract: - lang: eng text: Game of Life is a simple and elegant model to study dynamical system over networks. The model consists of a graph where every vertex has one of two types, namely, dead or alive. A configuration is a mapping of the vertices to the types. An update rule describes how the type of a vertex is updated given the types of its neighbors. In every round, all vertices are updated synchronously, which leads to a configuration update. While in general, Game of Life allows a broad range of update rules, we focus on two simple families of update rules, namely, underpopulation and overpopulation, that model several interesting dynamics studied in the literature. In both settings, a dead vertex requires at least a desired number of live neighbors to become alive. For underpopulation (resp., overpopulation), a live vertex requires at least (resp. at most) a desired number of live neighbors to remain alive. We study the basic computation problems, e.g., configuration reachability, for these two families of rules. For underpopulation rules, we show that these problems can be solved in polynomial time, whereas for overpopulation rules they are PSPACE-complete. acknowledgement: "Krishnendu Chatterjee: The research was partially supported by the Vienna Science and\r\nTechnology Fund (WWTF) Project ICT15-003.\r\nIsmaël Jecker: This project has received funding from the European Union’s Horizon 2020 research\r\nand innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411." alternative_title: - LIPIcs article_number: 22:1-22:13 article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Jakub full_name: Svoboda, Jakub id: 130759D2-D7DD-11E9-87D2-DE0DE6697425 last_name: Svoboda citation: ama: 'Chatterjee K, Ibsen-Jensen R, Jecker IR, Svoboda J. Simplified game of life: Algorithms and complexity. In: 45th International Symposium on Mathematical Foundations of Computer Science. Vol 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.MFCS.2020.22' apa: 'Chatterjee, K., Ibsen-Jensen, R., Jecker, I. R., & Svoboda, J. (2020). Simplified game of life: Algorithms and complexity. In 45th International Symposium on Mathematical Foundations of Computer Science (Vol. 170). Prague, Czech Republic: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2020.22' chicago: 'Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, Ismael R Jecker, and Jakub Svoboda. “Simplified Game of Life: Algorithms and Complexity.” In 45th International Symposium on Mathematical Foundations of Computer Science, Vol. 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.MFCS.2020.22.' ieee: 'K. Chatterjee, R. Ibsen-Jensen, I. R. Jecker, and J. Svoboda, “Simplified game of life: Algorithms and complexity,” in 45th International Symposium on Mathematical Foundations of Computer Science, Prague, Czech Republic, 2020, vol. 170.' ista: 'Chatterjee K, Ibsen-Jensen R, Jecker IR, Svoboda J. 2020. Simplified game of life: Algorithms and complexity. 45th International Symposium on Mathematical Foundations of Computer Science. MFCS: Symposium on Mathematical Foundations of Computer Science, LIPIcs, vol. 170, 22:1-22:13.' mla: 'Chatterjee, Krishnendu, et al. “Simplified Game of Life: Algorithms and Complexity.” 45th International Symposium on Mathematical Foundations of Computer Science, vol. 170, 22:1-22:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.MFCS.2020.22.' short: K. Chatterjee, R. Ibsen-Jensen, I.R. Jecker, J. Svoboda, in:, 45th International Symposium on Mathematical Foundations of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-08-28 location: Prague, Czech Republic name: 'MFCS: Symposium on Mathematical Foundations of Computer Science' start_date: 2020-08-24 date_created: 2020-09-20T22:01:36Z date_published: 2020-08-18T00:00:00Z date_updated: 2021-01-12T08:19:55Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.MFCS.2020.22 ec_funded: 1 external_id: arxiv: - '2007.02894' file: - access_level: open_access checksum: bbd7c4f55d45f2ff2a0a4ef0e10a77b1 content_type: application/pdf creator: dernst date_created: 2020-09-21T13:57:34Z date_updated: 2020-09-21T13:57:34Z file_id: '8550' file_name: 2020_LIPIcs_Chatterjee.pdf file_size: 491374 relation: main_file success: 1 file_date_updated: 2020-09-21T13:57:34Z has_accepted_license: '1' intvolume: ' 170' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 45th International Symposium on Mathematical Foundations of Computer Science publication_identifier: isbn: - '9783959771597' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: 'Simplified game of life: Algorithms and complexity' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 170 year: '2020' ... --- _id: '8534' abstract: - lang: eng text: A regular language L of finite words is composite if there are regular languages L₁,L₂,…,L_t such that L = ⋂_{i = 1}^t L_i and the index (number of states in a minimal DFA) of every language L_i is strictly smaller than the index of L. Otherwise, L is prime. Primality of regular languages was introduced and studied in [O. Kupferman and J. Mosheiff, 2015], where the complexity of deciding the primality of the language of a given DFA was left open, with a doubly-exponential gap between the upper and lower bounds. We study primality for unary regular languages, namely regular languages with a singleton alphabet. A unary language corresponds to a subset of ℕ, making the study of unary prime languages closer to that of primality in number theory. We show that the setting of languages is richer. In particular, while every composite number is the product of two smaller numbers, the number t of languages necessary to decompose a composite unary language induces a strict hierarchy. In addition, a primality witness for a unary language L, namely a word that is not in L but is in all products of languages that contain L and have an index smaller than L’s, may be of exponential length. Still, we are able to characterize compositionality by structural properties of a DFA for L, leading to a LogSpace algorithm for primality checking of unary DFAs. acknowledgement: "Ismaël Jecker: This project has received funding from the European Union’s Horizon\r\n2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No.\r\n754411. Nicolas Mazzocchi: PhD fellowship FRIA from the F.R.S.-FNRS." alternative_title: - LIPIcs article_number: 51:1-51:12 article_processing_charge: No author: - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Orna full_name: Kupferman, Orna last_name: Kupferman - first_name: Nicolas full_name: Mazzocchi, Nicolas last_name: Mazzocchi citation: ama: 'Jecker IR, Kupferman O, Mazzocchi N. Unary prime languages. In: 45th International Symposium on Mathematical Foundations of Computer Science. Vol 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.MFCS.2020.51' apa: 'Jecker, I. R., Kupferman, O., & Mazzocchi, N. (2020). Unary prime languages. In 45th International Symposium on Mathematical Foundations of Computer Science (Vol. 170). Prague, Czech Republic: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2020.51' chicago: Jecker, Ismael R, Orna Kupferman, and Nicolas Mazzocchi. “Unary Prime Languages.” In 45th International Symposium on Mathematical Foundations of Computer Science, Vol. 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.MFCS.2020.51. ieee: I. R. Jecker, O. Kupferman, and N. Mazzocchi, “Unary prime languages,” in 45th International Symposium on Mathematical Foundations of Computer Science, Prague, Czech Republic, 2020, vol. 170. ista: 'Jecker IR, Kupferman O, Mazzocchi N. 2020. Unary prime languages. 45th International Symposium on Mathematical Foundations of Computer Science. MFCS: Symposium on Mathematical Foundations of Computer Science, LIPIcs, vol. 170, 51:1-51:12.' mla: Jecker, Ismael R., et al. “Unary Prime Languages.” 45th International Symposium on Mathematical Foundations of Computer Science, vol. 170, 51:1-51:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.MFCS.2020.51. short: I.R. Jecker, O. Kupferman, N. Mazzocchi, in:, 45th International Symposium on Mathematical Foundations of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-08-28 location: Prague, Czech Republic name: 'MFCS: Symposium on Mathematical Foundations of Computer Science' start_date: 2020-08-24 date_created: 2020-09-20T22:01:36Z date_published: 2020-08-18T00:00:00Z date_updated: 2021-01-12T08:19:56Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.MFCS.2020.51 ec_funded: 1 file: - access_level: open_access checksum: 2dc9e2fad6becd4563aef3e27a473f70 content_type: application/pdf creator: dernst date_created: 2020-09-21T14:17:08Z date_updated: 2020-09-21T14:17:08Z file_id: '8552' file_name: 2020_LIPIcsMFCS_Jecker.pdf file_size: 597977 relation: main_file success: 1 file_date_updated: 2020-09-21T14:17:08Z has_accepted_license: '1' intvolume: ' 170' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 45th International Symposium on Mathematical Foundations of Computer Science publication_identifier: isbn: - '9783959771597' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Unary prime languages tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 170 year: '2020' ... --- _id: '8538' abstract: - lang: eng text: We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods. acknowledgement: " This paper would not be written if not for Dan Reznik’s curiosity and persistence; we are very grateful to him. We also thank R. Garcia and J. Koiller for interesting discussions. It is a pleasure to thank the Mathematical Institute of the University of Heidelberg for its stimulating atmosphere. ST thanks M. Bialy for interesting discussions and the Tel Aviv\r\nUniversity for its invariable hospitality. AA was supported by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 78818 Alpha). RS is supported by NSF Grant DMS-1807320. ST was supported by NSF grant DMS-1510055 and SFB/TRR 191." article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Richard full_name: Schwartz, Richard last_name: Schwartz - first_name: Serge full_name: Tabachnikov, Serge last_name: Tabachnikov citation: ama: Akopyan A, Schwartz R, Tabachnikov S. Billiards in ellipses revisited. European Journal of Mathematics. 2020. doi:10.1007/s40879-020-00426-9 apa: Akopyan, A., Schwartz, R., & Tabachnikov, S. (2020). Billiards in ellipses revisited. European Journal of Mathematics. Springer Nature. https://doi.org/10.1007/s40879-020-00426-9 chicago: Akopyan, Arseniy, Richard Schwartz, and Serge Tabachnikov. “Billiards in Ellipses Revisited.” European Journal of Mathematics. Springer Nature, 2020. https://doi.org/10.1007/s40879-020-00426-9. ieee: A. Akopyan, R. Schwartz, and S. Tabachnikov, “Billiards in ellipses revisited,” European Journal of Mathematics. Springer Nature, 2020. ista: Akopyan A, Schwartz R, Tabachnikov S. 2020. Billiards in ellipses revisited. European Journal of Mathematics. mla: Akopyan, Arseniy, et al. “Billiards in Ellipses Revisited.” European Journal of Mathematics, Springer Nature, 2020, doi:10.1007/s40879-020-00426-9. short: A. Akopyan, R. Schwartz, S. Tabachnikov, European Journal of Mathematics (2020). date_created: 2020-09-20T22:01:38Z date_published: 2020-09-09T00:00:00Z date_updated: 2021-12-02T15:10:17Z day: '09' department: - _id: HeEd doi: 10.1007/s40879-020-00426-9 ec_funded: 1 external_id: arxiv: - '2001.02934' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2001.02934 month: '09' oa: 1 oa_version: Preprint project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended publication: European Journal of Mathematics publication_identifier: eissn: - 2199-6768 issn: - 2199-675X publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Billiards in ellipses revisited type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2020' ... --- _id: '8616' abstract: - lang: eng text: The brain vasculature supplies neurons with glucose and oxygen, but little is known about how vascular plasticity contributes to brain function. Using longitudinal in vivo imaging, we reported that a substantial proportion of blood vessels in the adult brain sporadically occluded and regressed. Their regression proceeded through sequential stages of blood-flow occlusion, endothelial cell collapse, relocation or loss of pericytes, and retraction of glial endfeet. Regressing vessels were found to be widespread in mouse, monkey and human brains. Both brief occlusions of the middle cerebral artery and lipopolysaccharide-mediated inflammation induced an increase of vessel regression. Blockage of leukocyte adhesion to endothelial cells alleviated LPS-induced vessel regression. We further revealed that blood vessel regression caused a reduction of neuronal activity due to a dysfunction in mitochondrial metabolism and glutamate production. Our results elucidate the mechanism of vessel regression and its role in neuronal function in the adult brain. acknowledgement: 'The project was initiated in the Jan lab at UCSF. We thank Lily Jan and Yuh-Nung Jan’s generous support. We thank Liqun Luo’s lab for providing MADM-7 mice and Rolf A Brekken for VEGF-antibodies. Drs. Yuanquan Song (UPenn), Zhaozhu Hu (JHU), Ji Hu (ShanghaiTech), Yang Xiang (U. Mass), Hao Wang (Zhejiang U.) and Ruikang Wang (U. Washington) for critical input, colleagues at Children’s Research Institute, Departments of Neuroscience, Neurology and Neurotherapeutics, Pediatrics from UT Southwestern, and colleagues from the Jan lab for discussion. Dr. Bridget Samuels, Sean Morrison (UT Southwestern), and Nannan Lu (Zhejiang U.) for critical reading. We acknowledge the assistance of the CIBR Imaging core. We also thank UT Southwestern Live Cell Imaging Facility, a Shared Resource of the Harold C. Simmons Cancer Center, supported in part by an NCI Cancer Center Support Grant, P30 CA142543K. This work is supported by CIBR funds and the American Heart Association AWRP Summer 2016 Innovative Research Grant (17IRG33410377) to W-P.G.; National Natural Science Foundation of China (No.81370031) to Z.Z.;National Key Research and Development Program of China (2016YFE0125400)to F.H.;National Natural Science Foundations of China (No. 81473202) to Y.L.; National Natural Science Foundation of China (No.31600839) and Shenzhen Science and Technology Research Program (JCYJ20170818163320865) to B.P.; National Natural Science Foundation of China (No. 31800864) and Westlake University start-up funds to J-M. J. NIH R01NS088627 to W.L.J.; NIH: R01 AG020670 and RF1AG054111 to H.Z.; R01 NS088555 to A.M.S., and European Research Council No.725780 to S.H.;W-P.G. was a recipient of Bugher-American Heart Association Dan Adams Thinking Outside the Box Award.' article_processing_charge: No author: - first_name: Xiaofei full_name: Gao, Xiaofei last_name: Gao - first_name: Jun-Liszt full_name: Li, Jun-Liszt last_name: Li - first_name: Xingjun full_name: Chen, Xingjun last_name: Chen - first_name: Bo full_name: Ci, Bo last_name: Ci - first_name: Fei full_name: Chen, Fei last_name: Chen - first_name: Nannan full_name: Lu, Nannan last_name: Lu - first_name: Bo full_name: Shen, Bo last_name: Shen - first_name: Lijun full_name: Zheng, Lijun last_name: Zheng - first_name: Jie-Min full_name: Jia, Jie-Min last_name: Jia - first_name: Yating full_name: Yi, Yating last_name: Yi - first_name: Shiwen full_name: Zhang, Shiwen last_name: Zhang - first_name: Ying-Chao full_name: Shi, Ying-Chao last_name: Shi - first_name: Kaibin full_name: Shi, Kaibin last_name: Shi - first_name: Nicholas E full_name: Propson, Nicholas E last_name: Propson - first_name: Yubin full_name: Huang, Yubin last_name: Huang - first_name: Katherine full_name: Poinsatte, Katherine last_name: Poinsatte - first_name: Zhaohuan full_name: Zhang, Zhaohuan last_name: Zhang - first_name: Yuanlei full_name: Yue, Yuanlei last_name: Yue - first_name: Dale B full_name: Bosco, Dale B last_name: Bosco - first_name: Ying-mei full_name: Lu, Ying-mei last_name: Lu - first_name: Shi-bing full_name: Yang, Shi-bing last_name: Yang - first_name: Ralf H. full_name: Adams, Ralf H. last_name: Adams - first_name: Volkhard full_name: Lindner, Volkhard last_name: Lindner - first_name: Fen full_name: Huang, Fen last_name: Huang - first_name: Long-Jun full_name: Wu, Long-Jun last_name: Wu - first_name: Hui full_name: Zheng, Hui last_name: Zheng - first_name: Feng full_name: Han, Feng last_name: Han - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Ann M. full_name: Stowe, Ann M. last_name: Stowe - first_name: Bo full_name: Peng, Bo last_name: Peng - first_name: Marta full_name: Margeta, Marta last_name: Margeta - first_name: Xiaoqun full_name: Wang, Xiaoqun last_name: Wang - first_name: Qiang full_name: Liu, Qiang last_name: Liu - first_name: Jakob full_name: Körbelin, Jakob last_name: Körbelin - first_name: Martin full_name: Trepel, Martin last_name: Trepel - first_name: Hui full_name: Lu, Hui last_name: Lu - first_name: Bo O. full_name: Zhou, Bo O. last_name: Zhou - first_name: Hu full_name: Zhao, Hu last_name: Zhao - first_name: Wenzhi full_name: Su, Wenzhi last_name: Su - first_name: Robert M. full_name: Bachoo, Robert M. last_name: Bachoo - first_name: Woo-ping full_name: Ge, Woo-ping last_name: Ge citation: ama: Gao X, Li J-L, Chen X, et al. Reduction of neuronal activity mediated by blood-vessel regression in the brain. bioRxiv. doi:10.1101/2020.09.15.262782 apa: Gao, X., Li, J.-L., Chen, X., Ci, B., Chen, F., Lu, N., … Ge, W. (n.d.). Reduction of neuronal activity mediated by blood-vessel regression in the brain. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.09.15.262782 chicago: Gao, Xiaofei, Jun-Liszt Li, Xingjun Chen, Bo Ci, Fei Chen, Nannan Lu, Bo Shen, et al. “Reduction of Neuronal Activity Mediated by Blood-Vessel Regression in the Brain.” BioRxiv. Cold Spring Harbor Laboratory, n.d. https://doi.org/10.1101/2020.09.15.262782. ieee: X. Gao et al., “Reduction of neuronal activity mediated by blood-vessel regression in the brain,” bioRxiv. Cold Spring Harbor Laboratory. ista: Gao X, Li J-L, Chen X, Ci B, Chen F, Lu N, Shen B, Zheng L, Jia J-M, Yi Y, Zhang S, Shi Y-C, Shi K, Propson NE, Huang Y, Poinsatte K, Zhang Z, Yue Y, Bosco DB, Lu Y, Yang S, Adams RH, Lindner V, Huang F, Wu L-J, Zheng H, Han F, Hippenmeyer S, Stowe AM, Peng B, Margeta M, Wang X, Liu Q, Körbelin J, Trepel M, Lu H, Zhou BO, Zhao H, Su W, Bachoo RM, Ge W. Reduction of neuronal activity mediated by blood-vessel regression in the brain. bioRxiv, 10.1101/2020.09.15.262782. mla: Gao, Xiaofei, et al. “Reduction of Neuronal Activity Mediated by Blood-Vessel Regression in the Brain.” BioRxiv, Cold Spring Harbor Laboratory, doi:10.1101/2020.09.15.262782. short: X. Gao, J.-L. Li, X. Chen, B. Ci, F. Chen, N. Lu, B. Shen, L. Zheng, J.-M. Jia, Y. Yi, S. Zhang, Y.-C. Shi, K. Shi, N.E. Propson, Y. Huang, K. Poinsatte, Z. Zhang, Y. Yue, D.B. Bosco, Y. Lu, S. Yang, R.H. Adams, V. Lindner, F. Huang, L.-J. Wu, H. Zheng, F. Han, S. Hippenmeyer, A.M. Stowe, B. Peng, M. Margeta, X. Wang, Q. Liu, J. Körbelin, M. Trepel, H. Lu, B.O. Zhou, H. Zhao, W. Su, R.M. Bachoo, W. Ge, BioRxiv (n.d.). date_created: 2020-10-06T08:58:59Z date_published: 2020-09-15T00:00:00Z date_updated: 2021-01-12T08:20:19Z day: '15' department: - _id: SiHi doi: 10.1101/2020.09.15.262782 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.09.15.262782 month: '09' oa: 1 oa_version: Preprint project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: bioRxiv publication_status: submitted publisher: Cold Spring Harbor Laboratory status: public title: Reduction of neuronal activity mediated by blood-vessel regression in the brain type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8695' abstract: - lang: eng text: A look at international activities on Open Science reveals a broad spectrum from individual institutional policies to national action plans. The present Recommendations for a National Open Science Strategy in Austria are based on these international initiatives and present practical considerations for their coordinated implementation with regard to strategic developments in research, technology and innovation (RTI) in Austria until 2030. They are addressed to all relevant actors in the RTI system, in particular to Research Performing Organisations, Research Funding Organisations, Research Policy, memory institutions such as Libraries and Researchers. The recommendation paper was developed from 2018 to 2020 by the OANA working group "Open Science Strategy" and published for the first time in spring 2020 for a public consultation. The now available final version of the recommendation document, which contains feedback and comments from the consultation, is intended to provide an impetus for further discussion and implementation of Open Science in Austria and serves as a contribution and basis for a potential national Open Science Strategy in Austria. The document builds on the diverse expertise of the authors (academia, administration, library and archive, information technology, science policy, funding system, etc.) and reflects their personal experiences and opinions. - lang: ger text: Der Blick auf internationale Aktivitäten zu Open Science zeigt ein breites Spektrum von einzelnen institutionellen Policies bis hin zu nationalen Aktionsplänen. Die vorliegenden Empfehlungen für eine nationale Open Science Strategie in Österreich orientieren sich an diesen internationalen Initiativen und stellen praktische Überlegungen für ihre koordinierte Implementierung im Hinblick auf strategische Entwicklungen in Forschung, Technologie und Innovation (FTI) bis 2030 in Österreich dar. Dabei richten sie sich an alle relevanten Akteur*innen im FTI System, im Besonderen an Forschungsstätten, Forschungsförderer, Forschungspolitik, Gedächtnisinstitutionen wie Bibliotheken und Wissenschafter*innen. Das Empfehlungspapier wurde von 2018 bis 2020 von der OANA-Arbeitsgruppe "Open Science Strategie" entwickelt und im Frühling 2020 das erste Mal für eine öffentliche Konsultation veröffentlicht. Die nun vorliegende finale Version des Empfehlungsdokuments, die Feedback und Kommentare aus der Konsultation enthält, soll ein Anstoß für die weitere Diskussion und Umsetzung von Open Science in Österreich sein und als Beitrag und Grundlage einer potentiellen nationalen Open Science Strategie in Österreich dienen. Das Dokument baut auf der vielfältigen Expertise der Autor*innen auf (Wissenschaft, Administration, Bibliothek und Archiv, Informationstechnologie, Wissenschaftspolitik, Förderwesen etc.) und spiegelt deren persönliche Erfahrungen und Meinung wider. article_processing_charge: No author: - first_name: Katja full_name: Mayer, Katja last_name: Mayer - first_name: Katharina full_name: Rieck, Katharina last_name: Rieck - first_name: Stefan full_name: Reichmann, Stefan last_name: Reichmann - first_name: Patrick full_name: Danowski, Patrick id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 last_name: Danowski orcid: 0000-0002-6026-4409 - first_name: Anton full_name: Graschopf, Anton last_name: Graschopf - first_name: Thomas full_name: König, Thomas last_name: König - first_name: Peter full_name: Kraker, Peter last_name: Kraker - first_name: Patrick full_name: Lehner, Patrick last_name: Lehner - first_name: Falk full_name: Reckling, Falk last_name: Reckling - first_name: Tony full_name: Ross-Hellauer, Tony last_name: Ross-Hellauer - first_name: Daniel full_name: Spichtinger, Daniel last_name: Spichtinger - first_name: Michalis full_name: Tzatzanis, Michalis last_name: Tzatzanis - first_name: Stefanie full_name: Schürz, Stefanie last_name: Schürz citation: ama: Mayer K, Rieck K, Reichmann S, et al. Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria. OANA; 2020. doi:10.5281/ZENODO.4109242 apa: Mayer, K., Rieck, K., Reichmann, S., Danowski, P., Graschopf, A., König, T., … Schürz, S. (2020). Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria. OANA. https://doi.org/10.5281/ZENODO.4109242 chicago: Mayer, Katja, Katharina Rieck, Stefan Reichmann, Patrick Danowski, Anton Graschopf, Thomas König, Peter Kraker, et al. Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria. OANA, 2020. https://doi.org/10.5281/ZENODO.4109242. ieee: K. Mayer et al., Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria. OANA, 2020. ista: Mayer K, Rieck K, Reichmann S, Danowski P, Graschopf A, König T, Kraker P, Lehner P, Reckling F, Ross-Hellauer T, Spichtinger D, Tzatzanis M, Schürz S. 2020. Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria, OANA, 36p. mla: Mayer, Katja, et al. Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria. OANA, 2020, doi:10.5281/ZENODO.4109242. short: K. Mayer, K. Rieck, S. Reichmann, P. Danowski, A. Graschopf, T. König, P. Kraker, P. Lehner, F. Reckling, T. Ross-Hellauer, D. Spichtinger, M. Tzatzanis, S. Schürz, Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria, OANA, 2020. date_created: 2020-10-23T09:08:28Z date_published: 2020-10-21T00:00:00Z date_updated: 2020-10-23T09:34:40Z day: '21' ddc: - '020' department: - _id: E-Lib doi: 10.5281/ZENODO.4109242 file: - access_level: open_access checksum: 8eba912bb4b20b4f82f8010f2110461a content_type: application/pdf creator: dernst date_created: 2020-10-23T09:29:45Z date_updated: 2020-10-23T09:29:45Z file_id: '8696' file_name: 2020_OANA_Mayer.pdf file_size: 2298363 relation: main_file success: 1 file_date_updated: 2020-10-23T09:29:45Z has_accepted_license: '1' language: - iso: ger month: '10' oa: 1 oa_version: Published Version page: '36' publication_status: published publisher: OANA status: public title: Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: working_paper user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8706' abstract: - lang: eng text: As part of the Austrian Transition to Open Access (AT2OA) project, subproject TP1-B is working on designing a monitoring solution for the output of Open Access publications in Austria. This report on a potential Open Access monitoring approach in Austria is one of the results of these efforts and can serve as a basis for discussion on an international level. - lang: ger text: Als Teil des Hochschulraumstrukturmittel-Projekts Austrian Transition to Open Access (AT2OA) befasst sich das Teilprojekt TP1-B mit der Konzeption einer Monitoring-Lösung für den Open Access-Publikationsoutput in Österreich. Der nun vorliegende Bericht zu einem potentiellen Open Access-Monitoring in Österreich ist eines der Ergebnisse dieser Bemühungen und kann als Grundlage einer Diskussion auf internationaler Ebene dienen. article_processing_charge: No article_type: original author: - first_name: Patrick full_name: Danowski, Patrick id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 last_name: Danowski orcid: 0000-0002-6026-4409 - first_name: Andreas full_name: Ferus, Andreas last_name: Ferus - first_name: Anna-Laetitia full_name: Hikl, Anna-Laetitia last_name: Hikl - first_name: Gerda full_name: McNeill, Gerda last_name: McNeill - first_name: Clemens full_name: Miniberger, Clemens last_name: Miniberger - first_name: Steve full_name: Reding, Steve last_name: Reding - first_name: Tobias full_name: Zarka, Tobias last_name: Zarka - first_name: Michael full_name: Zojer, Michael last_name: Zojer citation: ama: Danowski P, Ferus A, Hikl A-L, et al. „Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B. Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. 2020;73(2):278-284. doi:10.31263/voebm.v73i2.3941 apa: Danowski, P., Ferus, A., Hikl, A.-L., McNeill, G., Miniberger, C., Reding, S., … Zojer, M. (2020). „Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B. Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare. https://doi.org/10.31263/voebm.v73i2.3941 chicago: Danowski, Patrick, Andreas Ferus, Anna-Laetitia Hikl, Gerda McNeill, Clemens Miniberger, Steve Reding, Tobias Zarka, and Michael Zojer. “„Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B.” Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare, 2020. https://doi.org/10.31263/voebm.v73i2.3941. ieee: P. Danowski et al., “„Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B,” Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare, vol. 73, no. 2. Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare, pp. 278–284, 2020. ista: Danowski P, Ferus A, Hikl A-L, McNeill G, Miniberger C, Reding S, Zarka T, Zojer M. 2020. „Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B. Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. 73(2), 278–284. mla: Danowski, Patrick, et al. “„Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B.” Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare, vol. 73, no. 2, Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare, 2020, pp. 278–84, doi:10.31263/voebm.v73i2.3941. short: P. Danowski, A. Ferus, A.-L. Hikl, G. McNeill, C. Miniberger, S. Reding, T. Zarka, M. Zojer, Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare 73 (2020) 278–284. date_created: 2020-10-25T23:01:19Z date_published: 2020-07-14T00:00:00Z date_updated: 2021-01-12T08:20:40Z day: '14' ddc: - '020' department: - _id: E-Lib doi: 10.31263/voebm.v73i2.3941 file: - access_level: open_access checksum: 37443c34d91d5bdbeb38c78b14792537 content_type: application/pdf creator: kschuh date_created: 2020-10-27T16:27:25Z date_updated: 2020-10-27T16:27:25Z file_id: '8714' file_name: 2020_VOEB_Danowski.pdf file_size: 960317 relation: main_file success: 1 file_date_updated: 2020-10-27T16:27:25Z has_accepted_license: '1' intvolume: ' 73' issue: '2' language: - iso: ger month: '07' oa: 1 oa_version: Published Version page: 278-284 publication: Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare publication_identifier: eissn: - '10222588' publication_status: published publisher: Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare quality_controlled: '1' scopus_import: '1' status: public title: „Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 73 year: '2020' ... --- _id: '8978' abstract: - lang: eng text: "Mosaic analysis with double markers (MADM) technology enables concomitant fluorescent cell labeling and induction of uniparental chromosome disomy (UPD) with single-cell resolution. In UPD, imprinted genes are either overexpressed 2-fold or are not expressed. Here, the MADM platform is utilized to probe imprinting phenotypes at the transcriptional level. This protocol highlights major steps for the generation and isolation of projection neurons and astrocytes with MADM-induced UPD from mouse cerebral cortex for downstream single-cell and low-input sample RNA-sequencing experiments.\r\n\r\nFor complete details on the use and execution of this protocol, please refer to Laukoter et al. (2020b)." acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: This research was supported by the Scientific Service Units (SSU) at IST Austria through resources provided by the Bioimaging (BIF) and Preclinical Facilities (PCF). N.A received support from the FWF Firnberg-Programm (T 1031). This work was also supported by IST Austria institutional funds; FWF SFB F78 to S.H.; NÖ Forschung und Bildung n[f+b] life science call grant (C13-002) to S.H.; the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 618444 to S.H.; and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725780 LinPro) to S.H. article_number: '100215' article_processing_charge: No article_type: original author: - first_name: Susanne full_name: Laukoter, Susanne id: 2D6B7A9A-F248-11E8-B48F-1D18A9856A87 last_name: Laukoter - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Laukoter S, Amberg N, Pauler F, Hippenmeyer S. Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. 2020;1(3). doi:10.1016/j.xpro.2020.100215 apa: Laukoter, S., Amberg, N., Pauler, F., & Hippenmeyer, S. (2020). Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. Elsevier. https://doi.org/10.1016/j.xpro.2020.100215 chicago: Laukoter, Susanne, Nicole Amberg, Florian Pauler, and Simon Hippenmeyer. “Generation and Isolation of Single Cells from Mouse Brain with Mosaic Analysis with Double Markers-Induced Uniparental Chromosome Disomy.” STAR Protocols. Elsevier, 2020. https://doi.org/10.1016/j.xpro.2020.100215. ieee: S. Laukoter, N. Amberg, F. Pauler, and S. Hippenmeyer, “Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy,” STAR Protocols, vol. 1, no. 3. Elsevier, 2020. ista: Laukoter S, Amberg N, Pauler F, Hippenmeyer S. 2020. Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. 1(3), 100215. mla: Laukoter, Susanne, et al. “Generation and Isolation of Single Cells from Mouse Brain with Mosaic Analysis with Double Markers-Induced Uniparental Chromosome Disomy.” STAR Protocols, vol. 1, no. 3, 100215, Elsevier, 2020, doi:10.1016/j.xpro.2020.100215. short: S. Laukoter, N. Amberg, F. Pauler, S. Hippenmeyer, STAR Protocols 1 (2020). date_created: 2020-12-30T10:17:07Z date_published: 2020-12-18T00:00:00Z date_updated: 2021-01-12T08:21:36Z day: '18' ddc: - '570' department: - _id: SiHi doi: 10.1016/j.xpro.2020.100215 ec_funded: 1 external_id: pmid: - '33377108' file: - access_level: open_access checksum: f1e9a433e9cb0f41f7b6df6b76db1f6e content_type: application/pdf creator: dernst date_created: 2021-01-07T15:57:27Z date_updated: 2021-01-07T15:57:27Z file_id: '8996' file_name: 2020_STARProtocols_Laukoter.pdf file_size: 4031449 relation: main_file success: 1 file_date_updated: 2021-01-07T15:57:27Z has_accepted_license: '1' intvolume: ' 1' issue: '3' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression - _id: 059F6AB4-7A3F-11EA-A408-12923DDC885E grant_number: F07805 name: Molecular Mechanisms of Neural Stem Cell Lineage Progression - _id: 25D92700-B435-11E9-9278-68D0E5697425 grant_number: LS13-002 name: Mapping Cell-Type Specificity of the Genomic Imprintome in the Brain - _id: 25D61E48-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618444' name: Molecular Mechanisms of Cerebral Cortex Development - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: STAR Protocols publication_identifier: issn: - 2666-1667 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2020' ... --- _id: '9103' abstract: - lang: eng text: 'We introduce LRT-NG, a set of techniques and an associated toolset that computes a reachtube (an over-approximation of the set of reachable states over a given time horizon) of a nonlinear dynamical system. LRT-NG significantly advances the state-of-the-art Langrangian Reachability and its associated tool LRT. From a theoretical perspective, LRT-NG is superior to LRT in three ways. First, it uses for the first time an analytically computed metric for the propagated ball which is proven to minimize the ball’s volume. We emphasize that the metric computation is the centerpiece of all bloating-based techniques. Secondly, it computes the next reachset as the intersection of two balls: one based on the Cartesian metric and the other on the new metric. While the two metrics were previously considered opposing approaches, their joint use considerably tightens the reachtubes. Thirdly, it avoids the "wrapping effect" associated with the validated integration of the center of the reachset, by optimally absorbing the interval approximation in the radius of the next ball. From a tool-development perspective, LRT-NG is superior to LRT in two ways. First, it is a standalone tool that no longer relies on CAPD. This required the implementation of the Lohner method and a Runge-Kutta time-propagation method. Secondly, it has an improved interface, allowing the input model and initial conditions to be provided as external input files. Our experiments on a comprehensive set of benchmarks, including two Neural ODEs, demonstrates LRT-NG’s superior performance compared to LRT, CAPD, and Flow*.' acknowledgement: "The authors would like to thank Ramin Hasani and Guillaume Berger for intellectual discussions about the research which lead to the generation of new ideas. ML was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). Smolka’s research was supported by NSF grants CPS-1446832 and CCF-1918225. Gruenbacher is funded by FWF project W1255-N23. JC was partially supported by NAWA Polish Returns grant\r\nPPN/PPO/2018/1/00029.\r\n" article_processing_charge: No author: - first_name: Sophie full_name: Gruenbacher, Sophie last_name: Gruenbacher - first_name: Jacek full_name: Cyranka, Jacek last_name: Cyranka - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Md Ariful full_name: Islam, Md Ariful last_name: Islam - first_name: Scott A. full_name: Smolka, Scott A. last_name: Smolka - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Gruenbacher S, Cyranka J, Lechner M, Islam MA, Smolka SA, Grosu R. Lagrangian reachtubes: The next generation. In: Proceedings of the 59th IEEE Conference on Decision and Control. Vol 2020. IEEE; 2020:1556-1563. doi:10.1109/CDC42340.2020.9304042' apa: 'Gruenbacher, S., Cyranka, J., Lechner, M., Islam, M. A., Smolka, S. A., & Grosu, R. (2020). Lagrangian reachtubes: The next generation. In Proceedings of the 59th IEEE Conference on Decision and Control (Vol. 2020, pp. 1556–1563). Jeju Islang, Korea (South): IEEE. https://doi.org/10.1109/CDC42340.2020.9304042' chicago: 'Gruenbacher, Sophie, Jacek Cyranka, Mathias Lechner, Md Ariful Islam, Scott A. Smolka, and Radu Grosu. “Lagrangian Reachtubes: The next Generation.” In Proceedings of the 59th IEEE Conference on Decision and Control, 2020:1556–63. IEEE, 2020. https://doi.org/10.1109/CDC42340.2020.9304042.' ieee: 'S. Gruenbacher, J. Cyranka, M. Lechner, M. A. Islam, S. A. Smolka, and R. Grosu, “Lagrangian reachtubes: The next generation,” in Proceedings of the 59th IEEE Conference on Decision and Control, Jeju Islang, Korea (South), 2020, vol. 2020, pp. 1556–1563.' ista: 'Gruenbacher S, Cyranka J, Lechner M, Islam MA, Smolka SA, Grosu R. 2020. Lagrangian reachtubes: The next generation. Proceedings of the 59th IEEE Conference on Decision and Control. CDC: Conference on Decision and Control vol. 2020, 1556–1563.' mla: 'Gruenbacher, Sophie, et al. “Lagrangian Reachtubes: The next Generation.” Proceedings of the 59th IEEE Conference on Decision and Control, vol. 2020, IEEE, 2020, pp. 1556–63, doi:10.1109/CDC42340.2020.9304042.' short: S. Gruenbacher, J. Cyranka, M. Lechner, M.A. Islam, S.A. Smolka, R. Grosu, in:, Proceedings of the 59th IEEE Conference on Decision and Control, IEEE, 2020, pp. 1556–1563. conference: end_date: 2020-12-18 location: Jeju Islang, Korea (South) name: 'CDC: Conference on Decision and Control' start_date: 2020-12-14 date_created: 2021-02-07T23:01:14Z date_published: 2020-12-14T00:00:00Z date_updated: 2021-02-09T09:20:58Z day: '14' department: - _id: ToHe doi: 10.1109/CDC42340.2020.9304042 external_id: arxiv: - '2012.07458' intvolume: ' 2020' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2012.07458 month: '12' oa: 1 oa_version: Preprint page: 1556-1563 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 59th IEEE Conference on Decision and Control publication_identifier: isbn: - '9781728174471' issn: - '07431546' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: 'Lagrangian reachtubes: The next generation' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2020 year: '2020' ... --- _id: '9221' abstract: - lang: eng text: "Recent works have shown that gradient descent can find a global minimum for over-parameterized neural networks where the widths of all the hidden layers scale polynomially with N (N being the number of training samples). In this paper, we prove that, for deep networks, a single layer of width N following the input layer suffices to ensure a similar guarantee. In particular, all the remaining layers are allowed to have constant widths, and form a pyramidal topology. We show an application of our result to the widely used LeCun’s initialization and obtain an over-parameterization requirement for the single wide layer of order N2.\r\n" acknowledgement: The authors would like to thank Jan Maas, Mahdi Soltanolkotabi, and Daniel Soudry for the helpful discussions, Marius Kloft, Matthias Hein and Quoc Dinh Tran for proofreading portions of a prior version of this paper, and James Martens for a clarification concerning LeCun’s initialization. M. Mondelli was partially supported by the 2019 Lopez-Loreta Prize. Q. Nguyen was partially supported by the German Research Foundation (DFG) award KL 2698/2-1. article_processing_charge: No author: - first_name: Quynh full_name: Nguyen, Quynh last_name: Nguyen - first_name: Marco full_name: Mondelli, Marco id: 27EB676C-8706-11E9-9510-7717E6697425 last_name: Mondelli orcid: 0000-0002-3242-7020 citation: ama: 'Nguyen Q, Mondelli M. Global convergence of deep networks with one wide layer followed by pyramidal topology. In: 34th Conference on Neural Information Processing Systems. Vol 33. Curran Associates; 2020:11961–11972.' apa: 'Nguyen, Q., & Mondelli, M. (2020). Global convergence of deep networks with one wide layer followed by pyramidal topology. In 34th Conference on Neural Information Processing Systems (Vol. 33, pp. 11961–11972). Vancouver, Canada: Curran Associates.' chicago: Nguyen, Quynh, and Marco Mondelli. “Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology.” In 34th Conference on Neural Information Processing Systems, 33:11961–11972. Curran Associates, 2020. ieee: Q. Nguyen and M. Mondelli, “Global convergence of deep networks with one wide layer followed by pyramidal topology,” in 34th Conference on Neural Information Processing Systems, Vancouver, Canada, 2020, vol. 33, pp. 11961–11972. ista: 'Nguyen Q, Mondelli M. 2020. Global convergence of deep networks with one wide layer followed by pyramidal topology. 34th Conference on Neural Information Processing Systems. NeurIPS: Neural Information Processing Systems vol. 33, 11961–11972.' mla: Nguyen, Quynh, and Marco Mondelli. “Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology.” 34th Conference on Neural Information Processing Systems, vol. 33, Curran Associates, 2020, pp. 11961–11972. short: Q. Nguyen, M. Mondelli, in:, 34th Conference on Neural Information Processing Systems, Curran Associates, 2020, pp. 11961–11972. conference: end_date: 2020-12-12 location: Vancouver, Canada name: 'NeurIPS: Neural Information Processing Systems' start_date: 2020-12-06 date_created: 2021-03-03T12:06:02Z date_published: 2020-07-07T00:00:00Z date_updated: 2022-01-04T09:24:41Z day: '07' department: - _id: MaMo external_id: arxiv: - '2002.07867' intvolume: ' 33' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2002.07867 month: '07' oa: 1 oa_version: Preprint page: 11961–11972 project: - _id: 059876FA-7A3F-11EA-A408-12923DDC885E name: Prix Lopez-Loretta 2019 - Marco Mondelli publication: 34th Conference on Neural Information Processing Systems publication_status: published publisher: Curran Associates quality_controlled: '1' status: public title: Global convergence of deep networks with one wide layer followed by pyramidal topology type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 33 year: '2020' ... --- _id: '9415' abstract: - lang: eng text: 'Optimizing convolutional neural networks for fast inference has recently become an extremely active area of research. One of the go-to solutions in this context is weight pruning, which aims to reduce computational and memory footprint by removing large subsets of the connections in a neural network. Surprisingly, much less attention has been given to exploiting sparsity in the activation maps, which tend to be naturally sparse in many settings thanks to the structure of rectified linear (ReLU) activation functions. In this paper, we present an in-depth analysis of methods for maximizing the sparsity of the activations in a trained neural network, and show that, when coupled with an efficient sparse-input convolution algorithm, we can leverage this sparsity for significant performance gains. To induce highly sparse activation maps without accuracy loss, we introduce a new regularization technique, coupled with a new threshold-based sparsification method based on a parameterized activation function called Forced-Activation-Threshold Rectified Linear Unit (FATReLU). We examine the impact of our methods on popular image classification models, showing that most architectures can adapt to significantly sparser activation maps without any accuracy loss. Our second contribution is showing that these these compression gains can be translated into inference speedups: we provide a new algorithm to enable fast convolution operations over networks with sparse activations, and show that it can enable significant speedups for end-to-end inference on a range of popular models on the large-scale ImageNet image classification task on modern Intel CPUs, with little or no retraining cost. ' article_processing_charge: No author: - first_name: Mark full_name: Kurtz, Mark last_name: Kurtz - first_name: Justin full_name: Kopinsky, Justin last_name: Kopinsky - first_name: Rati full_name: Gelashvili, Rati last_name: Gelashvili - first_name: Alexander full_name: Matveev, Alexander last_name: Matveev - first_name: John full_name: Carr, John last_name: Carr - first_name: Michael full_name: Goin, Michael last_name: Goin - first_name: William full_name: Leiserson, William last_name: Leiserson - first_name: Sage full_name: Moore, Sage last_name: Moore - first_name: Bill full_name: Nell, Bill last_name: Nell - first_name: Nir full_name: Shavit, Nir last_name: Shavit - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Kurtz M, Kopinsky J, Gelashvili R, et al. Inducing and exploiting activation sparsity for fast neural network inference. In: 37th International Conference on Machine Learning, ICML 2020. Vol 119. ; 2020:5533-5543.' apa: Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr, J., Goin, M., … Alistarh, D.-A. (2020). Inducing and exploiting activation sparsity for fast neural network inference. In 37th International Conference on Machine Learning, ICML 2020 (Vol. 119, pp. 5533–5543). Online. chicago: Kurtz, Mark, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin, William Leiserson, et al. “Inducing and Exploiting Activation Sparsity for Fast Neural Network Inference.” In 37th International Conference on Machine Learning, ICML 2020, 119:5533–43, 2020. ieee: M. Kurtz et al., “Inducing and exploiting activation sparsity for fast neural network inference,” in 37th International Conference on Machine Learning, ICML 2020, Online, 2020, vol. 119, pp. 5533–5543. ista: 'Kurtz M, Kopinsky J, Gelashvili R, Matveev A, Carr J, Goin M, Leiserson W, Moore S, Nell B, Shavit N, Alistarh D-A. 2020. Inducing and exploiting activation sparsity for fast neural network inference. 37th International Conference on Machine Learning, ICML 2020. ICML: International Conference on Machine Learning vol. 119, 5533–5543.' mla: Kurtz, Mark, et al. “Inducing and Exploiting Activation Sparsity for Fast Neural Network Inference.” 37th International Conference on Machine Learning, ICML 2020, vol. 119, 2020, pp. 5533–43. short: M. Kurtz, J. Kopinsky, R. Gelashvili, A. Matveev, J. Carr, M. Goin, W. Leiserson, S. Moore, B. Nell, N. Shavit, D.-A. Alistarh, in:, 37th International Conference on Machine Learning, ICML 2020, 2020, pp. 5533–5543. conference: end_date: 2020-07-18 location: Online name: 'ICML: International Conference on Machine Learning' start_date: 2020-07-12 date_created: 2021-05-23T22:01:45Z date_published: 2020-07-12T00:00:00Z date_updated: 2023-02-23T13:57:24Z day: '12' ddc: - '000' department: - _id: DaAl file: - access_level: open_access checksum: 2aaaa7d7226e49161311d91627cf783b content_type: application/pdf creator: kschuh date_created: 2021-05-25T09:51:36Z date_updated: 2021-05-25T09:51:36Z file_id: '9421' file_name: 2020_PMLR_Kurtz.pdf file_size: 741899 relation: main_file success: 1 file_date_updated: 2021-05-25T09:51:36Z has_accepted_license: '1' intvolume: ' 119' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 5533-5543 publication: 37th International Conference on Machine Learning, ICML 2020 publication_identifier: issn: - 2640-3498 quality_controlled: '1' scopus_import: '1' status: public title: Inducing and exploiting activation sparsity for fast neural network inference type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 119 year: '2020' ...