--- _id: '7991' abstract: - lang: eng text: 'We define and study a discrete process that generalizes the convex-layer decomposition of a planar point set. Our process, which we call homotopic curve shortening (HCS), starts with a closed curve (which might self-intersect) in the presence of a set P⊂ ℝ² of point obstacles, and evolves in discrete steps, where each step consists of (1) taking shortcuts around the obstacles, and (2) reducing the curve to its shortest homotopic equivalent. We find experimentally that, if the initial curve is held fixed and P is chosen to be either a very fine regular grid or a uniformly random point set, then HCS behaves at the limit like the affine curve-shortening flow (ACSF). This connection between HCS and ACSF generalizes the link between "grid peeling" and the ACSF observed by Eppstein et al. (2017), which applied only to convex curves, and which was studied only for regular grids. We prove that HCS satisfies some properties analogous to those of ACSF: HCS is invariant under affine transformations, preserves convexity, and does not increase the total absolute curvature. Furthermore, the number of self-intersections of a curve, or intersections between two curves (appropriately defined), does not increase. Finally, if the initial curve is simple, then the number of inflection points (appropriately defined) does not increase.' alternative_title: - LIPIcs article_number: 12:1 - 12:15 article_processing_charge: No author: - first_name: Sergey full_name: Avvakumov, Sergey id: 3827DAC8-F248-11E8-B48F-1D18A9856A87 last_name: Avvakumov - first_name: Gabriel full_name: Nivasch, Gabriel last_name: Nivasch citation: ama: 'Avvakumov S, Nivasch G. Homotopic curve shortening and the affine curve-shortening flow. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.12' apa: 'Avvakumov, S., & Nivasch, G. (2020). Homotopic curve shortening and the affine curve-shortening flow. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.12' chicago: Avvakumov, Sergey, and Gabriel Nivasch. “Homotopic Curve Shortening and the Affine Curve-Shortening Flow.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.12. ieee: S. Avvakumov and G. Nivasch, “Homotopic curve shortening and the affine curve-shortening flow,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Avvakumov S, Nivasch G. 2020. Homotopic curve shortening and the affine curve-shortening flow. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 12:1-12:15.' mla: Avvakumov, Sergey, and Gabriel Nivasch. “Homotopic Curve Shortening and the Affine Curve-Shortening Flow.” 36th International Symposium on Computational Geometry, vol. 164, 12:1-12:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.12. short: S. Avvakumov, G. Nivasch, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:19Z date_published: 2020-06-01T00:00:00Z date_updated: 2021-01-12T08:16:23Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.12 external_id: arxiv: - '1909.00263' file: - access_level: open_access checksum: 6872df6549142f709fb6354a1b2f2c06 content_type: application/pdf creator: dernst date_created: 2020-06-23T11:13:49Z date_updated: 2020-07-14T12:48:06Z file_id: '8007' file_name: 2020_LIPIcsSoCG_Avvakumov.pdf file_size: 575896 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng license: https://creativecommons.org/licenses/by/3.0/ month: '06' oa: 1 oa_version: Published Version project: - _id: 26611F5C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31312 name: Algorithms for Embeddings and Homotopy Theory publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Homotopic curve shortening and the affine curve-shortening flow tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '7989' abstract: - lang: eng text: 'We prove general topological Radon-type theorems for sets in ℝ^d, smooth real manifolds or finite dimensional simplicial complexes. Combined with a recent result of Holmsen and Lee, it gives fractional Helly theorem, and consequently the existence of weak ε-nets as well as a (p,q)-theorem. More precisely: Let X be either ℝ^d, smooth real d-manifold, or a finite d-dimensional simplicial complex. Then if F is a finite, intersection-closed family of sets in X such that the ith reduced Betti number (with ℤ₂ coefficients) of any set in F is at most b for every non-negative integer i less or equal to k, then the Radon number of F is bounded in terms of b and X. Here k is the smallest integer larger or equal to d/2 - 1 if X = ℝ^d; k=d-1 if X is a smooth real d-manifold and not a surface, k=0 if X is a surface and k=d if X is a d-dimensional simplicial complex. Using the recent result of the author and Kalai, we manage to prove the following optimal bound on fractional Helly number for families of open sets in a surface: Let F be a finite family of open sets in a surface S such that the intersection of any subfamily of F is either empty, or path-connected. Then the fractional Helly number of F is at most three. This also settles a conjecture of Holmsen, Kim, and Lee about an existence of a (p,q)-theorem for open subsets of a surface.' alternative_title: - LIPIcs article_number: 61:1-61:13 article_processing_charge: No author: - first_name: Zuzana full_name: Patakova, Zuzana id: 48B57058-F248-11E8-B48F-1D18A9856A87 last_name: Patakova orcid: 0000-0002-3975-1683 citation: ama: 'Patakova Z. Bounding radon number via Betti numbers. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.61' apa: 'Patakova, Z. (2020). Bounding radon number via Betti numbers. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.61' chicago: Patakova, Zuzana. “Bounding Radon Number via Betti Numbers.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.61. ieee: Z. Patakova, “Bounding radon number via Betti numbers,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Patakova Z. 2020. Bounding radon number via Betti numbers. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 61:1-61:13.' mla: Patakova, Zuzana. “Bounding Radon Number via Betti Numbers.” 36th International Symposium on Computational Geometry, vol. 164, 61:1-61:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.61. short: Z. Patakova, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:18Z date_published: 2020-06-01T00:00:00Z date_updated: 2021-01-12T08:16:22Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.61 external_id: arxiv: - '1908.01677' file: - access_level: open_access checksum: d0996ca5f6eb32ce955ce782b4f2afbe content_type: application/pdf creator: dernst date_created: 2020-06-23T06:56:23Z date_updated: 2020-07-14T12:48:06Z file_id: '8005' file_name: 2020_LIPIcsSoCG_Patakova_61.pdf file_size: 645421 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '06' oa: 1 oa_version: Published Version publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Bounding radon number via Betti numbers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '7992' abstract: - lang: eng text: 'Let K be a convex body in ℝⁿ (i.e., a compact convex set with nonempty interior). Given a point p in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of K ∩ h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p through which there are at least n+1 distinct barycentric hyperplanes. Two years later, this was seemingly resolved affirmatively by showing that this is the case if p=p₀ is the point of maximal depth in K. However, while working on a related question, we noticed that one of the auxiliary claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s question. It follows from known results that for n ≥ 2, there are always at least three distinct barycentric cuts through the point p₀ ∈ K of maximal depth. Using tools related to Morse theory we are able to improve this bound: four distinct barycentric cuts through p₀ are guaranteed if n ≥ 3.' alternative_title: - LIPIcs article_number: 62:1 - 62:16 article_processing_charge: No author: - first_name: Zuzana full_name: Patakova, Zuzana id: 48B57058-F248-11E8-B48F-1D18A9856A87 last_name: Patakova orcid: 0000-0002-3975-1683 - first_name: Martin full_name: Tancer, Martin id: 38AC689C-F248-11E8-B48F-1D18A9856A87 last_name: Tancer orcid: 0000-0002-1191-6714 - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 citation: ama: 'Patakova Z, Tancer M, Wagner U. Barycentric cuts through a convex body. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.62' apa: 'Patakova, Z., Tancer, M., & Wagner, U. (2020). Barycentric cuts through a convex body. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.62' chicago: Patakova, Zuzana, Martin Tancer, and Uli Wagner. “Barycentric Cuts through a Convex Body.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.62. ieee: Z. Patakova, M. Tancer, and U. Wagner, “Barycentric cuts through a convex body,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Patakova Z, Tancer M, Wagner U. 2020. Barycentric cuts through a convex body. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 62:1-62:16.' mla: Patakova, Zuzana, et al. “Barycentric Cuts through a Convex Body.” 36th International Symposium on Computational Geometry, vol. 164, 62:1-62:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.62. short: Z. Patakova, M. Tancer, U. Wagner, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:20Z date_published: 2020-06-01T00:00:00Z date_updated: 2021-01-12T08:16:23Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.62 external_id: arxiv: - '2003.13536' file: - access_level: open_access checksum: ce1c9194139a664fb59d1efdfc88eaae content_type: application/pdf creator: dernst date_created: 2020-06-23T06:45:52Z date_updated: 2020-07-14T12:48:06Z file_id: '8004' file_name: 2020_LIPIcsSoCG_Patakova.pdf file_size: 750318 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Barycentric cuts through a convex body tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '7994' abstract: - lang: eng text: In the recent study of crossing numbers, drawings of graphs that can be extended to an arrangement of pseudolines (pseudolinear drawings) have played an important role as they are a natural combinatorial extension of rectilinear (or straight-line) drawings. A characterization of the pseudolinear drawings of K_n was found recently. We extend this characterization to all graphs, by describing the set of minimal forbidden subdrawings for pseudolinear drawings. Our characterization also leads to a polynomial-time algorithm to recognize pseudolinear drawings and construct the pseudolines when it is possible. alternative_title: - LIPIcs article_number: 9:1 - 9:14 article_processing_charge: No author: - first_name: Alan M full_name: Arroyo Guevara, Alan M id: 3207FDC6-F248-11E8-B48F-1D18A9856A87 last_name: Arroyo Guevara orcid: 0000-0003-2401-8670 - first_name: Julien full_name: Bensmail, Julien last_name: Bensmail - first_name: R. full_name: Bruce Richter, R. last_name: Bruce Richter citation: ama: 'Arroyo Guevara AM, Bensmail J, Bruce Richter R. Extending drawings of graphs to arrangements of pseudolines. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.9' apa: 'Arroyo Guevara, A. M., Bensmail, J., & Bruce Richter, R. (2020). Extending drawings of graphs to arrangements of pseudolines. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.9' chicago: Arroyo Guevara, Alan M, Julien Bensmail, and R. Bruce Richter. “Extending Drawings of Graphs to Arrangements of Pseudolines.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.9. ieee: A. M. Arroyo Guevara, J. Bensmail, and R. Bruce Richter, “Extending drawings of graphs to arrangements of pseudolines,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Arroyo Guevara AM, Bensmail J, Bruce Richter R. 2020. Extending drawings of graphs to arrangements of pseudolines. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 9:1-9:14.' mla: Arroyo Guevara, Alan M., et al. “Extending Drawings of Graphs to Arrangements of Pseudolines.” 36th International Symposium on Computational Geometry, vol. 164, 9:1-9:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.9. short: A.M. Arroyo Guevara, J. Bensmail, R. Bruce Richter, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:21Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-02-23T13:22:12Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.9 ec_funded: 1 external_id: arxiv: - '1804.09317' file: - access_level: open_access checksum: 93571b76cf97d5b7c8aabaeaa694dd7e content_type: application/pdf creator: dernst date_created: 2020-06-23T11:06:23Z date_updated: 2020-07-14T12:48:06Z file_id: '8006' file_name: 2020_LIPIcsSoCG_Arroyo.pdf file_size: 592661 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Extending drawings of graphs to arrangements of pseudolines tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '8011' abstract: - lang: eng text: 'Relaxation to a thermal state is the inevitable fate of nonequilibrium interacting quantum systems without special conservation laws. While thermalization in one-dimensional systems can often be suppressed by integrability mechanisms, in two spatial dimensions thermalization is expected to be far more effective due to the increased phase space. In this work we propose a general framework for escaping or delaying the emergence of the thermal state in two-dimensional arrays of Rydberg atoms via the mechanism of quantum scars, i.e., initial states that fail to thermalize. The suppression of thermalization is achieved in two complementary ways: by adding local perturbations or by adjusting the driving Rabi frequency according to the local connectivity of the lattice. We demonstrate that these mechanisms allow us to realize robust quantum scars in various two-dimensional lattices, including decorated lattices with nonconstant connectivity. In particular, we show that a small decrease of the Rabi frequency at the corners of the lattice is crucial for mitigating the strong boundary effects in two-dimensional systems. Our results identify synchronization as an important tool for future experiments on two-dimensional quantum scars.' article_number: '022065' article_processing_charge: No article_type: original author: - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis - first_name: C. J. full_name: Turner, C. J. last_name: Turner - first_name: Z. full_name: Papić, Z. last_name: Papić - first_name: D. A. full_name: Abanin, D. A. last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. 2020;2(2). doi:10.1103/physrevresearch.2.022065 apa: Michailidis, A., Turner, C. J., Papić, Z., Abanin, D. A., & Serbyn, M. (2020). Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.2.022065 chicago: Michailidis, Alexios, C. J. Turner, Z. Papić, D. A. Abanin, and Maksym Serbyn. “Stabilizing Two-Dimensional Quantum Scars by Deformation and Synchronization.” Physical Review Research. American Physical Society, 2020. https://doi.org/10.1103/physrevresearch.2.022065. ieee: A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and M. Serbyn, “Stabilizing two-dimensional quantum scars by deformation and synchronization,” Physical Review Research, vol. 2, no. 2. American Physical Society, 2020. ista: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. 2020. Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. 2(2), 022065. mla: Michailidis, Alexios, et al. “Stabilizing Two-Dimensional Quantum Scars by Deformation and Synchronization.” Physical Review Research, vol. 2, no. 2, 022065, American Physical Society, 2020, doi:10.1103/physrevresearch.2.022065. short: A. Michailidis, C.J. Turner, Z. Papić, D.A. Abanin, M. Serbyn, Physical Review Research 2 (2020). date_created: 2020-06-23T12:00:19Z date_published: 2020-06-22T00:00:00Z date_updated: 2021-01-12T08:16:30Z day: '22' ddc: - '530' department: - _id: MaSe doi: 10.1103/physrevresearch.2.022065 ec_funded: 1 file: - access_level: open_access checksum: e6959dc8220f14a008d1933858795e6d content_type: application/pdf creator: dernst date_created: 2020-06-29T14:41:27Z date_updated: 2020-07-14T12:48:08Z file_id: '8050' file_name: 2020_PhysicalReviewResearch_Michailidis.pdf file_size: 2066011 relation: main_file file_date_updated: 2020-07-14T12:48:08Z has_accepted_license: '1' intvolume: ' 2' issue: '2' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Stabilizing two-dimensional quantum scars by deformation and synchronization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '8063' abstract: - lang: eng text: "We present a generative model of images that explicitly reasons over the set\r\nof objects they show. Our model learns a structured latent representation that\r\nseparates objects from each other and from the background; unlike prior works,\r\nit explicitly represents the 2D position and depth of each object, as well as\r\nan embedding of its segmentation mask and appearance. The model can be trained\r\nfrom images alone in a purely unsupervised fashion without the need for object\r\nmasks or depth information. Moreover, it always generates complete objects,\r\neven though a significant fraction of training images contain occlusions.\r\nFinally, we show that our model can infer decompositions of novel images into\r\ntheir constituent objects, including accurate prediction of depth ordering and\r\nsegmentation of occluded parts." article_number: '2004.00642' article_processing_charge: No author: - first_name: Titas full_name: Anciukevicius, Titas last_name: Anciukevicius - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 - first_name: Paul M full_name: Henderson, Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 citation: ama: Anciukevicius T, Lampert C, Henderson PM. Object-centric image generation with factored depths, locations, and appearances. arXiv. apa: Anciukevicius, T., Lampert, C., & Henderson, P. M. (n.d.). Object-centric image generation with factored depths, locations, and appearances. arXiv. chicago: Anciukevicius, Titas, Christoph Lampert, and Paul M Henderson. “Object-Centric Image Generation with Factored Depths, Locations, and Appearances.” ArXiv, n.d. ieee: T. Anciukevicius, C. Lampert, and P. M. Henderson, “Object-centric image generation with factored depths, locations, and appearances,” arXiv. . ista: Anciukevicius T, Lampert C, Henderson PM. Object-centric image generation with factored depths, locations, and appearances. arXiv, 2004.00642. mla: Anciukevicius, Titas, et al. “Object-Centric Image Generation with Factored Depths, Locations, and Appearances.” ArXiv, 2004.00642. short: T. Anciukevicius, C. Lampert, P.M. Henderson, ArXiv (n.d.). date_created: 2020-06-29T23:55:23Z date_published: 2020-04-01T00:00:00Z date_updated: 2021-01-12T08:16:44Z day: '01' ddc: - '004' department: - _id: ChLa external_id: arxiv: - '2004.00642' language: - iso: eng license: https://creativecommons.org/licenses/by-sa/4.0/ main_file_link: - open_access: '1' url: https://arxiv.org/abs/2004.00642 month: '04' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted status: public title: Object-centric image generation with factored depths, locations, and appearances tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8081' abstract: - lang: eng text: "Here, we employ micro- and nanosized cellulose particles, namely paper fines and cellulose\r\nnanocrystals, to induce hierarchical organization over a wide length scale. After processing\r\nthem into carbonaceous materials, we demonstrate that these hierarchically organized materials\r\noutperform the best materials for supercapacitors operating with organic electrolytes reported\r\nin literature in terms of specific energy/power (Ragone plot) while showing hardly any capacity\r\nfade over 4,000 cycles. The highly porous materials feature a specific surface area as high as\r\n2500 m2ˑg-1 and exhibit pore sizes in the range of 0.5 to 200 nm as proven by scanning electron\r\nmicroscopy and N2 physisorption. The carbonaceous materials have been further investigated\r\nby X-ray photoelectron spectroscopy and RAMAN spectroscopy. Since paper fines are an\r\nunderutilized side stream in any paper production process, they are a cheap and highly available\r\nfeedstock to prepare carbonaceous materials with outstanding performance in electrochemical\r\napplications. " acknowledgement: 'The authors M.A.H., S.S., R.E., and W.B. acknowledge the industrial partners Sappi Gratkorn, Zellstoff Pöls and Mondi Frantschach, the Austrian Research Promotion Agency (FFG), COMET, BMVIT, BMWFJ, the Province of Styria and Carinthia for their financial support of the K-project Flippr²-Process Integration. E.M. and S.A.F. are indebted to the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 636069). W. T. and S. E. thank FWO (G.0C60.13N) and the European Union’s European Fund for Regional Development and Flanders Innovation & Entrepreneurship (Accelerate3 project, Interreg Vlaanderen-Nederland program) for financial support. W. T. also thanks the Provincie West-Vlaanderen (Belgium) for his Provincial Chair in Advanced Materials. S. B. thanks the European Regional Development Fund (EFRE) and the province of Upper Austria for financial support through the program IWB 2014-2020 (project BioCarb-K). AMR gratefully acknowledges funding support through the SC EPSCoR/IDeAProgram under Award #18-SR03, and the NASA EPSCoR Program under Award #NNH17ZHA002C. Icons in Scheme 1 were provided by Good Ware, monkik, photo3idea_studio, and OCHA from www.flaticon.com.' article_processing_charge: No author: - first_name: 'Mathias A. ' full_name: 'Hobisch, Mathias A. ' last_name: Hobisch - first_name: 'Eléonore ' full_name: 'Mourad, Eléonore ' last_name: Mourad - first_name: 'Wolfgang J. ' full_name: 'Fischer, Wolfgang J. ' last_name: Fischer - first_name: 'Christian ' full_name: 'Prehal, Christian ' last_name: Prehal - first_name: 'Samuel ' full_name: 'Eyley, Samuel ' last_name: Eyley - first_name: 'Anthony ' full_name: 'Childress, Anthony ' last_name: Childress - first_name: 'Armin ' full_name: 'Zankel, Armin ' last_name: Zankel - first_name: 'Andreas ' full_name: 'Mautner, Andreas ' last_name: Mautner - first_name: 'Stefan ' full_name: 'Breitenbach, Stefan ' last_name: Breitenbach - first_name: 'Apparao M. ' full_name: 'Rao, Apparao M. ' last_name: Rao - first_name: 'Wim ' full_name: 'Thielemans, Wim ' last_name: Thielemans - first_name: Stefan Alexander full_name: Freunberger, Stefan Alexander id: A8CA28E6-CE23-11E9-AD2D-EC27E6697425 last_name: Freunberger orcid: 0000-0003-2902-5319 - first_name: 'Rene ' full_name: 'Eckhart, Rene ' last_name: Eckhart - first_name: 'Wolfgang ' full_name: 'Bauer, Wolfgang ' last_name: Bauer - first_name: 'Stefan ' full_name: 'Spirk, Stefan ' last_name: Spirk citation: ama: Hobisch MA, Mourad E, Fischer WJ, et al. High specific capacitance supercapacitors from hierarchically organized all-cellulose composites. apa: Hobisch, M. A., Mourad, E., Fischer, W. J., Prehal, C., Eyley, S., Childress, A., … Spirk, S. (n.d.). High specific capacitance supercapacitors from hierarchically organized all-cellulose composites. chicago: Hobisch, Mathias A. , Eléonore Mourad, Wolfgang J. Fischer, Christian Prehal, Samuel Eyley, Anthony Childress, Armin Zankel, et al. “High Specific Capacitance Supercapacitors from Hierarchically Organized All-Cellulose Composites,” n.d. ieee: M. A. Hobisch et al., “High specific capacitance supercapacitors from hierarchically organized all-cellulose composites.” . ista: Hobisch MA, Mourad E, Fischer WJ, Prehal C, Eyley S, Childress A, Zankel A, Mautner A, Breitenbach S, Rao AM, Thielemans W, Freunberger SA, Eckhart R, Bauer W, Spirk S. High specific capacitance supercapacitors from hierarchically organized all-cellulose composites. mla: Hobisch, Mathias A., et al. High Specific Capacitance Supercapacitors from Hierarchically Organized All-Cellulose Composites. short: M.A. Hobisch, E. Mourad, W.J. Fischer, C. Prehal, S. Eyley, A. Childress, A. Zankel, A. Mautner, S. Breitenbach, A.M. Rao, W. Thielemans, S.A. Freunberger, R. Eckhart, W. Bauer, S. Spirk, (n.d.). date_created: 2020-07-02T20:24:42Z date_published: 2020-07-13T00:00:00Z date_updated: 2022-06-17T08:39:49Z day: '13' ddc: - '540' department: - _id: StFr file: - access_level: open_access checksum: 6970d621984c03ebc2eee71adfe706dd content_type: application/pdf creator: sfreunbe date_created: 2020-07-02T20:21:59Z date_updated: 2020-07-14T12:48:09Z file_id: '8082' file_name: AM.pdf file_size: 1129852 relation: main_file - access_level: open_access checksum: cd74c7bd47d6e7163d54d67f074dcc36 content_type: application/pdf creator: cziletti date_created: 2020-07-08T12:14:04Z date_updated: 2020-07-14T12:48:09Z file_id: '8102' file_name: Supporting_Information.pdf file_size: 945565 relation: supplementary_material file_date_updated: 2020-07-14T12:48:09Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version publication_status: submitted status: public title: High specific capacitance supercapacitors from hierarchically organized all-cellulose composites type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8105' abstract: - lang: eng text: Physical and biological systems often exhibit intermittent dynamics with bursts or avalanches (active states) characterized by power-law size and duration distributions. These emergent features are typical of systems at the critical point of continuous phase transitions, and have led to the hypothesis that such systems may self-organize at criticality, i.e. without any fine tuning of parameters. Since the introduction of the Bak-Tang-Wiesenfeld (BTW) model, the paradigm of self-organized criticality (SOC) has been very fruitful for the analysis of emergent collective behaviors in a number of systems, including the brain. Although considerable effort has been devoted in identifying and modeling scaling features of burst and avalanche statistics, dynamical aspects related to the temporal organization of bursts remain often poorly understood or controversial. Of crucial importance to understand the mechanisms responsible for emergent behaviors is the relationship between active and quiet periods, and the nature of the correlations. Here we investigate the dynamics of active (θ-bursts) and quiet states (δ-bursts) in brain activity during the sleep-wake cycle. We show the duality of power-law (θ, active phase) and exponential-like (δ, quiescent phase) duration distributions, typical of SOC, jointly emerge with power-law temporal correlations and anti-correlated coupling between active and quiet states. Importantly, we demonstrate that such temporal organization shares important similarities with earthquake dynamics, and propose that specific power-law correlations and coupling between active and quiet states are distinctive characteristics of a class of systems with self-organization at criticality. article_number: '00005' article_processing_charge: No article_type: original author: - first_name: Fabrizio full_name: Lombardi, Fabrizio id: A057D288-3E88-11E9-986D-0CF4E5697425 last_name: Lombardi orcid: 0000-0003-2623-5249 - first_name: Jilin W.J.L. full_name: Wang, Jilin W.J.L. last_name: Wang - first_name: Xiyun full_name: Zhang, Xiyun last_name: Zhang - first_name: Plamen Ch full_name: Ivanov, Plamen Ch last_name: Ivanov citation: ama: Lombardi F, Wang JWJL, Zhang X, Ivanov PC. Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality. EPJ Web of Conferences. 2020;230. doi:10.1051/epjconf/202023000005 apa: Lombardi, F., Wang, J. W. J. L., Zhang, X., & Ivanov, P. C. (2020). Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality. EPJ Web of Conferences. EDP Sciences. https://doi.org/10.1051/epjconf/202023000005 chicago: Lombardi, Fabrizio, Jilin W.J.L. Wang, Xiyun Zhang, and Plamen Ch Ivanov. “Power-Law Correlations and Coupling of Active and Quiet States Underlie a Class of Complex Systems with Self-Organization at Criticality.” EPJ Web of Conferences. EDP Sciences, 2020. https://doi.org/10.1051/epjconf/202023000005. ieee: F. Lombardi, J. W. J. L. Wang, X. Zhang, and P. C. Ivanov, “Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality,” EPJ Web of Conferences, vol. 230. EDP Sciences, 2020. ista: Lombardi F, Wang JWJL, Zhang X, Ivanov PC. 2020. Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality. EPJ Web of Conferences. 230, 00005. mla: Lombardi, Fabrizio, et al. “Power-Law Correlations and Coupling of Active and Quiet States Underlie a Class of Complex Systems with Self-Organization at Criticality.” EPJ Web of Conferences, vol. 230, 00005, EDP Sciences, 2020, doi:10.1051/epjconf/202023000005. short: F. Lombardi, J.W.J.L. Wang, X. Zhang, P.C. Ivanov, EPJ Web of Conferences 230 (2020). date_created: 2020-07-12T16:20:33Z date_published: 2020-03-11T00:00:00Z date_updated: 2021-01-12T08:16:55Z day: '11' ddc: - '530' department: - _id: GaTk doi: 10.1051/epjconf/202023000005 file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2020-07-22T06:17:11Z date_updated: 2020-07-22T06:17:11Z file_id: '8144' file_name: 2020_EPJWebConf_Lombardi.pdf file_size: 2197543 relation: main_file success: 1 file_date_updated: 2020-07-22T06:17:11Z has_accepted_license: '1' intvolume: ' 230' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: EPJ Web of Conferences publication_identifier: issn: - 2100-014X publication_status: published publisher: EDP Sciences quality_controlled: '1' status: public title: Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 230 year: '2020' ... --- _id: '8135' abstract: - lang: eng text: Discrete Morse theory has recently lead to new developments in the theory of random geometric complexes. This article surveys the methods and results obtained with this new approach, and discusses some of its shortcomings. It uses simulations to illustrate the results and to form conjectures, getting numerical estimates for combinatorial, topological, and geometric properties of weighted and unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha and Wrap complexes contained in the mosaics. acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements No 78818 Alpha and No 638176). It is also partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF). alternative_title: - Abel Symposia article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko - first_name: Katharina full_name: Ölsböck, Katharina id: 4D4AA390-F248-11E8-B48F-1D18A9856A87 last_name: Ölsböck - first_name: Peter full_name: Synak, Peter id: 331776E2-F248-11E8-B48F-1D18A9856A87 last_name: Synak citation: ama: 'Edelsbrunner H, Nikitenko A, Ölsböck K, Synak P. Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. In: Topological Data Analysis. Vol 15. Springer Nature; 2020:181-218. doi:10.1007/978-3-030-43408-3_8' apa: Edelsbrunner, H., Nikitenko, A., Ölsböck, K., & Synak, P. (2020). Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. In Topological Data Analysis (Vol. 15, pp. 181–218). Springer Nature. https://doi.org/10.1007/978-3-030-43408-3_8 chicago: Edelsbrunner, Herbert, Anton Nikitenko, Katharina Ölsböck, and Peter Synak. “Radius Functions on Poisson–Delaunay Mosaics and Related Complexes Experimentally.” In Topological Data Analysis, 15:181–218. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-43408-3_8. ieee: H. Edelsbrunner, A. Nikitenko, K. Ölsböck, and P. Synak, “Radius functions on Poisson–Delaunay mosaics and related complexes experimentally,” in Topological Data Analysis, 2020, vol. 15, pp. 181–218. ista: Edelsbrunner H, Nikitenko A, Ölsböck K, Synak P. 2020. Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. Topological Data Analysis. , Abel Symposia, vol. 15, 181–218. mla: Edelsbrunner, Herbert, et al. “Radius Functions on Poisson–Delaunay Mosaics and Related Complexes Experimentally.” Topological Data Analysis, vol. 15, Springer Nature, 2020, pp. 181–218, doi:10.1007/978-3-030-43408-3_8. short: H. Edelsbrunner, A. Nikitenko, K. Ölsböck, P. Synak, in:, Topological Data Analysis, Springer Nature, 2020, pp. 181–218. date_created: 2020-07-19T22:00:59Z date_published: 2020-06-22T00:00:00Z date_updated: 2021-01-12T08:17:06Z day: '22' ddc: - '510' department: - _id: HeEd doi: 10.1007/978-3-030-43408-3_8 ec_funded: 1 file: - access_level: open_access checksum: 7b5e0de10675d787a2ddb2091370b8d8 content_type: application/pdf creator: dernst date_created: 2020-10-08T08:56:14Z date_updated: 2020-10-08T08:56:14Z file_id: '8628' file_name: 2020-B-01-PoissonExperimentalSurvey.pdf file_size: 2207071 relation: main_file success: 1 file_date_updated: 2020-10-08T08:56:14Z has_accepted_license: '1' intvolume: ' 15' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 181-218 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Topological Data Analysis publication_identifier: eissn: - '21978549' isbn: - '9783030434076' issn: - '21932808' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Radius functions on Poisson–Delaunay mosaics and related complexes experimentally type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2020' ... --- _id: '8181' author: - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 citation: ama: Hauschild R. Amplified centrosomes in dendritic cells promote immune cell effector functions. 2020. doi:10.15479/AT:ISTA:8181 apa: Hauschild, R. (2020). Amplified centrosomes in dendritic cells promote immune cell effector functions. IST Austria. https://doi.org/10.15479/AT:ISTA:8181 chicago: Hauschild, Robert. “Amplified Centrosomes in Dendritic Cells Promote Immune Cell Effector Functions.” IST Austria, 2020. https://doi.org/10.15479/AT:ISTA:8181. ieee: R. Hauschild, “Amplified centrosomes in dendritic cells promote immune cell effector functions.” IST Austria, 2020. ista: Hauschild R. 2020. Amplified centrosomes in dendritic cells promote immune cell effector functions, IST Austria, 10.15479/AT:ISTA:8181. mla: Hauschild, Robert. Amplified Centrosomes in Dendritic Cells Promote Immune Cell Effector Functions. IST Austria, 2020, doi:10.15479/AT:ISTA:8181. short: R. Hauschild, (2020). date_created: 2020-07-28T16:24:37Z date_published: 2020-08-24T00:00:00Z date_updated: 2021-01-11T15:29:08Z day: '24' department: - _id: Bio doi: 10.15479/AT:ISTA:8181 file: - access_level: open_access checksum: 878c60885ce30afb59a884dd5eef451c content_type: text/plain creator: rhauschild date_created: 2020-08-24T15:43:49Z date_updated: 2020-08-24T15:43:49Z file_id: '8290' file_name: centriolesDistance.m file_size: 6577 relation: main_file success: 1 - access_level: open_access checksum: 5a93ac7be2b66b28e4bd8b113ee6aade content_type: text/plain creator: rhauschild date_created: 2020-08-24T15:43:52Z date_updated: 2020-08-24T15:43:52Z file_id: '8291' file_name: goTracking.m file_size: 2680 relation: main_file success: 1 file_date_updated: 2020-08-24T15:43:52Z has_accepted_license: '1' license: https://opensource.org/licenses/BSD-3-Clause month: '08' oa: 1 publisher: IST Austria status: public title: Amplified centrosomes in dendritic cells promote immune cell effector functions tmp: legal_code_url: https://opensource.org/licenses/BSD-3-Clause name: The 3-Clause BSD License short: 3-Clause BSD type: software user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8294' abstract: - lang: eng text: 'Automated root growth analysis and tracking of root tips. ' author: - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 citation: ama: Hauschild R. RGtracker. 2020. doi:10.15479/AT:ISTA:8294 apa: Hauschild, R. (2020). RGtracker. IST Austria. https://doi.org/10.15479/AT:ISTA:8294 chicago: Hauschild, Robert. “RGtracker.” IST Austria, 2020. https://doi.org/10.15479/AT:ISTA:8294. ieee: R. Hauschild, “RGtracker.” IST Austria, 2020. ista: Hauschild R. 2020. RGtracker, IST Austria, 10.15479/AT:ISTA:8294. mla: Hauschild, Robert. RGtracker. IST Austria, 2020, doi:10.15479/AT:ISTA:8294. short: R. Hauschild, (2020). date_created: 2020-08-25T12:52:48Z date_published: 2020-09-10T00:00:00Z date_updated: 2021-01-12T08:17:56Z day: '10' ddc: - '570' department: - _id: Bio doi: 10.15479/AT:ISTA:8294 file: - access_level: open_access checksum: 108352149987ac6f066e4925bd56e35e content_type: text/plain creator: rhauschild date_created: 2020-09-08T14:26:31Z date_updated: 2020-09-08T14:26:31Z file_id: '8346' file_name: readme.txt file_size: 882 relation: main_file success: 1 - access_level: open_access checksum: ffd6c643b28e0cc7c6d0060a18a7e8ea content_type: application/octet-stream creator: rhauschild date_created: 2020-09-08T14:26:33Z date_updated: 2020-09-08T14:26:33Z file_id: '8347' file_name: RGtracker.mlappinstall file_size: 246121 relation: main_file success: 1 file_date_updated: 2020-09-08T14:26:33Z has_accepted_license: '1' month: '09' oa: 1 publisher: IST Austria status: public title: RGtracker tmp: legal_code_url: https://opensource.org/licenses/BSD-3-Clause name: The 3-Clause BSD License short: 3-Clause BSD type: software user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8322' abstract: - lang: eng text: "Reverse firewalls were introduced at Eurocrypt 2015 by Miro-nov and Stephens-Davidowitz, as a method for protecting cryptographic protocols against attacks on the devices of the honest parties. In a nutshell: a reverse firewall is placed outside of a device and its goal is to “sanitize” the messages sent by it, in such a way that a malicious device cannot leak its secrets to the outside world. It is typically assumed that the cryptographic devices are attacked in a “functionality-preserving way” (i.e. informally speaking, the functionality of the protocol remains unchanged under this attacks). In their paper, Mironov and Stephens-Davidowitz construct a protocol for passively-secure two-party computations with firewalls, leaving extension of this result to stronger models as an open question.\r\nIn this paper, we address this problem by constructing a protocol for secure computation with firewalls that has two main advantages over the original protocol from Eurocrypt 2015. Firstly, it is a multiparty computation protocol (i.e. it works for an arbitrary number n of the parties, and not just for 2). Secondly, it is secure in much stronger corruption settings, namely in the active corruption model. More precisely: we consider an adversary that can fully corrupt up to \U0001D45B−1 parties, while the remaining parties are corrupt in a functionality-preserving way.\r\nOur core techniques are: malleable commitments and malleable non-interactive zero-knowledge, which in particular allow us to create a novel protocol for multiparty augmented coin-tossing into the well with reverse firewalls (that is based on a protocol of Lindell from Crypto 2001)." acknowledgement: We would like to thank the anonymous reviewers for their helpful comments and suggestions. The work was initiated while the first author was in IIT Madras, India. Part of this work was done while the author was visiting the University of Warsaw. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (682815 - TOCNeT) and from the Foundation for Polish Science under grant TEAM/2016-1/4 founded within the UE 2014–2020 Smart Growth Operational Program. The last author was supported by the Independent Research Fund Denmark project BETHE and the Concordium Blockchain Research Center, Aarhus University, Denmark. alternative_title: - LNCS article_processing_charge: No author: - first_name: Suvradip full_name: Chakraborty, Suvradip id: B9CD0494-D033-11E9-B219-A439E6697425 last_name: Chakraborty - first_name: Stefan full_name: Dziembowski, Stefan last_name: Dziembowski - first_name: Jesper Buus full_name: Nielsen, Jesper Buus last_name: Nielsen citation: ama: 'Chakraborty S, Dziembowski S, Nielsen JB. Reverse firewalls for actively secure MPCs. In: Advances in Cryptology – CRYPTO 2020. Vol 12171. Springer Nature; 2020:732-762. doi:10.1007/978-3-030-56880-1_26' apa: 'Chakraborty, S., Dziembowski, S., & Nielsen, J. B. (2020). Reverse firewalls for actively secure MPCs. In Advances in Cryptology – CRYPTO 2020 (Vol. 12171, pp. 732–762). Santa Barbara, CA, United States: Springer Nature. https://doi.org/10.1007/978-3-030-56880-1_26' chicago: Chakraborty, Suvradip, Stefan Dziembowski, and Jesper Buus Nielsen. “Reverse Firewalls for Actively Secure MPCs.” In Advances in Cryptology – CRYPTO 2020, 12171:732–62. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-56880-1_26. ieee: S. Chakraborty, S. Dziembowski, and J. B. Nielsen, “Reverse firewalls for actively secure MPCs,” in Advances in Cryptology – CRYPTO 2020, Santa Barbara, CA, United States, 2020, vol. 12171, pp. 732–762. ista: 'Chakraborty S, Dziembowski S, Nielsen JB. 2020. Reverse firewalls for actively secure MPCs. Advances in Cryptology – CRYPTO 2020. CRYPTO: Annual International Cryptology Conference, LNCS, vol. 12171, 732–762.' mla: Chakraborty, Suvradip, et al. “Reverse Firewalls for Actively Secure MPCs.” Advances in Cryptology – CRYPTO 2020, vol. 12171, Springer Nature, 2020, pp. 732–62, doi:10.1007/978-3-030-56880-1_26. short: S. Chakraborty, S. Dziembowski, J.B. Nielsen, in:, Advances in Cryptology – CRYPTO 2020, Springer Nature, 2020, pp. 732–762. conference: end_date: 2020-08-21 location: Santa Barbara, CA, United States name: 'CRYPTO: Annual International Cryptology Conference' start_date: 2020-08-17 date_created: 2020-08-30T22:01:12Z date_published: 2020-08-10T00:00:00Z date_updated: 2021-01-12T08:18:08Z day: '10' department: - _id: KrPi doi: 10.1007/978-3-030-56880-1_26 ec_funded: 1 intvolume: ' 12171' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2019/1317 month: '08' oa: 1 oa_version: Preprint page: 732-762 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: Advances in Cryptology – CRYPTO 2020 publication_identifier: eissn: - '16113349' isbn: - '9783030568795' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Reverse firewalls for actively secure MPCs type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12171 year: '2020' ... --- _id: '8339' abstract: - lang: eng text: "Discrete Gaussian distributions over lattices are central to lattice-based cryptography, and to the computational and mathematical aspects of lattices more broadly. The literature contains a wealth of useful theorems about the behavior of discrete Gaussians under convolutions and related operations. Yet despite their structural similarities, most of these theorems are formally incomparable, and their proofs tend to be monolithic and written nearly “from scratch,” making them unnecessarily hard to verify, understand, and extend.\r\nIn this work we present a modular framework for analyzing linear operations on discrete Gaussian distributions. The framework abstracts away the particulars of Gaussians, and usually reduces proofs to the choice of appropriate linear transformations and elementary linear algebra. To showcase the approach, we establish several general properties of discrete Gaussians, and show how to obtain all prior convolution theorems (along with some new ones) as straightforward corollaries. As another application, we describe a self-reduction for Learning With Errors (LWE) that uses a fixed number of samples to generate an unlimited number of additional ones (having somewhat larger error). The distinguishing features of our reduction are its simple analysis in our framework, and its exclusive use of discrete Gaussians without any loss in parameters relative to a prior mixed discrete-and-continuous approach.\r\nAs a contribution of independent interest, for subgaussian random matrices we prove a singular value concentration bound with explicitly stated constants, and we give tighter heuristics for specific distributions that are commonly used for generating lattice trapdoors. These bounds yield improvements in the concrete bit-security estimates for trapdoor lattice cryptosystems." alternative_title: - LNCS article_processing_charge: No author: - first_name: Nicholas full_name: Genise, Nicholas last_name: Genise - first_name: Daniele full_name: Micciancio, Daniele last_name: Micciancio - first_name: Chris full_name: Peikert, Chris last_name: Peikert - first_name: Michael full_name: Walter, Michael id: 488F98B0-F248-11E8-B48F-1D18A9856A87 last_name: Walter orcid: 0000-0003-3186-2482 citation: ama: 'Genise N, Micciancio D, Peikert C, Walter M. Improved discrete Gaussian and subgaussian analysis for lattice cryptography. In: 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography. Vol 12110. Springer Nature; 2020:623-651. doi:10.1007/978-3-030-45374-9_21' apa: 'Genise, N., Micciancio, D., Peikert, C., & Walter, M. (2020). Improved discrete Gaussian and subgaussian analysis for lattice cryptography. In 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography (Vol. 12110, pp. 623–651). Edinburgh, United Kingdom: Springer Nature. https://doi.org/10.1007/978-3-030-45374-9_21' chicago: Genise, Nicholas, Daniele Micciancio, Chris Peikert, and Michael Walter. “Improved Discrete Gaussian and Subgaussian Analysis for Lattice Cryptography.” In 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, 12110:623–51. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-45374-9_21. ieee: N. Genise, D. Micciancio, C. Peikert, and M. Walter, “Improved discrete Gaussian and subgaussian analysis for lattice cryptography,” in 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, Edinburgh, United Kingdom, 2020, vol. 12110, pp. 623–651. ista: 'Genise N, Micciancio D, Peikert C, Walter M. 2020. Improved discrete Gaussian and subgaussian analysis for lattice cryptography. 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography. PKC: Public-Key Cryptography, LNCS, vol. 12110, 623–651.' mla: Genise, Nicholas, et al. “Improved Discrete Gaussian and Subgaussian Analysis for Lattice Cryptography.” 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, vol. 12110, Springer Nature, 2020, pp. 623–51, doi:10.1007/978-3-030-45374-9_21. short: N. Genise, D. Micciancio, C. Peikert, M. Walter, in:, 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, Springer Nature, 2020, pp. 623–651. conference: end_date: 2020-05-07 location: Edinburgh, United Kingdom name: 'PKC: Public-Key Cryptography' start_date: 2020-05-04 date_created: 2020-09-06T22:01:13Z date_published: 2020-05-15T00:00:00Z date_updated: 2023-02-23T13:31:06Z day: '15' department: - _id: KrPi doi: 10.1007/978-3-030-45374-9_21 ec_funded: 1 intvolume: ' 12110' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2020/337 month: '05' oa: 1 oa_version: Preprint page: 623-651 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography publication_identifier: eissn: - '16113349' isbn: - '9783030453732' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Improved discrete Gaussian and subgaussian analysis for lattice cryptography type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12110 year: '2020' ... --- _id: '8572' abstract: - lang: eng text: 'We present the results of the ARCH 2020 friendly competition for formal verification of continuous and hybrid systems with linear continuous dynamics. In its fourth edition, eight tools have been applied to solve eight different benchmark problems in the category for linear continuous dynamics (in alphabetical order): CORA, C2E2, HyDRA, Hylaa, Hylaa-Continuous, JuliaReach, SpaceEx, and XSpeed. This report is a snapshot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results provide one of the most complete assessments of tools for the safety verification of continuous and hybrid systems with linear continuous dynamics up to this date.' acknowledgement: "The authors gratefully acknowledge financial support by the European Commission project\r\njustITSELF under grant number 817629, by the Austrian Science Fund (FWF) under grant\r\nZ211-N23 (Wittgenstein Award), by the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 754411, and by the\r\nScience and Engineering Research Board (SERB) project with file number IMP/2018/000523.\r\nThis material is based upon work supported by the Air Force Office of Scientific Research under\r\naward number FA9550-19-1-0288. Any opinions, finding, and conclusions or recommendations\r\nexpressed in this material are those of the author(s) and do not necessarily reflect the views of\r\nthe United States Air Force." article_processing_charge: No author: - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff - first_name: Stanley full_name: Bak, Stanley last_name: Bak - first_name: Zongnan full_name: Bao, Zongnan last_name: Bao - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Daniel full_name: Freire, Daniel last_name: Freire - first_name: Niklas full_name: Kochdumper, Niklas last_name: Kochdumper - first_name: Yangge full_name: Li, Yangge last_name: Li - first_name: Sayan full_name: Mitra, Sayan last_name: Mitra - first_name: Rajarshi full_name: Ray, Rajarshi last_name: Ray - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Stefan full_name: Schupp, Stefan last_name: Schupp - first_name: Mark full_name: Wetzlinger, Mark last_name: Wetzlinger citation: ama: 'Althoff M, Bak S, Bao Z, et al. ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. In: EPiC Series in Computing. Vol 74. EasyChair; 2020:16-48. doi:10.29007/7dt2' apa: 'Althoff, M., Bak, S., Bao, Z., Forets, M., Frehse, G., Freire, D., … Wetzlinger, M. (2020). ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. In EPiC Series in Computing (Vol. 74, pp. 16–48). EasyChair. https://doi.org/10.29007/7dt2' chicago: 'Althoff, Matthias, Stanley Bak, Zongnan Bao, Marcelo Forets, Goran Frehse, Daniel Freire, Niklas Kochdumper, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Linear Dynamics.” In EPiC Series in Computing, 74:16–48. EasyChair, 2020. https://doi.org/10.29007/7dt2.' ieee: 'M. Althoff et al., “ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics,” in EPiC Series in Computing, 2020, vol. 74, pp. 16–48.' ista: 'Althoff M, Bak S, Bao Z, Forets M, Frehse G, Freire D, Kochdumper N, Li Y, Mitra S, Ray R, Schilling C, Schupp S, Wetzlinger M. 2020. ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. EPiC Series in Computing. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems vol. 74, 16–48.' mla: 'Althoff, Matthias, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Linear Dynamics.” EPiC Series in Computing, vol. 74, EasyChair, 2020, pp. 16–48, doi:10.29007/7dt2.' short: M. Althoff, S. Bak, Z. Bao, M. Forets, G. Frehse, D. Freire, N. Kochdumper, Y. Li, S. Mitra, R. Ray, C. Schilling, S. Schupp, M. Wetzlinger, in:, EPiC Series in Computing, EasyChair, 2020, pp. 16–48. conference: end_date: 2020-07-12 name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2020-07-12 date_created: 2020-09-26T14:49:43Z date_published: 2020-09-25T00:00:00Z date_updated: 2021-01-12T08:20:06Z day: '25' department: - _id: ToHe doi: 10.29007/7dt2 ec_funded: 1 intvolume: ' 74' language: - iso: eng main_file_link: - open_access: '1' url: https://easychair.org/publications/download/DRpS month: '09' oa: 1 oa_version: Published Version page: 16-48 project: - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: EPiC Series in Computing publication_status: published publisher: EasyChair quality_controlled: '1' status: public title: 'ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 74 year: '2020' ... --- _id: '8571' abstract: - lang: eng text: We present the results of a friendly competition for formal verification of continuous and hybrid systems with nonlinear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2020. This year, 6 tools Ariadne, CORA, DynIbex, Flow*, Isabelle/HOL, and JuliaReach (in alphabetic order) participated. These tools are applied to solve reachability analysis problems on six benchmark problems, two of them featuring hybrid dynamics. We do not rank the tools based on the results, but show the current status and discover the potential advantages of different tools. acknowledgement: Christian Schilling acknowledges support in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award) and the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 754411. article_processing_charge: No author: - first_name: Luca full_name: Geretti, Luca last_name: Geretti - first_name: Julien full_name: Alexandre Dit Sandretto, Julien last_name: Alexandre Dit Sandretto - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff - first_name: Luis full_name: Benet, Luis last_name: Benet - first_name: Alexandre full_name: Chapoutot, Alexandre last_name: Chapoutot - first_name: Xin full_name: Chen, Xin last_name: Chen - first_name: Pieter full_name: Collins, Pieter last_name: Collins - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Daniel full_name: Freire, Daniel last_name: Freire - first_name: Fabian full_name: Immler, Fabian last_name: Immler - first_name: Niklas full_name: Kochdumper, Niklas last_name: Kochdumper - first_name: David full_name: Sanders, David last_name: Sanders - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Geretti L, Alexandre Dit Sandretto J, Althoff M, et al. ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. In: EPiC Series in Computing. Vol 74. EasyChair; 2020:49-75. doi:10.29007/zkf6' apa: 'Geretti, L., Alexandre Dit Sandretto, J., Althoff, M., Benet, L., Chapoutot, A., Chen, X., … Schilling, C. (2020). ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. In EPiC Series in Computing (Vol. 74, pp. 49–75). EasyChair. https://doi.org/10.29007/zkf6' chicago: 'Geretti, Luca, Julien Alexandre Dit Sandretto, Matthias Althoff, Luis Benet, Alexandre Chapoutot, Xin Chen, Pieter Collins, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics.” In EPiC Series in Computing, 74:49–75. EasyChair, 2020. https://doi.org/10.29007/zkf6.' ieee: 'L. Geretti et al., “ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics,” in EPiC Series in Computing, 2020, vol. 74, pp. 49–75.' ista: 'Geretti L, Alexandre Dit Sandretto J, Althoff M, Benet L, Chapoutot A, Chen X, Collins P, Forets M, Freire D, Immler F, Kochdumper N, Sanders D, Schilling C. 2020. ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. EPiC Series in Computing. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems vol. 74, 49–75.' mla: 'Geretti, Luca, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics.” EPiC Series in Computing, vol. 74, EasyChair, 2020, pp. 49–75, doi:10.29007/zkf6.' short: L. Geretti, J. Alexandre Dit Sandretto, M. Althoff, L. Benet, A. Chapoutot, X. Chen, P. Collins, M. Forets, D. Freire, F. Immler, N. Kochdumper, D. Sanders, C. Schilling, in:, EPiC Series in Computing, EasyChair, 2020, pp. 49–75. conference: end_date: 2020-07-12 name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2020-07-12 date_created: 2020-09-26T14:41:29Z date_published: 2020-09-25T00:00:00Z date_updated: 2021-01-12T08:20:06Z day: '25' department: - _id: ToHe doi: 10.29007/zkf6 ec_funded: 1 intvolume: ' 74' language: - iso: eng main_file_link: - open_access: '1' url: https://easychair.org/publications/download/nrdD month: '09' oa: 1 oa_version: Published Version page: 49-75 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: EPiC Series in Computing publication_status: published publisher: EasyChair quality_controlled: '1' status: public title: 'ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 74 year: '2020' ... --- _id: '8600' abstract: - lang: eng text: 'A vector addition system with states (VASS) consists of a finite set of states and counters. A transition changes the current state to the next state, and every counter is either incremented, or decremented, or left unchanged. A state and value for each counter is a configuration; and a computation is an infinite sequence of configurations with transitions between successive configurations. A probabilistic VASS consists of a VASS along with a probability distribution over the transitions for each state. Qualitative properties such as state and configuration reachability have been widely studied for VASS. In this work we consider multi-dimensional long-run average objectives for VASS and probabilistic VASS. For a counter, the cost of a configuration is the value of the counter; and the long-run average value of a computation for the counter is the long-run average of the costs of the configurations in the computation. The multi-dimensional long-run average problem given a VASS and a threshold value for each counter, asks whether there is a computation such that for each counter the long-run average value for the counter does not exceed the respective threshold. For probabilistic VASS, instead of the existence of a computation, we consider whether the expected long-run average value for each counter does not exceed the respective threshold. Our main results are as follows: we show that the multi-dimensional long-run average problem (a) is NP-complete for integer-valued VASS; (b) is undecidable for natural-valued VASS (i.e., nonnegative counters); and (c) can be solved in polynomial time for probabilistic integer-valued VASS, and probabilistic natural-valued VASS when all computations are non-terminating.' alternative_title: - LIPIcs article_number: '23' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop citation: ama: 'Chatterjee K, Henzinger TA, Otop J. Multi-dimensional long-run average problems for vector addition systems with states. In: 31st International Conference on Concurrency Theory. Vol 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CONCUR.2020.23' apa: 'Chatterjee, K., Henzinger, T. A., & Otop, J. (2020). Multi-dimensional long-run average problems for vector addition systems with states. In 31st International Conference on Concurrency Theory (Vol. 171). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2020.23' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Jan Otop. “Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States.” In 31st International Conference on Concurrency Theory, Vol. 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CONCUR.2020.23. ieee: K. Chatterjee, T. A. Henzinger, and J. Otop, “Multi-dimensional long-run average problems for vector addition systems with states,” in 31st International Conference on Concurrency Theory, Virtual, 2020, vol. 171. ista: 'Chatterjee K, Henzinger TA, Otop J. 2020. Multi-dimensional long-run average problems for vector addition systems with states. 31st International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 171, 23.' mla: Chatterjee, Krishnendu, et al. “Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States.” 31st International Conference on Concurrency Theory, vol. 171, 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CONCUR.2020.23. short: K. Chatterjee, T.A. Henzinger, J. Otop, in:, 31st International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-04 location: Virtual name: 'CONCUR: Conference on Concurrency Theory' start_date: 2020-09-01 date_created: 2020-10-04T22:01:36Z date_published: 2020-08-06T00:00:00Z date_updated: 2021-01-12T08:20:15Z day: '06' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2020.23 external_id: arxiv: - '2007.08917' file: - access_level: open_access checksum: 5039752f644c4b72b9361d21a5e31baf content_type: application/pdf creator: dernst date_created: 2020-10-05T14:04:25Z date_updated: 2020-10-05T14:04:25Z file_id: '8610' file_name: 2020_LIPIcsCONCUR_Chatterjee.pdf file_size: 601231 relation: main_file success: 1 file_date_updated: 2020-10-05T14:04:25Z has_accepted_license: '1' intvolume: ' 171' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 31st International Conference on Concurrency Theory publication_identifier: isbn: - '9783959771603' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Multi-dimensional long-run average problems for vector addition systems with states tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2020' ... --- _id: '8599' abstract: - lang: eng text: A graph game is a two-player zero-sum game in which the players move a token throughout a graph to produce an infinite path, which determines the winner or payoff of the game. In bidding games, both players have budgets, and in each turn, we hold an "auction" (bidding) to determine which player moves the token. In this survey, we consider several bidding mechanisms and study their effect on the properties of the game. Specifically, bidding games, and in particular bidding games of infinite duration, have an intriguing equivalence with random-turn games in which in each turn, the player who moves is chosen randomly. We show how minor changes in the bidding mechanism lead to unexpected differences in the equivalence with random-turn games. acknowledgement: We would like to thank all our collaborators Milad Aghajohari, Ventsislav Chonev, Rasmus Ibsen-Jensen, Ismäel Jecker, Petr Novotný, Josef Tkadlec, and Ðorđe Žikelić; we hope the collaboration was as fun and meaningful for you as it was for us. alternative_title: - LIPIcs article_number: '2' article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Avni G, Henzinger TA. A survey of bidding games on graphs. In: 31st International Conference on Concurrency Theory. Vol 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CONCUR.2020.2' apa: 'Avni, G., & Henzinger, T. A. (2020). A survey of bidding games on graphs. In 31st International Conference on Concurrency Theory (Vol. 171). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2020.2' chicago: Avni, Guy, and Thomas A Henzinger. “A Survey of Bidding Games on Graphs.” In 31st International Conference on Concurrency Theory, Vol. 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CONCUR.2020.2. ieee: G. Avni and T. A. Henzinger, “A survey of bidding games on graphs,” in 31st International Conference on Concurrency Theory, Virtual, 2020, vol. 171. ista: 'Avni G, Henzinger TA. 2020. A survey of bidding games on graphs. 31st International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 171, 2.' mla: Avni, Guy, and Thomas A. Henzinger. “A Survey of Bidding Games on Graphs.” 31st International Conference on Concurrency Theory, vol. 171, 2, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CONCUR.2020.2. short: G. Avni, T.A. Henzinger, in:, 31st International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-04 location: Virtual name: 'CONCUR: Conference on Concurrency Theory' start_date: 2020-09-01 date_created: 2020-10-04T22:01:36Z date_published: 2020-08-06T00:00:00Z date_updated: 2021-01-12T08:20:13Z day: '06' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2020.2 file: - access_level: open_access checksum: 8f33b098e73724e0ac817f764d8e1a2d content_type: application/pdf creator: dernst date_created: 2020-10-05T14:13:19Z date_updated: 2020-10-05T14:13:19Z file_id: '8611' file_name: 2020_LIPIcsCONCUR_Avni.pdf file_size: 868510 relation: main_file success: 1 file_date_updated: 2020-10-05T14:13:19Z has_accepted_license: '1' intvolume: ' 171' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 31st International Conference on Concurrency Theory publication_identifier: isbn: - '9783959771603' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: A survey of bidding games on graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2020' ... --- _id: '8725' abstract: - lang: eng text: "The design and implementation of efficient concurrent data structures have\r\nseen significant attention. However, most of this work has focused on\r\nconcurrent data structures providing good \\emph{worst-case} guarantees. In real\r\nworkloads, objects are often accessed at different rates, since access\r\ndistributions may be non-uniform. Efficient distribution-adaptive data\r\nstructures are known in the sequential case, e.g. the splay-trees; however,\r\nthey often are hard to translate efficiently in the concurrent case.\r\n In this paper, we investigate distribution-adaptive concurrent data\r\nstructures and propose a new design called the splay-list. At a high level, the\r\nsplay-list is similar to a standard skip-list, with the key distinction that\r\nthe height of each element adapts dynamically to its access rate: popular\r\nelements ``move up,'' whereas rarely-accessed elements decrease in height. We\r\nshow that the splay-list provides order-optimal amortized complexity bounds for\r\na subset of operations while being amenable to efficient concurrent\r\nimplementation. Experimental results show that the splay-list can leverage\r\ndistribution-adaptivity to improve on the performance of classic concurrent\r\ndesigns, and can outperform the only previously-known distribution-adaptive\r\ndesign in certain settings." acknowledgement: "Vitaly Aksenov: Government of Russian Federation (Grant 08-08).\r\nDan Alistarh: ERC Starting Grant 805223 ScaleML." article_processing_charge: No author: - first_name: Vitaly full_name: Aksenov, Vitaly last_name: Aksenov - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Alexandra full_name: Drozdova, Alexandra last_name: Drozdova - first_name: Amirkeivan full_name: Mohtashami, Amirkeivan last_name: Mohtashami citation: ama: 'Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. The splay-list: A distribution-adaptive concurrent skip-list. In: 34th International Symposium on Distributed Computing. Vol 179. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020:3:1-3:18. doi:10.4230/LIPIcs.DISC.2020.3' apa: 'Aksenov, V., Alistarh, D.-A., Drozdova, A., & Mohtashami, A. (2020). The splay-list: A distribution-adaptive concurrent skip-list. In 34th International Symposium on Distributed Computing (Vol. 179, p. 3:1-3:18). Freiburg, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.DISC.2020.3' chicago: 'Aksenov, Vitaly, Dan-Adrian Alistarh, Alexandra Drozdova, and Amirkeivan Mohtashami. “The Splay-List: A Distribution-Adaptive Concurrent Skip-List.” In 34th International Symposium on Distributed Computing, 179:3:1-3:18. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.DISC.2020.3.' ieee: 'V. Aksenov, D.-A. Alistarh, A. Drozdova, and A. Mohtashami, “The splay-list: A distribution-adaptive concurrent skip-list,” in 34th International Symposium on Distributed Computing, Freiburg, Germany, 2020, vol. 179, p. 3:1-3:18.' ista: 'Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. 2020. The splay-list: A distribution-adaptive concurrent skip-list. 34th International Symposium on Distributed Computing. DISC: Symposium on Distributed ComputingLIPIcs vol. 179, 3:1-3:18.' mla: 'Aksenov, Vitaly, et al. “The Splay-List: A Distribution-Adaptive Concurrent Skip-List.” 34th International Symposium on Distributed Computing, vol. 179, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 3:1-3:18, doi:10.4230/LIPIcs.DISC.2020.3.' short: V. Aksenov, D.-A. Alistarh, A. Drozdova, A. Mohtashami, in:, 34th International Symposium on Distributed Computing, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 3:1-3:18. conference: end_date: 2020-10-16 location: Freiburg, Germany name: 'DISC: Symposium on Distributed Computing' start_date: 2020-10-12 date_created: 2020-11-05T15:26:17Z date_published: 2020-08-03T00:00:00Z date_updated: 2023-02-23T13:41:40Z day: '03' ddc: - '000' department: - _id: DaAl doi: 10.4230/LIPIcs.DISC.2020.3 ec_funded: 1 external_id: arxiv: - '2008.01009' file: - access_level: open_access checksum: a626a9c47df52b6f6d97edd910dae4ba content_type: application/pdf creator: dernst date_created: 2021-03-11T12:33:35Z date_updated: 2021-03-11T12:33:35Z file_id: '9237' file_name: 2020_LIPIcs_Aksenov.pdf file_size: 740358 relation: main_file success: 1 file_date_updated: 2021-03-11T12:33:35Z has_accepted_license: '1' intvolume: ' 179' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 3:1-3:18 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: 34th International Symposium on Distributed Computing publication_identifier: isbn: - '9783959771689' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' series_title: LIPIcs status: public title: 'The splay-list: A distribution-adaptive concurrent skip-list' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 179 year: '2020' ... --- _id: '8726' abstract: - lang: eng text: Several realistic spin-orbital models for transition metal oxides go beyond the classical expectations and could be understood only by employing the quantum entanglement. Experiments on these materials confirm that spin-orbital entanglement has measurable consequences. Here, we capture the essential features of spin-orbital entanglement in complex quantum matter utilizing 1D spin-orbital model which accommodates SU(2)⊗SU(2) symmetric Kugel-Khomskii superexchange as well as the Ising on-site spin-orbit coupling. Building on the results obtained for full and effective models in the regime of strong spin-orbit coupling, we address the question whether the entanglement found on superexchange bonds always increases when the Ising spin-orbit coupling is added. We show that (i) quantum entanglement is amplified by strong spin-orbit coupling and, surprisingly, (ii) almost classical disentangled states are possible. We complete the latter case by analyzing how the entanglement existing for intermediate values of spin-orbit coupling can disappear for higher values of this coupling. article_number: '53' article_processing_charge: No article_type: original author: - first_name: Dorota full_name: Gotfryd, Dorota last_name: Gotfryd - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld - first_name: Andrzej M. full_name: Oleś, Andrzej M. last_name: Oleś citation: ama: Gotfryd D, Paerschke E, Wohlfeld K, Oleś AM. Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. 2020;5(3). doi:10.3390/condmat5030053 apa: Gotfryd, D., Paerschke, E., Wohlfeld, K., & Oleś, A. M. (2020). Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. MDPI. https://doi.org/10.3390/condmat5030053 chicago: Gotfryd, Dorota, Ekaterina Paerschke, Krzysztof Wohlfeld, and Andrzej M. Oleś. “Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling.” Condensed Matter. MDPI, 2020. https://doi.org/10.3390/condmat5030053. ieee: D. Gotfryd, E. Paerschke, K. Wohlfeld, and A. M. Oleś, “Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling,” Condensed Matter, vol. 5, no. 3. MDPI, 2020. ista: Gotfryd D, Paerschke E, Wohlfeld K, Oleś AM. 2020. Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. 5(3), 53. mla: Gotfryd, Dorota, et al. “Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling.” Condensed Matter, vol. 5, no. 3, 53, MDPI, 2020, doi:10.3390/condmat5030053. short: D. Gotfryd, E. Paerschke, K. Wohlfeld, A.M. Oleś, Condensed Matter 5 (2020). date_created: 2020-11-06T07:21:00Z date_published: 2020-08-26T00:00:00Z date_updated: 2021-01-12T08:20:46Z day: '26' ddc: - '530' department: - _id: MiLe doi: 10.3390/condmat5030053 ec_funded: 1 external_id: arxiv: - '2009.11773' file: - access_level: open_access checksum: a57a698ff99a11b6665bafd1bac7afbc content_type: application/pdf creator: dernst date_created: 2020-11-06T07:24:40Z date_updated: 2020-11-06T07:24:40Z file_id: '8727' file_name: 2020_CondensedMatter_Gotfryd.pdf file_size: 768336 relation: main_file success: 1 file_date_updated: 2020-11-06T07:24:40Z has_accepted_license: '1' intvolume: ' 5' issue: '3' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Condensed Matter publication_identifier: issn: - 2410-3896 publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2020' ... --- _id: '9040' abstract: - lang: eng text: Machine learning and formal methods have complimentary benefits and drawbacks. In this work, we address the controller-design problem with a combination of techniques from both fields. The use of black-box neural networks in deep reinforcement learning (deep RL) poses a challenge for such a combination. Instead of reasoning formally about the output of deep RL, which we call the wizard, we extract from it a decision-tree based model, which we refer to as the magic book. Using the extracted model as an intermediary, we are able to handle problems that are infeasible for either deep RL or formal methods by themselves. First, we suggest, for the first time, a synthesis procedure that is based on a magic book. We synthesize a stand-alone correct-by-design controller that enjoys the favorable performance of RL. Second, we incorporate a magic book in a bounded model checking (BMC) procedure. BMC allows us to find numerous traces of the plant under the control of the wizard, which a user can use to increase the trustworthiness of the wizard and direct further training. acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). article_processing_charge: No author: - first_name: Par Alizadeh full_name: Alamdari, Par Alizadeh last_name: Alamdari - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Anna full_name: Lukina, Anna id: CBA4D1A8-0FE8-11E9-BDE6-07BFE5697425 last_name: Lukina citation: ama: 'Alamdari PA, Avni G, Henzinger TA, Lukina A. Formal methods with a touch of magic. In: Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design. TU Wien Academic Press; 2020:138-147. doi:10.34727/2020/isbn.978-3-85448-042-6_21' apa: 'Alamdari, P. A., Avni, G., Henzinger, T. A., & Lukina, A. (2020). Formal methods with a touch of magic. In Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design (pp. 138–147). Online Conference: TU Wien Academic Press. https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21' chicago: Alamdari, Par Alizadeh, Guy Avni, Thomas A Henzinger, and Anna Lukina. “Formal Methods with a Touch of Magic.” In Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, 138–47. TU Wien Academic Press, 2020. https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21. ieee: P. A. Alamdari, G. Avni, T. A. Henzinger, and A. Lukina, “Formal methods with a touch of magic,” in Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, Online Conference, 2020, pp. 138–147. ista: 'Alamdari PA, Avni G, Henzinger TA, Lukina A. 2020. Formal methods with a touch of magic. Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design. FMCAD: Formal Methods in Computer-Aided Design, 138–147.' mla: Alamdari, Par Alizadeh, et al. “Formal Methods with a Touch of Magic.” Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, TU Wien Academic Press, 2020, pp. 138–47, doi:10.34727/2020/isbn.978-3-85448-042-6_21. short: P.A. Alamdari, G. Avni, T.A. Henzinger, A. Lukina, in:, Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, TU Wien Academic Press, 2020, pp. 138–147. conference: end_date: 2020-09-24 location: Online Conference name: ' FMCAD: Formal Methods in Computer-Aided Design' start_date: 2020-09-21 date_created: 2021-01-24T23:01:10Z date_published: 2020-09-21T00:00:00Z date_updated: 2021-02-09T09:39:59Z day: '21' ddc: - '000' department: - _id: ToHe doi: 10.34727/2020/isbn.978-3-85448-042-6_21 file: - access_level: open_access checksum: d616d549a0ade78606b16f8a9540820f content_type: application/pdf creator: dernst date_created: 2021-02-09T09:39:02Z date_updated: 2021-02-09T09:39:02Z file_id: '9109' file_name: 2020_FMCAD_Alamdari.pdf file_size: 990999 relation: main_file success: 1 file_date_updated: 2021-02-09T09:39:02Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 138-147 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design publication_identifier: eissn: - 2708-7824 isbn: - '9783854480426' publication_status: published publisher: TU Wien Academic Press quality_controlled: '1' scopus_import: '1' status: public title: Formal methods with a touch of magic tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ...