--- _id: '15011' abstract: - lang: eng text: Pruning large language models (LLMs) from the BERT family has emerged as a standard compression benchmark, and several pruning methods have been proposed for this task. The recent “Sparsity May Cry” (SMC) benchmark put into question the validity of all existing methods, exhibiting a more complex setup where many known pruning methods appear to fail. We revisit the question of accurate BERT-pruning during fine-tuning on downstream datasets, and propose a set of general guidelines for successful pruning, even on the challenging SMC benchmark. First, we perform a cost-vs-benefits analysis of pruning model components, such as the embeddings and the classification head; second, we provide a simple-yet-general way of scaling training, sparsification and learning rate schedules relative to the desired target sparsity; finally, we investigate the importance of proper parametrization for Knowledge Distillation in the context of LLMs. Our simple insights lead to state-of-the-art results, both on classic BERT-pruning benchmarks, as well as on the SMC benchmark, showing that even classic gradual magnitude pruning (GMP) can yield competitive results, with the right approach. alternative_title: - PMLR article_processing_charge: No author: - first_name: Eldar full_name: Kurtic, Eldar id: 47beb3a5-07b5-11eb-9b87-b108ec578218 last_name: Kurtic - first_name: Torsten full_name: Hoefler, Torsten last_name: Hoefler - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Kurtic E, Hoefler T, Alistarh D-A. How to prune your language model: Recovering accuracy on the “Sparsity May Cry” benchmark. In: Proceedings of Machine Learning Research. Vol 234. ML Research Press; 2024:542-553.' apa: 'Kurtic, E., Hoefler, T., & Alistarh, D.-A. (2024). How to prune your language model: Recovering accuracy on the “Sparsity May Cry” benchmark. In Proceedings of Machine Learning Research (Vol. 234, pp. 542–553). Hongkong, China: ML Research Press.' chicago: 'Kurtic, Eldar, Torsten Hoefler, and Dan-Adrian Alistarh. “How to Prune Your Language Model: Recovering Accuracy on the ‘Sparsity May Cry’ Benchmark.” In Proceedings of Machine Learning Research, 234:542–53. ML Research Press, 2024.' ieee: 'E. Kurtic, T. Hoefler, and D.-A. Alistarh, “How to prune your language model: Recovering accuracy on the ‘Sparsity May Cry’ benchmark,” in Proceedings of Machine Learning Research, Hongkong, China, 2024, vol. 234, pp. 542–553.' ista: 'Kurtic E, Hoefler T, Alistarh D-A. 2024. How to prune your language model: Recovering accuracy on the ‘Sparsity May Cry’ benchmark. Proceedings of Machine Learning Research. CPAL: Conference on Parsimony and Learning, PMLR, vol. 234, 542–553.' mla: 'Kurtic, Eldar, et al. “How to Prune Your Language Model: Recovering Accuracy on the ‘Sparsity May Cry’ Benchmark.” Proceedings of Machine Learning Research, vol. 234, ML Research Press, 2024, pp. 542–53.' short: E. Kurtic, T. Hoefler, D.-A. Alistarh, in:, Proceedings of Machine Learning Research, ML Research Press, 2024, pp. 542–553. conference: end_date: 2024-01-06 location: Hongkong, China name: 'CPAL: Conference on Parsimony and Learning' start_date: 2024-01-03 date_created: 2024-02-18T23:01:03Z date_published: 2024-01-08T00:00:00Z date_updated: 2024-02-26T10:30:52Z day: '08' department: - _id: DaAl external_id: arxiv: - '2312.13547' intvolume: ' 234' language: - iso: eng main_file_link: - open_access: '1' url: https://proceedings.mlr.press/v234/kurtic24a month: '01' oa: 1 oa_version: Preprint page: 542-553 publication: Proceedings of Machine Learning Research publication_identifier: eissn: - 2640-3498 publication_status: published publisher: ML Research Press quality_controlled: '1' scopus_import: '1' status: public title: 'How to prune your language model: Recovering accuracy on the "Sparsity May Cry" benchmark' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 234 year: '2024' ... --- _id: '15024' abstract: - lang: eng text: Electrostatic correlations between ions dissolved in water are known to impact their transport properties in numerous ways, from conductivity to ion selectivity. The effects of these correlations on the solvent itself remain, however, much less clear. In particular, the addition of salt has been consistently reported to affect the solution’s viscosity, but most modeling attempts fail to reproduce experimental data even at moderate salt concentrations. Here, we use an approach based on stochastic density functional theory, which accurately captures charge fluctuations and correlations. We derive a simple analytical expression for the viscosity correction in concentrated electrolytes, by directly linking it to the liquid’s structure factor. Our prediction compares quantitatively to experimental data at all temperatures and all salt concentrations up to the saturation limit. This universal link between the microscopic structure and viscosity allows us to shed light on the nanoscale dynamics of water and ions under highly concentrated and correlated conditions. acknowledgement: The author thanks Lydéric Bocquet, Baptiste Coquinot, and Mathieu Lizée for fruitful discussions. This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 101034413. article_number: '064503' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Paul full_name: Robin, Paul id: 48c58128-57b0-11ee-9095-dc28fd97fc1d last_name: Robin orcid: 0000-0002-5728-9189 citation: ama: Robin P. Correlation-induced viscous dissipation in concentrated electrolytes. Journal of Chemical Physics. 2024;160(6). doi:10.1063/5.0188215 apa: Robin, P. (2024). Correlation-induced viscous dissipation in concentrated electrolytes. Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/5.0188215 chicago: Robin, Paul. “Correlation-Induced Viscous Dissipation in Concentrated Electrolytes.” Journal of Chemical Physics. AIP Publishing, 2024. https://doi.org/10.1063/5.0188215. ieee: P. Robin, “Correlation-induced viscous dissipation in concentrated electrolytes,” Journal of Chemical Physics, vol. 160, no. 6. AIP Publishing, 2024. ista: Robin P. 2024. Correlation-induced viscous dissipation in concentrated electrolytes. Journal of Chemical Physics. 160(6), 064503. mla: Robin, Paul. “Correlation-Induced Viscous Dissipation in Concentrated Electrolytes.” Journal of Chemical Physics, vol. 160, no. 6, 064503, AIP Publishing, 2024, doi:10.1063/5.0188215. short: P. Robin, Journal of Chemical Physics 160 (2024). date_created: 2024-02-25T23:00:55Z date_published: 2024-02-14T00:00:00Z date_updated: 2024-02-27T08:16:06Z day: '14' ddc: - '540' department: - _id: EdHa doi: 10.1063/5.0188215 ec_funded: 1 external_id: arxiv: - '2311.11784' pmid: - '38349632' file: - access_level: open_access checksum: 0a5e0ae70849bce674466fc054390ec0 content_type: application/pdf creator: dernst date_created: 2024-02-27T08:12:52Z date_updated: 2024-02-27T08:12:52Z file_id: '15034' file_name: 2024_JourChemicalPhysics_Robin.pdf file_size: 5452738 relation: main_file success: 1 file_date_updated: 2024-02-27T08:12:52Z has_accepted_license: '1' intvolume: ' 160' issue: '6' language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Journal of Chemical Physics publication_identifier: eissn: - 1089-7690 issn: - 0021-9606 publication_status: published publisher: AIP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Correlation-induced viscous dissipation in concentrated electrolytes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 160 year: '2024' ... --- _id: '15025' abstract: - lang: eng text: We consider quadratic forms of deterministic matrices A evaluated at the random eigenvectors of a large N×N GOE or GUE matrix, or equivalently evaluated at the columns of a Haar-orthogonal or Haar-unitary random matrix. We prove that, as long as the deterministic matrix has rank much smaller than √N, the distributions of the extrema of these quadratic forms are asymptotically the same as if the eigenvectors were independent Gaussians. This reduces the problem to Gaussian computations, which we carry out in several cases to illustrate our result, finding Gumbel or Weibull limiting distributions depending on the signature of A. Our result also naturally applies to the eigenvectors of any invariant ensemble. acknowledgement: The first author was supported by the ERC Advanced Grant “RMTBeyond” No. 101020331. The second author was supported by Fulbright Austria and the Austrian Marshall Plan Foundation. article_processing_charge: No article_type: original author: - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Benjamin full_name: McKenna, Benjamin id: b0cc634c-d549-11ee-96c8-87338c7ad808 last_name: McKenna orcid: 0000-0003-2625-495X citation: ama: Erdös L, McKenna B. Extremal statistics of quadratic forms of GOE/GUE eigenvectors. Annals of Applied Probability. 2024;34(1B):1623-1662. doi:10.1214/23-AAP2000 apa: Erdös, L., & McKenna, B. (2024). Extremal statistics of quadratic forms of GOE/GUE eigenvectors. Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/23-AAP2000 chicago: Erdös, László, and Benjamin McKenna. “Extremal Statistics of Quadratic Forms of GOE/GUE Eigenvectors.” Annals of Applied Probability. Institute of Mathematical Statistics, 2024. https://doi.org/10.1214/23-AAP2000. ieee: L. Erdös and B. McKenna, “Extremal statistics of quadratic forms of GOE/GUE eigenvectors,” Annals of Applied Probability, vol. 34, no. 1B. Institute of Mathematical Statistics, pp. 1623–1662, 2024. ista: Erdös L, McKenna B. 2024. Extremal statistics of quadratic forms of GOE/GUE eigenvectors. Annals of Applied Probability. 34(1B), 1623–1662. mla: Erdös, László, and Benjamin McKenna. “Extremal Statistics of Quadratic Forms of GOE/GUE Eigenvectors.” Annals of Applied Probability, vol. 34, no. 1B, Institute of Mathematical Statistics, 2024, pp. 1623–62, doi:10.1214/23-AAP2000. short: L. Erdös, B. McKenna, Annals of Applied Probability 34 (2024) 1623–1662. date_created: 2024-02-25T23:00:56Z date_published: 2024-02-01T00:00:00Z date_updated: 2024-02-27T08:29:05Z day: '01' department: - _id: LaEr doi: 10.1214/23-AAP2000 ec_funded: 1 external_id: arxiv: - '2208.12206' intvolume: ' 34' issue: 1B language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2208.12206 month: '02' oa: 1 oa_version: Preprint page: 1623-1662 project: - _id: 62796744-2b32-11ec-9570-940b20777f1d call_identifier: H2020 grant_number: '101020331' name: Random matrices beyond Wigner-Dyson-Mehta publication: Annals of Applied Probability publication_identifier: issn: - 1050-5164 publication_status: published publisher: Institute of Mathematical Statistics quality_controlled: '1' scopus_import: '1' status: public title: Extremal statistics of quadratic forms of GOE/GUE eigenvectors type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2024' ... --- _id: '15033' abstract: - lang: eng text: The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM. acknowledgement: "The authors would like to gratefully acknowledge Dr Xixi Zhang for cloning the GNL1/pDONR221 construct and for useful discussions.H2020 European Research\r\nCouncil Advanced Grant ETAP742985 to Jiří Friml, Austrian Science Fund I 3630-B25 to Jiří Friml" article_processing_charge: Yes article_type: original author: - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Ivana full_name: Matijevic, Ivana id: 83c17ce3-15b2-11ec-abd3-f486545870bd last_name: Matijevic - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Adamowski M, Matijevic I, Friml J. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife. 2024;13. doi:10.7554/elife.68993 apa: Adamowski, M., Matijevic, I., & Friml, J. (2024). Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.68993 chicago: Adamowski, Maciek, Ivana Matijevic, and Jiří Friml. “Developmental Patterning Function of GNOM ARF-GEF Mediated from the Cell Periphery.” ELife. eLife Sciences Publications, 2024. https://doi.org/10.7554/elife.68993. ieee: M. Adamowski, I. Matijevic, and J. Friml, “Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery,” eLife, vol. 13. eLife Sciences Publications, 2024. ista: Adamowski M, Matijevic I, Friml J. 2024. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife. 13. mla: Adamowski, Maciek, et al. “Developmental Patterning Function of GNOM ARF-GEF Mediated from the Cell Periphery.” ELife, vol. 13, eLife Sciences Publications, 2024, doi:10.7554/elife.68993. short: M. Adamowski, I. Matijevic, J. Friml, ELife 13 (2024). date_created: 2024-02-27T07:10:11Z date_published: 2024-02-21T00:00:00Z date_updated: 2024-02-28T12:29:43Z day: '21' ddc: - '580' department: - _id: JiFr doi: 10.7554/elife.68993 ec_funded: 1 has_accepted_license: '1' intvolume: ' 13' keyword: - General Immunology and Microbiology - General Biochemistry - Genetics and Molecular Biology - General Medicine - General Neuroscience language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.7554/eLife.68993 month: '02' oa: 1 oa_version: Published Version project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: eLife publication_identifier: issn: - 2050-084X publication_status: epub_ahead publisher: eLife Sciences Publications quality_controlled: '1' status: public title: Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2024' ... --- _id: '14479' abstract: - lang: eng text: 'In animals, parasitic infections impose significant fitness costs.1,2,3,4,5,6 Infected animals can alter their feeding behavior to resist infection,7,8,9,10,11,12 but parasites can manipulate animal foraging behavior to their own benefits.13,14,15,16 How nutrition influences host-parasite interactions is not well understood, as studies have mainly focused on the host and less on the parasite.9,12,17,18,19,20,21,22,23 We used the nutritional geometry framework24 to investigate the role of amino acids (AA) and carbohydrates (C) in a host-parasite system: the Argentine ant, Linepithema humile, and the entomopathogenic fungus, Metarhizium brunneum. First, using 18 diets varying in AA:C composition, we established that the fungus performed best on the high-amino-acid diet 1:4. Second, we found that the fungus reached this optimal diet when given various diet pairings, revealing its ability to cope with nutritional challenges. Third, we showed that the optimal fungal diet reduced the lifespan of healthy ants when compared with a high-carbohydrate diet but had no effect on infected ants. Fourth, we revealed that infected ant colonies, given a choice between the optimal fungal diet and a high-carbohydrate diet, chose the optimal fungal diet, whereas healthy colonies avoided it. Lastly, by disentangling fungal infection from host immune response, we demonstrated that infected ants foraged on the optimal fungal diet in response to immune activation and not as a result of parasite manipulation. Therefore, we revealed that infected ant colonies chose a diet that is costly for survival in the long term but beneficial in the short term—a form of collective self-medication.' acknowledgement: We are sincerely grateful to the referees for their valuable comments and suggestions, which helped us to improve the paper. We are thankful to Jorgen Eilenberg and Nicolai V. Meyling for the fungal strain, to Simon Tragust, Abel Bernadou, and Brian Lazarro for insightful discussions, to Iago Sanmartín-Villar, Léa Briard, Céline Maitrel, and Nolwenn Rissen for their help with the experiments. Furthermore, we thank Anna V. Grasse for help with the immune gene expression analyses. We thank Sergio Ibarra for creating the graphical abstract. E.C. was supported by a Fyssen Foundation grant and the Alexander von Humboldt Foundation. A.D. was supported by the CNRS. article_processing_charge: No article_type: original author: - first_name: Eniko full_name: Csata, Eniko last_name: Csata - first_name: Alfonso full_name: Perez-Escudero, Alfonso last_name: Perez-Escudero - first_name: Emmanuel full_name: Laury, Emmanuel last_name: Laury - first_name: Hanna full_name: Leitner, Hanna id: 8fc5c6f6-5903-11ec-abad-c83f046253e7 last_name: Leitner - first_name: Gerard full_name: Latil, Gerard last_name: Latil - first_name: Juerge full_name: Heinze, Juerge last_name: Heinze - first_name: Stephen full_name: Simpson, Stephen last_name: Simpson - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 - first_name: Audrey full_name: Dussutour, Audrey last_name: Dussutour citation: ama: Csata E, Perez-Escudero A, Laury E, et al. Fungal infection alters collective nutritional intake of ant colonies. Current Biology. 2024;34(4):902-909.e6. doi:10.1016/j.cub.2024.01.017 apa: Csata, E., Perez-Escudero, A., Laury, E., Leitner, H., Latil, G., Heinze, J., … Dussutour, A. (2024). Fungal infection alters collective nutritional intake of ant colonies. Current Biology. Elsevier. https://doi.org/10.1016/j.cub.2024.01.017 chicago: Csata, Eniko, Alfonso Perez-Escudero, Emmanuel Laury, Hanna Leitner, Gerard Latil, Juerge Heinze, Stephen Simpson, Sylvia Cremer, and Audrey Dussutour. “Fungal Infection Alters Collective Nutritional Intake of Ant Colonies.” Current Biology. Elsevier, 2024. https://doi.org/10.1016/j.cub.2024.01.017. ieee: E. Csata et al., “Fungal infection alters collective nutritional intake of ant colonies,” Current Biology, vol. 34, no. 4. Elsevier, p. 902–909.e6, 2024. ista: Csata E, Perez-Escudero A, Laury E, Leitner H, Latil G, Heinze J, Simpson S, Cremer S, Dussutour A. 2024. Fungal infection alters collective nutritional intake of ant colonies. Current Biology. 34(4), 902–909.e6. mla: Csata, Eniko, et al. “Fungal Infection Alters Collective Nutritional Intake of Ant Colonies.” Current Biology, vol. 34, no. 4, Elsevier, 2024, p. 902–909.e6, doi:10.1016/j.cub.2024.01.017. short: E. Csata, A. Perez-Escudero, E. Laury, H. Leitner, G. Latil, J. Heinze, S. Simpson, S. Cremer, A. Dussutour, Current Biology 34 (2024) 902–909.e6. date_created: 2023-10-31T13:30:20Z date_published: 2024-02-26T00:00:00Z date_updated: 2024-03-04T07:14:41Z day: '26' department: - _id: SyCr doi: 10.1016/j.cub.2024.01.017 external_id: pmid: - '38307022' intvolume: ' 34' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2023.10.26.564092 month: '02' oa: 1 oa_version: Preprint page: 902-909.e6 pmid: 1 publication: Current Biology publication_identifier: eissn: - 1879-0445 issn: - 0960-9822 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Fungal infection alters collective nutritional intake of ant colonies type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2024' ... --- _id: '15045' abstract: - lang: eng text: Coupling of orbital motion to a spin degree of freedom gives rise to various transport phenomena in quantum systems that are beyond the standard paradigms of classical physics. Here, we discuss features of spin-orbit dynamics that can be visualized using a classical model with two coupled angular degrees of freedom. Specifically, we demonstrate classical ‘spin’ filtering through our model and show that the interplay between angular degrees of freedom and dissipation can lead to asymmetric ‘spin’ transport. acknowledgement: "We thank Mikhail Lemeshko and members of his group for many inspiring discussions; Alberto Cappellaro for comments on the manuscript.\r\nOpen access funding provided by Institute of Science and Technology (IST Austria)." article_number: '12' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Atul full_name: Varshney, Atul id: 2A2006B2-F248-11E8-B48F-1D18A9856A87 last_name: Varshney orcid: 0000-0002-3072-5999 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Varshney A, Ghazaryan A, Volosniev A. Classical ‘spin’ filtering with two degrees of freedom and dissipation. Few-Body Systems. 2024;65. doi:10.1007/s00601-024-01880-x apa: Varshney, A., Ghazaryan, A., & Volosniev, A. (2024). Classical ‘spin’ filtering with two degrees of freedom and dissipation. Few-Body Systems. Springer Nature. https://doi.org/10.1007/s00601-024-01880-x chicago: Varshney, Atul, Areg Ghazaryan, and Artem Volosniev. “Classical ‘Spin’ Filtering with Two Degrees of Freedom and Dissipation.” Few-Body Systems. Springer Nature, 2024. https://doi.org/10.1007/s00601-024-01880-x. ieee: A. Varshney, A. Ghazaryan, and A. Volosniev, “Classical ‘spin’ filtering with two degrees of freedom and dissipation,” Few-Body Systems, vol. 65. Springer Nature, 2024. ista: Varshney A, Ghazaryan A, Volosniev A. 2024. Classical ‘spin’ filtering with two degrees of freedom and dissipation. Few-Body Systems. 65, 12. mla: Varshney, Atul, et al. “Classical ‘Spin’ Filtering with Two Degrees of Freedom and Dissipation.” Few-Body Systems, vol. 65, 12, Springer Nature, 2024, doi:10.1007/s00601-024-01880-x. short: A. Varshney, A. Ghazaryan, A. Volosniev, Few-Body Systems 65 (2024). date_created: 2024-03-01T11:39:33Z date_published: 2024-02-17T00:00:00Z date_updated: 2024-03-04T07:08:16Z day: '17' ddc: - '530' department: - _id: MiLe doi: 10.1007/s00601-024-01880-x external_id: arxiv: - '2401.08454' file: - access_level: open_access checksum: c4e08cc7bc756da69b1b36fda7bb92fb content_type: application/pdf creator: dernst date_created: 2024-03-04T07:07:10Z date_updated: 2024-03-04T07:07:10Z file_id: '15049' file_name: 2024_FewBodySys_Varshney.pdf file_size: 436712 relation: main_file success: 1 file_date_updated: 2024-03-04T07:07:10Z has_accepted_license: '1' intvolume: ' 65' keyword: - Atomic and Molecular Physics - and Optics language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Few-Body Systems publication_identifier: issn: - 1432-5411 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Classical ‘spin’ filtering with two degrees of freedom and dissipation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 65 year: '2024' ... --- _id: '15053' abstract: - lang: eng text: Atom-based quantum simulators have had many successes in tackling challenging quantum many-body problems, owing to the precise and dynamical control that they provide over the systems' parameters. They are, however, often optimized to address a specific type of problem. Here, we present the design and implementation of a 6Li-based quantum gas platform that provides wide-ranging capabilities and is able to address a variety of quantum many-body problems. Our two-chamber architecture relies on a robust combination of gray molasses and optical transport from a laser-cooling chamber to a glass cell with excellent optical access. There, we first create unitary Fermi superfluids in a three-dimensional axially symmetric harmonic trap and characterize them using in situ thermometry, reaching temperatures below 20 nK. This allows us to enter the deep superfluid regime with samples of extreme diluteness, where the interparticle spacing is sufficiently large for direct single-atom imaging. Second, we generate optical lattice potentials with triangular and honeycomb geometry in which we study diffraction of molecular Bose-Einstein condensates, and show how going beyond the Kapitza-Dirac regime allows us to unambiguously distinguish between the two geometries. With the ability to probe quantum many-body physics in both discrete and continuous space, and its suitability for bulk and single-atom imaging, our setup represents an important step towards achieving a wide-scope quantum simulator. acknowledgement: We thank Clara Bachorz, Darby Bates, Markus Bohlen, Valentin Crépel, Yann Kiefer, Joanna Lis, Mihail Rabinovic, and Julian Struck for experimental assistance in the early stages of this project, and Sebastian Will for a critical reading of the manuscript. This work has been supported by Agence Nationale de la Recherche (Grant No. ANR-21-CE30-0021), the European Research Council (Grant No. ERC-2016-ADG-743159), CNRS (Tremplin@INP 2020), and Région Ile-de-France in the framework of DIM SIRTEQ (Super2D and SISCo) and DIM QuanTiP. article_number: '013158' article_processing_charge: Yes article_type: original author: - first_name: Shuwei full_name: Jin, Shuwei last_name: Jin - first_name: Kunlun full_name: Dai, Kunlun last_name: Dai - first_name: Joris full_name: Verstraten, Joris last_name: Verstraten - first_name: Maxime full_name: Dixmerias, Maxime last_name: Dixmerias - first_name: Ragheed full_name: Al Hyder, Ragheed id: d1c405be-ae15-11ed-8510-ccf53278162e last_name: Al Hyder - first_name: Christophe full_name: Salomon, Christophe last_name: Salomon - first_name: Bruno full_name: Peaudecerf, Bruno last_name: Peaudecerf - first_name: Tim full_name: de Jongh, Tim last_name: de Jongh - first_name: Tarik full_name: Yefsah, Tarik last_name: Yefsah citation: ama: Jin S, Dai K, Verstraten J, et al. Multipurpose platform for analog quantum simulation. Physical Review Research. 2024;6(1). doi:10.1103/physrevresearch.6.013158 apa: Jin, S., Dai, K., Verstraten, J., Dixmerias, M., Al Hyder, R., Salomon, C., … Yefsah, T. (2024). Multipurpose platform for analog quantum simulation. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.6.013158 chicago: Jin, Shuwei, Kunlun Dai, Joris Verstraten, Maxime Dixmerias, Ragheed Al Hyder, Christophe Salomon, Bruno Peaudecerf, Tim de Jongh, and Tarik Yefsah. “Multipurpose Platform for Analog Quantum Simulation.” Physical Review Research. American Physical Society, 2024. https://doi.org/10.1103/physrevresearch.6.013158. ieee: S. Jin et al., “Multipurpose platform for analog quantum simulation,” Physical Review Research, vol. 6, no. 1. American Physical Society, 2024. ista: Jin S, Dai K, Verstraten J, Dixmerias M, Al Hyder R, Salomon C, Peaudecerf B, de Jongh T, Yefsah T. 2024. Multipurpose platform for analog quantum simulation. Physical Review Research. 6(1), 013158. mla: Jin, Shuwei, et al. “Multipurpose Platform for Analog Quantum Simulation.” Physical Review Research, vol. 6, no. 1, 013158, American Physical Society, 2024, doi:10.1103/physrevresearch.6.013158. short: S. Jin, K. Dai, J. Verstraten, M. Dixmerias, R. Al Hyder, C. Salomon, B. Peaudecerf, T. de Jongh, T. Yefsah, Physical Review Research 6 (2024). date_created: 2024-03-04T07:42:52Z date_published: 2024-02-13T00:00:00Z date_updated: 2024-03-04T07:55:29Z day: '13' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.6.013158 external_id: arxiv: - '2304.08433' file: - access_level: open_access checksum: ba2ae3e3a011f8897d3803c9366a67e2 content_type: application/pdf creator: dernst date_created: 2024-03-04T07:53:08Z date_updated: 2024-03-04T07:53:08Z file_id: '15054' file_name: 2024_PhysicalReviewResearch_Jin.pdf file_size: 4025988 relation: main_file success: 1 file_date_updated: 2024-03-04T07:53:08Z has_accepted_license: '1' intvolume: ' 6' issue: '1' keyword: - General Physics and Astronomy language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Multipurpose platform for analog quantum simulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2024' ... --- _id: '15048' abstract: - lang: eng text: Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: "We thank Patrick Müller for sharing the chordintt250 mutant zebrafish line as well as the plasmid for chrd-GFP, Katherine Rogers for sharing the bmp2b plasmid and Andrea Pauli for sharing the draculin plasmid. Diana Pinheiro generated the MZlefty1,2;Tg(sebox::EGFP) line. We are grateful to Patrick Müller, Diana Pinheiro and Katherine Rogers and members of the Heisenberg lab for discussions, technical advice and feedback on the manuscript. We also thank Anna Kicheva and Edouard Hannezo for discussions. We thank the Imaging and Optics Facility as well as the Life Science facility at IST Austria for support with microscopy and fish maintenance.\r\nThis work was supported by a European Research Council Advanced Grant\r\n(MECSPEC 742573 to C.-P.H.). A.S. is a recipient of a DOC Fellowship of the Austrian\r\nAcademy of Sciences at IST Austria. Open Access funding provided by Institute of\r\nScience and Technology Austria. " article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Alexandra full_name: Schauer, Alexandra id: 30A536BA-F248-11E8-B48F-1D18A9856A87 last_name: Schauer orcid: 0000-0001-7659-9142 - first_name: Kornelija full_name: Pranjic-Ferscha, Kornelija id: 4362B3C2-F248-11E8-B48F-1D18A9856A87 last_name: Pranjic-Ferscha - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg C-PJ. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. 2024;151(4):1-18. doi:10.1242/dev.202316 apa: Schauer, A., Pranjic-Ferscha, K., Hauschild, R., & Heisenberg, C.-P. J. (2024). Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. The Company of Biologists. https://doi.org/10.1242/dev.202316 chicago: Schauer, Alexandra, Kornelija Pranjic-Ferscha, Robert Hauschild, and Carl-Philipp J Heisenberg. “Robust Axis Elongation by Nodal-Dependent Restriction of BMP Signaling.” Development. The Company of Biologists, 2024. https://doi.org/10.1242/dev.202316. ieee: A. Schauer, K. Pranjic-Ferscha, R. Hauschild, and C.-P. J. Heisenberg, “Robust axis elongation by Nodal-dependent restriction of BMP signaling,” Development, vol. 151, no. 4. The Company of Biologists, pp. 1–18, 2024. ista: Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg C-PJ. 2024. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. 151(4), 1–18. mla: Schauer, Alexandra, et al. “Robust Axis Elongation by Nodal-Dependent Restriction of BMP Signaling.” Development, vol. 151, no. 4, The Company of Biologists, 2024, pp. 1–18, doi:10.1242/dev.202316. short: A. Schauer, K. Pranjic-Ferscha, R. Hauschild, C.-P.J. Heisenberg, Development 151 (2024) 1–18. date_created: 2024-03-03T23:00:50Z date_published: 2024-02-01T00:00:00Z date_updated: 2024-03-04T07:28:25Z day: '01' ddc: - '570' department: - _id: CaHe - _id: Bio doi: 10.1242/dev.202316 ec_funded: 1 file: - access_level: open_access checksum: 6961ea10012bf0d266681f9628bb8f13 content_type: application/pdf creator: dernst date_created: 2024-03-04T07:24:43Z date_updated: 2024-03-04T07:24:43Z file_id: '15050' file_name: 2024_Development_Schauer.pdf file_size: 14839986 relation: main_file success: 1 file_date_updated: 2024-03-04T07:24:43Z has_accepted_license: '1' intvolume: ' 151' issue: '4' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 1-18 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 26B1E39C-B435-11E9-9278-68D0E5697425 grant_number: '25239' name: 'Mesendoderm specification in zebrafish: The role of extraembryonic tissues' publication: Development publication_identifier: eissn: - 1477-9129 issn: - 0950-1991 publication_status: published publisher: The Company of Biologists quality_controlled: '1' related_material: record: - id: '14926' relation: research_data status: public scopus_import: '1' status: public title: Robust axis elongation by Nodal-dependent restriction of BMP signaling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 151 year: '2024' ... --- _id: '14926' author: - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 citation: ama: Hauschild R. Matlab script for analysis of clone dispersal. 2024. doi:10.15479/AT:ISTA:14926 apa: Hauschild, R. (2024). Matlab script for analysis of clone dispersal. ISTA. https://doi.org/10.15479/AT:ISTA:14926 chicago: Hauschild, Robert. “Matlab Script for Analysis of Clone Dispersal.” ISTA, 2024. https://doi.org/10.15479/AT:ISTA:14926. ieee: R. Hauschild, “Matlab script for analysis of clone dispersal.” ISTA, 2024. ista: Hauschild R. 2024. Matlab script for analysis of clone dispersal, ISTA, 10.15479/AT:ISTA:14926. mla: Hauschild, Robert. Matlab Script for Analysis of Clone Dispersal. ISTA, 2024, doi:10.15479/AT:ISTA:14926. short: R. Hauschild, (2024). date_created: 2024-02-02T14:42:26Z date_published: 2024-02-02T00:00:00Z date_updated: 2024-03-04T07:28:25Z day: '02' ddc: - '570' department: - _id: Bio doi: 10.15479/AT:ISTA:14926 file: - access_level: open_access checksum: df7f358ae19a176cf710c0a802ce31b1 content_type: application/octet-stream creator: rhauschild date_created: 2024-02-02T14:40:31Z date_updated: 2024-02-02T14:40:31Z file_id: '14927' file_name: README.md file_size: 736 relation: main_file success: 1 - access_level: open_access checksum: 10194cc11619eccd8f4b24472e465b7f content_type: application/x-zip-compressed creator: rhauschild date_created: 2024-02-02T14:40:31Z date_updated: 2024-02-02T14:40:31Z file_id: '14928' file_name: Supplementary_file_1.zip file_size: 3543 relation: main_file success: 1 file_date_updated: 2024-02-02T14:40:31Z has_accepted_license: '1' license: https://opensource.org/licenses/MIT month: '02' oa: 1 publisher: ISTA related_material: record: - id: '15048' relation: used_in_publication status: public status: public title: Matlab script for analysis of clone dispersal tmp: legal_code_url: https://opensource.org/licenses/MIT name: The MIT License short: MIT type: software user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15047' abstract: - lang: eng text: Tropical precipitation extremes and their changes with surface warming are investigated using global storm resolving simulations and high-resolution observations. The simulations demonstrate that the mesoscale organization of convection, a process that cannot be physically represented by conventional global climate models, is important for the variations of tropical daily accumulated precipitation extremes. In both the simulations and observations, daily precipitation extremes increase in a more organized state, in association with larger, but less frequent, storms. Repeating the simulations for a warmer climate results in a robust increase in monthly-mean daily precipitation extremes. Higher precipitation percentiles have a greater sensitivity to convective organization, which is predicted to increase with warming. Without changes in organization, the strongest daily precipitation extremes over the tropical oceans increase at a rate close to Clausius-Clapeyron (CC) scaling. Thus, in a future warmer state with increased organization, the strongest daily precipitation extremes over oceans increase at a faster rate than CC scaling. acknowledgement: This work is supported by the Max-Planck-Gesellschaft (MPG). We greatly appreciate computational resources from Deutsches Klimarechenzentrum (DKRZ) and the Jülich Supercomputing Centre (JSC). ICONA/O simulations are funded through the NextGEMS project by the EU’s Horizon 2020 programme (grant agreement no. 101003470). ICONA simulations are funded through the MONSOON-2.0 project (grant agreement no. 01LP1927A) which is supported from German Federal Ministry of Education and Research (BMBF). J.B. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant (grant agreement no. 101034413). B.S. acknowledges funding from the EU’s Horizon 2020 programme (grant agreement no. 101003470). C.M. gratefully acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Project CLUSTER, grant agreement no. 805041). article_number: eadj6801 article_processing_charge: Yes article_type: original author: - first_name: Jiawei full_name: Bao, Jiawei id: bb9a7399-fefd-11ed-be3c-ae648fd1d160 last_name: Bao - first_name: Bjorn full_name: Stevens, Bjorn last_name: Stevens - first_name: Lukas full_name: Kluft, Lukas last_name: Kluft - first_name: Caroline J full_name: Muller, Caroline J id: f978ccb0-3f7f-11eb-b193-b0e2bd13182b last_name: Muller orcid: 0000-0001-5836-5350 citation: ama: Bao J, Stevens B, Kluft L, Muller CJ. Intensification of daily tropical precipitation extremes from more organized convection. Science Advances. 2024;10(8). doi:10.1126/sciadv.adj6801 apa: Bao, J., Stevens, B., Kluft, L., & Muller, C. J. (2024). Intensification of daily tropical precipitation extremes from more organized convection. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.adj6801 chicago: Bao, Jiawei, Bjorn Stevens, Lukas Kluft, and Caroline J Muller. “Intensification of Daily Tropical Precipitation Extremes from More Organized Convection.” Science Advances. American Association for the Advancement of Science, 2024. https://doi.org/10.1126/sciadv.adj6801. ieee: J. Bao, B. Stevens, L. Kluft, and C. J. Muller, “Intensification of daily tropical precipitation extremes from more organized convection,” Science Advances, vol. 10, no. 8. American Association for the Advancement of Science, 2024. ista: Bao J, Stevens B, Kluft L, Muller CJ. 2024. Intensification of daily tropical precipitation extremes from more organized convection. Science Advances. 10(8), eadj6801. mla: Bao, Jiawei, et al. “Intensification of Daily Tropical Precipitation Extremes from More Organized Convection.” Science Advances, vol. 10, no. 8, eadj6801, American Association for the Advancement of Science, 2024, doi:10.1126/sciadv.adj6801. short: J. Bao, B. Stevens, L. Kluft, C.J. Muller, Science Advances 10 (2024). date_created: 2024-03-03T23:00:50Z date_published: 2024-02-23T00:00:00Z date_updated: 2024-03-05T09:26:47Z day: '23' ddc: - '550' department: - _id: CaMu doi: 10.1126/sciadv.adj6801 ec_funded: 1 external_id: pmid: - '38394192' file: - access_level: open_access checksum: d4ec4f05a6d14745057e14d1b8bf45ae content_type: application/pdf creator: dernst date_created: 2024-03-04T07:34:00Z date_updated: 2024-03-04T07:34:00Z file_id: '15051' file_name: 2024_ScienceAdv_Bao.pdf file_size: 800926 relation: main_file success: 1 file_date_updated: 2024-03-04T07:34:00Z has_accepted_license: '1' intvolume: ' 10' issue: '8' language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' - _id: 629205d8-2b32-11ec-9570-e1356ff73576 call_identifier: H2020 grant_number: '805041' name: organization of CLoUdS, and implications of Tropical cyclones and for the Energetics of the tropics, in current and waRming climate publication: Science Advances publication_identifier: eissn: - 2375-2548 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/cloud-clustering-causes-more-extreme-rain/ scopus_import: '1' status: public title: Intensification of daily tropical precipitation extremes from more organized convection tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2024' ... --- _id: '12875' abstract: - lang: eng text: The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny. acknowledged_ssus: - _id: Bio - _id: M-Shop - _id: LifeSc - _id: PreCl acknowledgement: "We thank Liqun Luo for his continued support, for providing essential resources for generating Fzd10-CreER mice which were generated in his laboratory, and for comments on the manuscript; W. Zhong for providing Nestin-Cre transgenic mouse line for this study; A. Heger for mouse colony management; R. Beattie and T. Asenov for designing and producing components of acute slice recovery chamber for MADM-CloneSeq experiments; and K. Leopold, J. Rodarte and N. Amberg for initial experiments, technical support and/or assistance. This study was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Imaging & Optics Facility (IOF), Laboratory Support Facility (LSF), Miba Machine Shop, and Pre-clinical Facility (PCF). G.C. received funding from European Commission (IST plus postdoctoral fellowship). This work was supported by ISTA institutional\r\nfunds; the Austrian Science Fund Special Research Programmes (FWF SFB F78 Neuro Stem Modulation) to S.H. " article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Giselle T full_name: Cheung, Giselle T id: 471195F6-F248-11E8-B48F-1D18A9856A87 last_name: Cheung orcid: 0000-0001-8457-2572 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler orcid: 0000-0002-7462-0048 - first_name: Peter full_name: Koppensteiner, Peter id: 3B8B25A8-F248-11E8-B48F-1D18A9856A87 last_name: Koppensteiner orcid: 0000-0002-3509-1948 - first_name: Thomas full_name: Krausgruber, Thomas last_name: Krausgruber - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Martin full_name: Schrammel, Martin id: f13e7cae-e8bd-11ed-841a-96dedf69f46d last_name: Schrammel - first_name: Natalie Y full_name: Özgen, Natalie Y id: e68ece33-f6e0-11ea-865d-ae1031dcc090 last_name: Özgen - first_name: Alexis full_name: Ivec, Alexis id: 1d144691-e8be-11ed-9b33-bdd3077fad4c last_name: Ivec - first_name: Christoph full_name: Bock, Christoph last_name: Bock - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Cheung GT, Pauler F, Koppensteiner P, et al. Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron. 2024;112(2):230-246.e11. doi:10.1016/j.neuron.2023.11.009 apa: Cheung, G. T., Pauler, F., Koppensteiner, P., Krausgruber, T., Streicher, C., Schrammel, M., … Hippenmeyer, S. (2024). Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2023.11.009 chicago: Cheung, Giselle T, Florian Pauler, Peter Koppensteiner, Thomas Krausgruber, Carmen Streicher, Martin Schrammel, Natalie Y Özgen, et al. “Multipotent Progenitors Instruct Ontogeny of the Superior Colliculus.” Neuron. Elsevier, 2024. https://doi.org/10.1016/j.neuron.2023.11.009. ieee: G. T. Cheung et al., “Multipotent progenitors instruct ontogeny of the superior colliculus,” Neuron, vol. 112, no. 2. Elsevier, p. 230–246.e11, 2024. ista: Cheung GT, Pauler F, Koppensteiner P, Krausgruber T, Streicher C, Schrammel M, Özgen NY, Ivec A, Bock C, Shigemoto R, Hippenmeyer S. 2024. Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron. 112(2), 230–246.e11. mla: Cheung, Giselle T., et al. “Multipotent Progenitors Instruct Ontogeny of the Superior Colliculus.” Neuron, vol. 112, no. 2, Elsevier, 2024, p. 230–246.e11, doi:10.1016/j.neuron.2023.11.009. short: G.T. Cheung, F. Pauler, P. Koppensteiner, T. Krausgruber, C. Streicher, M. Schrammel, N.Y. Özgen, A. Ivec, C. Bock, R. Shigemoto, S. Hippenmeyer, Neuron 112 (2024) 230–246.e11. date_created: 2023-04-27T09:41:48Z date_published: 2024-01-17T00:00:00Z date_updated: 2024-03-05T09:43:02Z day: '17' ddc: - '570' department: - _id: SiHi - _id: RySh doi: 10.1016/j.neuron.2023.11.009 external_id: pmid: - '38096816' file: - access_level: open_access checksum: 32b3788f7085cf44a84108d8faaff3ce content_type: application/pdf creator: dernst date_created: 2024-02-06T13:56:15Z date_updated: 2024-02-06T13:56:15Z file_id: '14944' file_name: 2024_Neuron_Cheung.pdf file_size: 5942467 relation: main_file success: 1 file_date_updated: 2024-02-06T13:56:15Z has_accepted_license: '1' intvolume: ' 112' issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 230-246.e11 pmid: 1 project: - _id: 059F6AB4-7A3F-11EA-A408-12923DDC885E grant_number: F07805 name: Molecular Mechanisms of Neural Stem Cell Lineage Progression publication: Neuron publication_identifier: issn: - 0896-6273 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/the-pedigree-of-brain-cells/ scopus_import: '1' status: public title: Multipotent progenitors instruct ontogeny of the superior colliculus tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 112 year: '2024' ... --- _id: '14979' abstract: - lang: eng text: Poxviruses are among the largest double-stranded DNA viruses, with members such as variola virus, monkeypox virus and the vaccination strain vaccinia virus (VACV). Knowledge about the structural proteins that form the viral core has remained sparse. While major core proteins have been annotated via indirect experimental evidence, their structures have remained elusive and they could not be assigned to individual core features. Hence, which proteins constitute which layers of the core, such as the palisade layer and the inner core wall, has remained enigmatic. Here we show, using a multi-modal cryo-electron microscopy (cryo-EM) approach in combination with AlphaFold molecular modeling, that trimers formed by the cleavage product of VACV protein A10 are the key component of the palisade layer. This allows us to place previously obtained descriptions of protein interactions within the core wall into perspective and to provide a detailed model of poxvirus core architecture. Importantly, we show that interactions within A10 trimers are likely generalizable over members of orthopox- and parapoxviruses. acknowledged_ssus: - _id: ScienComp - _id: LifeSc - _id: EM-Fac acknowledgement: "We thank A. Bergthaler (Research Center for Molecular Medicine of the Austrian Academy of Sciences) for providing VACV WR. We thank A. Nicholas and his team at the ISTA proteomics facility, and S. Elefante at the ISTA Scientific Computing facility for their support. We also thank F. Fäßler, D. Porley, T. Muthspiel and other members of the Schur group for support and helpful discussions. We also thank D. Castaño-Díez for support with Dynamo. We thank D. Farrell for his help optimizing the Rosetta protocol to refine the atomic model into the cryo-EM map with symmetry.\r\n\r\nF.K.M.S. acknowledges support from ISTA and EMBO. F.K.M.S. also received support from the Austrian Science Fund (FWF) grant P31445. This publication has been made possible in part by CZI grant DAF2021-234754 and grant https://doi.org/10.37921/812628ebpcwg from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation (funder https://doi.org/10.13039/100014989) awarded to F.K.M.S.\r\n\r\nThis research was also supported by the Scientific Service Units (SSUs) of ISTA through resources provided by Scientific Computing (SciComp), the Life Science Facility (LSF), and the Electron Microscopy Facility (EMF). We also acknowledge the use of COSMIC45 and Colabfold46." article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Julia full_name: Datler, Julia id: 3B12E2E6-F248-11E8-B48F-1D18A9856A87 last_name: Datler orcid: 0000-0002-3616-8580 - first_name: Jesse full_name: Hansen, Jesse id: 1063c618-6f9b-11ec-9123-f912fccded63 last_name: Hansen - first_name: Andreas full_name: Thader, Andreas id: 3A18A7B8-F248-11E8-B48F-1D18A9856A87 last_name: Thader - first_name: Alois full_name: Schlögl, Alois id: 45BF87EE-F248-11E8-B48F-1D18A9856A87 last_name: Schlögl orcid: 0000-0002-5621-8100 - first_name: Lukas W full_name: Bauer, Lukas W id: 0c894dcf-897b-11ed-a09c-8186353224b0 last_name: Bauer - first_name: Victor-Valentin full_name: Hodirnau, Victor-Valentin id: 3661B498-F248-11E8-B48F-1D18A9856A87 last_name: Hodirnau - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Datler J, Hansen J, Thader A, et al. Multi-modal cryo-EM reveals trimers of protein A10 to form the palisade layer in poxvirus cores. Nature Structural & Molecular Biology. 2024. doi:10.1038/s41594-023-01201-6 apa: Datler, J., Hansen, J., Thader, A., Schlögl, A., Bauer, L. W., Hodirnau, V.-V., & Schur, F. K. (2024). Multi-modal cryo-EM reveals trimers of protein A10 to form the palisade layer in poxvirus cores. Nature Structural & Molecular Biology. Springer Nature. https://doi.org/10.1038/s41594-023-01201-6 chicago: Datler, Julia, Jesse Hansen, Andreas Thader, Alois Schlögl, Lukas W Bauer, Victor-Valentin Hodirnau, and Florian KM Schur. “Multi-Modal Cryo-EM Reveals Trimers of Protein A10 to Form the Palisade Layer in Poxvirus Cores.” Nature Structural & Molecular Biology. Springer Nature, 2024. https://doi.org/10.1038/s41594-023-01201-6. ieee: J. Datler et al., “Multi-modal cryo-EM reveals trimers of protein A10 to form the palisade layer in poxvirus cores,” Nature Structural & Molecular Biology. Springer Nature, 2024. ista: Datler J, Hansen J, Thader A, Schlögl A, Bauer LW, Hodirnau V-V, Schur FK. 2024. Multi-modal cryo-EM reveals trimers of protein A10 to form the palisade layer in poxvirus cores. Nature Structural & Molecular Biology. mla: Datler, Julia, et al. “Multi-Modal Cryo-EM Reveals Trimers of Protein A10 to Form the Palisade Layer in Poxvirus Cores.” Nature Structural & Molecular Biology, Springer Nature, 2024, doi:10.1038/s41594-023-01201-6. short: J. Datler, J. Hansen, A. Thader, A. Schlögl, L.W. Bauer, V.-V. Hodirnau, F.K. Schur, Nature Structural & Molecular Biology (2024). date_created: 2024-02-12T09:59:45Z date_published: 2024-02-05T00:00:00Z date_updated: 2024-03-05T09:27:47Z day: '05' ddc: - '570' department: - _id: FlSc - _id: ScienComp - _id: EM-Fac doi: 10.1038/s41594-023-01201-6 external_id: pmid: - '38316877' has_accepted_license: '1' keyword: - Molecular Biology - Structural Biology language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41594-023-01201-6 month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26736D6A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31445 name: Structural conservation and diversity in retroviral capsid publication: Nature Structural & Molecular Biology publication_identifier: eissn: - 1545-9985 issn: - 1545-9993 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/down-to-the-core-of-poxviruses/ status: public title: Multi-modal cryo-EM reveals trimers of protein A10 to form the palisade layer in poxvirus cores tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '14846' abstract: - lang: eng text: Contraction and flow of the actin cell cortex have emerged as a common principle by which cells reorganize their cytoplasm and take shape. However, how these cortical flows interact with adjacent cytoplasmic components, changing their form and localization, and how this affects cytoplasmic organization and cell shape remains unclear. Here we show that in ascidian oocytes, the cooperative activities of cortical actomyosin flows and deformation of the adjacent mitochondria-rich myoplasm drive oocyte cytoplasmic reorganization and shape changes following fertilization. We show that vegetal-directed cortical actomyosin flows, established upon oocyte fertilization, lead to both the accumulation of cortical actin at the vegetal pole of the zygote and compression and local buckling of the adjacent elastic solid-like myoplasm layer due to friction forces generated at their interface. Once cortical flows have ceased, the multiple myoplasm buckles resolve into one larger buckle, which again drives the formation of the contraction pole—a protuberance of the zygote’s vegetal pole where maternal mRNAs accumulate. Thus, our findings reveal a mechanism where cortical actomyosin network flows determine cytoplasmic reorganization and cell shape by deforming adjacent cytoplasmic components through friction forces. acknowledged_ssus: - _id: EM-Fac - _id: Bio - _id: NanoFab acknowledgement: We would like to thank A. McDougall, E. Hannezo and the Heisenberg lab for fruitful discussions and reagents. We also thank E. Munro for the iMyo-YFP and Bra>iMyo-mScarlet constructs. This research was supported by the Scientific Service Units of the Institute of Science and Technology Austria through resources provided by the Electron Microscopy Facility, Imaging and Optics Facility and the Nanofabrication Facility. This work was supported by a Joint Project Grant from the FWF (I 3601-B27). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Silvia full_name: Caballero Mancebo, Silvia id: 2F1E1758-F248-11E8-B48F-1D18A9856A87 last_name: Caballero Mancebo orcid: 0000-0002-5223-3346 - first_name: Rushikesh full_name: Shinde, Rushikesh last_name: Shinde - first_name: Madison full_name: Bolger-Munro, Madison id: 516F03FA-93A3-11EA-A7C5-D6BE3DDC885E last_name: Bolger-Munro orcid: 0000-0002-8176-4824 - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Gregory full_name: Szep, Gregory id: 4BFB7762-F248-11E8-B48F-1D18A9856A87 last_name: Szep - first_name: Irene full_name: Steccari, Irene id: 2705C766-9FE2-11EA-B224-C6773DDC885E last_name: Steccari - first_name: David full_name: Labrousse Arias, David id: CD573DF4-9ED3-11E9-9D77-3223E6697425 last_name: Labrousse Arias - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Andrew full_name: Callan-Jones, Andrew last_name: Callan-Jones - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Caballero Mancebo S, Shinde R, Bolger-Munro M, et al. Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. 2024. doi:10.1038/s41567-023-02302-1 apa: Caballero Mancebo, S., Shinde, R., Bolger-Munro, M., Peruzzo, M., Szep, G., Steccari, I., … Heisenberg, C.-P. J. (2024). Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02302-1 chicago: Caballero Mancebo, Silvia, Rushikesh Shinde, Madison Bolger-Munro, Matilda Peruzzo, Gregory Szep, Irene Steccari, David Labrousse Arias, et al. “Friction Forces Determine Cytoplasmic Reorganization and Shape Changes of Ascidian Oocytes upon Fertilization.” Nature Physics. Springer Nature, 2024. https://doi.org/10.1038/s41567-023-02302-1. ieee: S. Caballero Mancebo et al., “Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization,” Nature Physics. Springer Nature, 2024. ista: Caballero Mancebo S, Shinde R, Bolger-Munro M, Peruzzo M, Szep G, Steccari I, Labrousse Arias D, Zheden V, Merrin J, Callan-Jones A, Voituriez R, Heisenberg C-PJ. 2024. Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. mla: Caballero Mancebo, Silvia, et al. “Friction Forces Determine Cytoplasmic Reorganization and Shape Changes of Ascidian Oocytes upon Fertilization.” Nature Physics, Springer Nature, 2024, doi:10.1038/s41567-023-02302-1. short: S. Caballero Mancebo, R. Shinde, M. Bolger-Munro, M. Peruzzo, G. Szep, I. Steccari, D. Labrousse Arias, V. Zheden, J. Merrin, A. Callan-Jones, R. Voituriez, C.-P.J. Heisenberg, Nature Physics (2024). date_created: 2024-01-21T23:00:57Z date_published: 2024-01-09T00:00:00Z date_updated: 2024-03-05T09:33:38Z day: '09' department: - _id: CaHe - _id: JoFi - _id: MiSi - _id: EM-Fac - _id: NanoFab doi: 10.1038/s41567-023-02302-1 has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41567-023-02302-1 month: '01' oa: 1 oa_version: Published Version project: - _id: 2646861A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03601 name: Control of embryonic cleavage pattern publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/stranger-than-friction-a-force-initiating-life/ scopus_import: '1' status: public title: Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15020' abstract: - lang: eng text: "This thesis consists of four distinct pieces of work within theoretical biology, with two themes in common: the concept of optimization in biological systems, and the use of information-theoretic tools to quantify biological stochasticity and statistical uncertainty.\r\nChapter 2 develops a statistical framework for studying biological systems which we believe to be optimized for a particular utility function, such as retinal neurons conveying information about visual stimuli. We formalize such beliefs as maximum-entropy Bayesian priors, constrained by the expected utility. We explore how such priors aid inference of system parameters with limited data and enable optimality hypothesis testing: is the utility higher than by chance?\r\nChapter 3 examines the ultimate biological optimization process: evolution by natural selection. As some individuals survive and reproduce more successfully than others, populations evolve towards fitter genotypes and phenotypes. We formalize this as accumulation of genetic information, and use population genetics theory to study how much such information can be accumulated per generation and maintained in the face of random mutation and genetic drift. We identify the population size and fitness variance as the key quantities that control information accumulation and maintenance.\r\nChapter 4 reuses the concept of genetic information from Chapter 3, but from a different perspective: we ask how much genetic information organisms actually need, in particular in the context of gene regulation. For example, how much information is needed to bind transcription factors at correct locations within the genome? Population genetics provides us with a refined answer: with an increasing population size, populations achieve higher fitness by maintaining more genetic information. Moreover, regulatory parameters experience selection pressure to optimize the fitness-information trade-off, i.e. minimize the information needed for a given fitness. This provides an evolutionary derivation of the optimization priors introduced in Chapter 2.\r\nChapter 5 proves an upper bound on mutual information between a signal and a communication channel output (such as neural activity). Mutual information is an important utility measure for biological systems, but its practical use can be difficult due to the large dimensionality of many biological channels. Sometimes, a lower bound on mutual information is computed by replacing the high-dimensional channel outputs with decodes (signal estimates). Our result provides a corresponding upper bound, provided that the decodes are the maximum posterior estimates of the signal." acknowledged_ssus: - _id: ScienComp alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michal full_name: Hledik, Michal id: 4171253A-F248-11E8-B48F-1D18A9856A87 last_name: Hledik citation: ama: Hledik M. Genetic information and biological optimization. 2024. doi:10.15479/at:ista:15020 apa: Hledik, M. (2024). Genetic information and biological optimization. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:15020 chicago: Hledik, Michal. “Genetic Information and Biological Optimization.” Institute of Science and Technology Austria, 2024. https://doi.org/10.15479/at:ista:15020. ieee: M. Hledik, “Genetic information and biological optimization,” Institute of Science and Technology Austria, 2024. ista: Hledik M. 2024. Genetic information and biological optimization. Institute of Science and Technology Austria. mla: Hledik, Michal. Genetic Information and Biological Optimization. Institute of Science and Technology Austria, 2024, doi:10.15479/at:ista:15020. short: M. Hledik, Genetic Information and Biological Optimization, Institute of Science and Technology Austria, 2024. date_created: 2024-02-23T14:02:04Z date_published: 2024-02-23T00:00:00Z date_updated: 2024-03-06T14:22:52Z day: '23' ddc: - '576' - '519' degree_awarded: PhD department: - _id: GradSch - _id: NiBa - _id: GaTk doi: 10.15479/at:ista:15020 ec_funded: 1 file: - access_level: open_access checksum: b2d3da47c98d481577a4baf68944fe41 content_type: application/pdf creator: mhledik date_created: 2024-02-23T13:50:53Z date_updated: 2024-02-23T13:50:53Z file_id: '15021' file_name: hledik thesis pdfa 2b.pdf file_size: 7102089 relation: main_file success: 1 - access_level: closed checksum: eda9b9430da2610fee7ce1c1419a479a content_type: application/zip creator: mhledik date_created: 2024-02-23T13:50:54Z date_updated: 2024-02-23T14:20:16Z file_id: '15022' file_name: hledik thesis source.zip file_size: 14014790 relation: source_file file_date_updated: 2024-02-23T14:20:16Z has_accepted_license: '1' keyword: - Theoretical biology - Optimality - Evolution - Information language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '158' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 2665AAFE-B435-11E9-9278-68D0E5697425 grant_number: RGP0034/2018 name: Can evolution minimize spurious signaling crosstalk to reach optimal performance? - _id: bd6958e0-d553-11ed-ba76-86eba6a76c00 grant_number: '101055327' name: Understanding the evolution of continuous genomes publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7553' relation: part_of_dissertation status: public - id: '12081' relation: part_of_dissertation status: public - id: '7606' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Genetic information and biological optimization type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2024' ... --- _id: '14842' abstract: - lang: eng text: Eva Benkova received a PhD in Biophysics at the Institute of Biophysics of the Czech Academy of Sciences in 1998. After working as a postdoc at the Max Planck Institute in Cologne and the Center for Plant Molecular Biology (ZMBP) in Tübingen, she became a group leader at the Plant Systems Biology Department of the Vlaams Instituut voor Biotechnologie (VIB) in Gent. In 2012, she transitioned to an Assistant Professor position at the Institute of Science and Technology Austria (ISTA) where she was later promoted to Professor. Since 2021, she has served as the Dean of the ISTA Graduate School. As a plant developmental biologist, she focuses on unraveling the molecular mechanisms and principles that underlie hormonal interactions in plants. In her current work, she explores the intricate connections between hormones and regulatory pathways that mediate the perception of environmental stimuli, including abiotic stress and nitrate availability. article_processing_charge: No author: - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Benková E. Eva Benkova. Vol 34. Elsevier; 2024:R3-R5. doi:10.1016/j.cub.2023.11.039 apa: Benková, E. (2024). Eva Benkova. Current Biology (Vol. 34, pp. R3–R5). Elsevier. https://doi.org/10.1016/j.cub.2023.11.039 chicago: Benková, Eva. Eva Benkova. Current Biology. Vol. 34. Elsevier, 2024. https://doi.org/10.1016/j.cub.2023.11.039. ieee: E. Benková, Eva Benkova, vol. 34, no. 1. Elsevier, 2024, pp. R3–R5. ista: Benková E. 2024. Eva Benkova, Elsevier,p. mla: Benková, Eva. “Eva Benkova.” Current Biology, vol. 34, no. 1, Elsevier, 2024, pp. R3–5, doi:10.1016/j.cub.2023.11.039. short: E. Benková, Eva Benkova, Elsevier, 2024. date_created: 2024-01-21T23:00:56Z date_published: 2024-01-08T00:00:00Z date_updated: 2024-03-12T12:19:12Z day: '08' department: - _id: EvBe doi: 10.1016/j.cub.2023.11.039 intvolume: ' 34' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cub.2023.11.039 month: '01' oa: 1 oa_version: Published Version page: R3-R5 publication: Current Biology publication_identifier: eissn: - 1879-0445 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Eva Benkova type: other_academic_publication user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2024' ... --- _id: '15084' abstract: - lang: eng text: "GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca\r\n 2+\r\n -dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the “Flash and Freeze-fracture” method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals." acknowledged_ssus: - _id: M-Shop - _id: PreCl - _id: EM-Fac acknowledgement: We thank Erwin Neher and Ipe Ninan for critical comments on the manuscript. This project has received funding from the European Research Council (ERC) and European Commission, under the European Union’s Horizon 2020 research and innovation program (ERC grant agreement no. 694539 to R.S. and the Marie Skłodowska-Curie grant agreement no. 665385 to C.Ö.). This study was supported by the Cooperative Study Program of Center for Animal Resources and Collaborative Study of NINS. We thank Kohgaku Eguchi for statistical analysis, Yu Kasugai for additional EM imaging, Robert Beattie for the design of the slice recovery chamber for Flash and Freeze experiments, Todor Asenov from the ISTA machine shop for custom part preparations for high-pressure freezing, the ISTA preclinical facility for animal caretaking, and the ISTA EM facilities for technical support. article_number: e2301449121 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Peter full_name: Koppensteiner, Peter id: 3B8B25A8-F248-11E8-B48F-1D18A9856A87 last_name: Koppensteiner orcid: 0000-0002-3509-1948 - first_name: Pradeep full_name: Bhandari, Pradeep id: 45EDD1BC-F248-11E8-B48F-1D18A9856A87 last_name: Bhandari orcid: 0000-0003-0863-4481 - first_name: Hüseyin C full_name: Önal, Hüseyin C id: 4659D740-F248-11E8-B48F-1D18A9856A87 last_name: Önal orcid: 0000-0002-2771-2011 - first_name: Carolina full_name: Borges Merjane, Carolina id: 4305C450-F248-11E8-B48F-1D18A9856A87 last_name: Borges Merjane orcid: 0000-0003-0005-401X - first_name: Elodie full_name: Le Monnier, Elodie id: 3B59276A-F248-11E8-B48F-1D18A9856A87 last_name: Le Monnier - first_name: Utsa full_name: Roy, Utsa id: 4d26cf11-5355-11ee-ae5a-eb05e255b9b2 last_name: Roy - first_name: Yukihiro full_name: Nakamura, Yukihiro last_name: Nakamura - first_name: Tetsushi full_name: Sadakata, Tetsushi last_name: Sadakata - first_name: Makoto full_name: Sanbo, Makoto last_name: Sanbo - first_name: Masumi full_name: Hirabayashi, Masumi last_name: Hirabayashi - first_name: JeongSeop full_name: Rhee, JeongSeop last_name: Rhee - first_name: Nils full_name: Brose, Nils last_name: Brose - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Koppensteiner P, Bhandari P, Önal C, et al. GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proceedings of the National Academy of Sciences. 2024;121(8). doi:10.1073/pnas.2301449121 apa: Koppensteiner, P., Bhandari, P., Önal, C., Borges Merjane, C., Le Monnier, E., Roy, U., … Shigemoto, R. (2024). GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2301449121 chicago: Koppensteiner, Peter, Pradeep Bhandari, Cihan Önal, Carolina Borges Merjane, Elodie Le Monnier, Utsa Roy, Yukihiro Nakamura, et al. “GABAB Receptors Induce Phasic Release from Medial Habenula Terminals through Activity-Dependent Recruitment of Release-Ready Vesicles.” Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2301449121. ieee: P. Koppensteiner et al., “GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles,” Proceedings of the National Academy of Sciences, vol. 121, no. 8. Proceedings of the National Academy of Sciences, 2024. ista: Koppensteiner P, Bhandari P, Önal C, Borges Merjane C, Le Monnier E, Roy U, Nakamura Y, Sadakata T, Sanbo M, Hirabayashi M, Rhee J, Brose N, Jonas PM, Shigemoto R. 2024. GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles. Proceedings of the National Academy of Sciences. 121(8), e2301449121. mla: Koppensteiner, Peter, et al. “GABAB Receptors Induce Phasic Release from Medial Habenula Terminals through Activity-Dependent Recruitment of Release-Ready Vesicles.” Proceedings of the National Academy of Sciences, vol. 121, no. 8, e2301449121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2301449121. short: P. Koppensteiner, P. Bhandari, C. Önal, C. Borges Merjane, E. Le Monnier, U. Roy, Y. Nakamura, T. Sadakata, M. Sanbo, M. Hirabayashi, J. Rhee, N. Brose, P.M. Jonas, R. Shigemoto, Proceedings of the National Academy of Sciences 121 (2024). date_created: 2024-03-05T09:23:55Z date_published: 2024-02-20T00:00:00Z date_updated: 2024-03-12T13:44:18Z day: '20' ddc: - '570' department: - _id: RySh - _id: PeJo doi: 10.1073/pnas.2301449121 ec_funded: 1 external_id: pmid: - '38346189' file: - access_level: open_access checksum: b25b2a057c266ff317a48b0d54d6fc8a content_type: application/pdf creator: dernst date_created: 2024-03-12T13:42:42Z date_updated: 2024-03-12T13:42:42Z file_id: '15110' file_name: 2024_PNAS_Koppensteiner.pdf file_size: 13648221 relation: main_file success: 1 file_date_updated: 2024-03-12T13:42:42Z has_accepted_license: '1' intvolume: ' 121' issue: '8' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/neuronal-insights-flash-and-freeze-fracture/ record: - id: '13173' relation: research_data status: public status: public title: GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ... --- _id: '15083' abstract: - lang: eng text: 'Direct reciprocity is a powerful mechanism for cooperation in social dilemmas. The very logic of reciprocity, however, seems to require that individuals are symmetric, and that everyone has the same means to influence each others’ payoffs. Yet in many applications, individuals are asymmetric. Herein, we study the effect of asymmetry in linear public good games. Individuals may differ in their endowments (their ability to contribute to a public good) and in their productivities (how effective their contributions are). Given the individuals’ productivities, we ask which allocation of endowments is optimal for cooperation. To this end, we consider two notions of optimality. The first notion focuses on the resilience of cooperation. The respective endowment distribution ensures that full cooperation is feasible even under the most adverse conditions. The second notion focuses on efficiency. The corresponding endowment distribution maximizes group welfare. Using analytical methods, we fully characterize these two endowment distributions. This analysis reveals that both optimality notions favor some endowment inequality: More productive players ought to get higher endowments. Yet the two notions disagree on how unequal endowments are supposed to be. A focus on resilience results in less inequality. With additional simulations, we show that the optimal endowment allocation needs to account for both the resilience and the efficiency of cooperation.' acknowledgement: 'This work was supported by the European Research Council CoG 863818 (ForM-SMArt) (to K.C.) and the European Research Council Starting Grant 850529: E-DIRECT (to C.H.), the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement #754411 and the French Agence Nationale de la Recherche (under the Investissement d’Avenir Programme, ANR-17-EURE-0010) (to M.K.).' article_number: e2315558121 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Valentin full_name: Hübner, Valentin id: 2c8aa207-dc7d-11ea-9b2f-f22972ecd910 last_name: Hübner - first_name: Manuel full_name: Staab, Manuel last_name: Staab - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Maria full_name: Kleshnina, Maria last_name: Kleshnina citation: ama: Hübner V, Staab M, Hilbe C, Chatterjee K, Kleshnina M. Efficiency and resilience of cooperation in asymmetric social dilemmas. Proceedings of the National Academy of Sciences. 2024;121(10). doi:10.1073/pnas.2315558121 apa: Hübner, V., Staab, M., Hilbe, C., Chatterjee, K., & Kleshnina, M. (2024). Efficiency and resilience of cooperation in asymmetric social dilemmas. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2315558121 chicago: Hübner, Valentin, Manuel Staab, Christian Hilbe, Krishnendu Chatterjee, and Maria Kleshnina. “Efficiency and Resilience of Cooperation in Asymmetric Social Dilemmas.” Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2315558121. ieee: V. Hübner, M. Staab, C. Hilbe, K. Chatterjee, and M. Kleshnina, “Efficiency and resilience of cooperation in asymmetric social dilemmas,” Proceedings of the National Academy of Sciences, vol. 121, no. 10. Proceedings of the National Academy of Sciences, 2024. ista: Hübner V, Staab M, Hilbe C, Chatterjee K, Kleshnina M. 2024. Efficiency and resilience of cooperation in asymmetric social dilemmas. Proceedings of the National Academy of Sciences. 121(10), e2315558121. mla: Hübner, Valentin, et al. “Efficiency and Resilience of Cooperation in Asymmetric Social Dilemmas.” Proceedings of the National Academy of Sciences, vol. 121, no. 10, e2315558121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2315558121. short: V. Hübner, M. Staab, C. Hilbe, K. Chatterjee, M. Kleshnina, Proceedings of the National Academy of Sciences 121 (2024). date_created: 2024-03-05T09:18:49Z date_published: 2024-03-05T00:00:00Z date_updated: 2024-03-12T13:29:25Z day: '05' ddc: - '000' department: - _id: KrCh doi: 10.1073/pnas.2315558121 ec_funded: 1 external_id: pmid: - '38408249' file: - access_level: open_access checksum: 068520e3efd4d008bb9177e8aedb7d22 content_type: application/pdf creator: dernst date_created: 2024-03-12T13:12:22Z date_updated: 2024-03-12T13:12:22Z file_id: '15109' file_name: 2024_PNAS_Huebner.pdf file_size: 2203220 relation: main_file success: 1 file_date_updated: 2024-03-12T13:12:22Z has_accepted_license: '1' intvolume: ' 121' issue: '10' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/what-math-tells-us-about-social-dilemmas/ record: - id: '15108' relation: research_data status: public status: public title: Efficiency and resilience of cooperation in asymmetric social dilemmas tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ... --- _id: '15108' abstract: - lang: eng text: "in the research article \"Efficiency and resilience of cooperation in asymmetric social dilemmas\" (by Valentin Hübner, Manuel Staab, Christian Hilbe, Krishnendu Chatterjee, and Maria Kleshnina).\r\n\r\nWe used different implementations for the case of two and three players, both described below." article_processing_charge: No author: - first_name: Valentin full_name: Hübner, Valentin id: 2c8aa207-dc7d-11ea-9b2f-f22972ecd910 last_name: Hübner - first_name: Maria full_name: Kleshnina, Maria last_name: Kleshnina citation: ama: Hübner V, Kleshnina M. Computer code for “Efficiency and resilience of cooperation in asymmetric social dilemmas.” 2024. doi:10.5281/ZENODO.10639167 apa: Hübner, V., & Kleshnina, M. (2024). Computer code for “Efficiency and resilience of cooperation in asymmetric social dilemmas.” Zenodo. https://doi.org/10.5281/ZENODO.10639167 chicago: Hübner, Valentin, and Maria Kleshnina. “Computer Code for ‘Efficiency and Resilience of Cooperation in Asymmetric Social Dilemmas.’” Zenodo, 2024. https://doi.org/10.5281/ZENODO.10639167. ieee: V. Hübner and M. Kleshnina, “Computer code for ‘Efficiency and resilience of cooperation in asymmetric social dilemmas.’” Zenodo, 2024. ista: Hübner V, Kleshnina M. 2024. Computer code for ‘Efficiency and resilience of cooperation in asymmetric social dilemmas’, Zenodo, 10.5281/ZENODO.10639167. mla: Hübner, Valentin, and Maria Kleshnina. Computer Code for “Efficiency and Resilience of Cooperation in Asymmetric Social Dilemmas.” Zenodo, 2024, doi:10.5281/ZENODO.10639167. short: V. Hübner, M. Kleshnina, (2024). date_created: 2024-03-12T13:02:58Z date_published: 2024-02-09T00:00:00Z date_updated: 2024-03-12T13:29:26Z day: '09' ddc: - '000' department: - _id: KrCh doi: 10.5281/ZENODO.10639167 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://10.5281/zenodo.10639167 month: '02' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '15083' relation: used_in_publication status: public status: public title: Computer code for "Efficiency and resilience of cooperation in asymmetric social dilemmas" tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15097' abstract: - lang: eng text: Global storm-resolving models (GSRMs) use strongly refined horizontal grids compared with the climate models typically used in the Coupled Model Intercomparison Project (CMIP) but employ comparable vertical grid spacings. Here, we study how changes in the vertical grid spacing and adjustments to the integration time step affect the basic climate quantities simulated by the ICON-Sapphire atmospheric GSRM. Simulations are performed over a 45 d period for five different vertical grids with between 55 and 540 vertical layers and maximum tropospheric vertical grid spacings of between 800 and 50 m, respectively. The effects of changes in the vertical grid spacing are compared with the effects of reducing the horizontal grid spacing from 5 to 2.5 km. For most of the quantities considered, halving the vertical grid spacing has a smaller effect than halving the horizontal grid spacing, but it is not negligible. Each halving of the vertical grid spacing, along with the necessary reductions in time step length, increases cloud liquid water by about 7 %, compared with an approximate 16 % decrease for halving the horizontal grid spacing. The effect is due to both the vertical grid refinement and the time step reduction. There is no tendency toward convergence in the range of grid spacings tested here. The cloud ice amount also increases with a refinement in the vertical grid, but it is hardly affected by the time step length and does show a tendency to converge. While the effect on shortwave radiation is globally dominated by the altered reflection due to the change in the cloud liquid water content, the effect on longwave radiation is more difficult to interpret because changes in the cloud ice concentration and cloud fraction are anticorrelated in some regions. The simulations show that using a maximum tropospheric vertical grid spacing larger than 400 m would increase the truncation error strongly. Computing time investments in a further vertical grid refinement can affect the truncation errors of GSRMs similarly to comparable investments in horizontal refinement, because halving the vertical grid spacing is generally cheaper than halving the horizontal grid spacing. However, convergence of boundary layer cloud properties cannot be expected, even for the smallest maximum tropospheric grid spacing of 50 m used in this study. acknowledgement: "The authors wish to thank Ann Kristin Naumann and three anonymous reviewers for very helpful comments on an earlier version of this paper. We are grateful to René Redler and Karl-Hermann Wieners for useful recommendations regarding running the simulations. We thank Luis Kornblueh for providing an external vertical grid generator and resolving the memory requirements for the very fine vertical grids. We acknowledge Hauke Schulz for providing the radiosonde data. The simulations were run at the German Climate Computing Center (DKRZ), and we thank the DKRZ staff for their support.\r\nHauke Schmidt and Diego Jimenez-de la Cuesta received financial support from the SOCTOC project within the framework of the ROMIC program, funded by the German Ministry of Education and Research (BMBF) (grant no. 01LG1903A).\r\nThe article processing charges for this open-access publication were covered by the Max Planck Society." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Hauke full_name: Schmidt, Hauke last_name: Schmidt - first_name: Sebastian full_name: Rast, Sebastian last_name: Rast - first_name: Jiawei full_name: Bao, Jiawei id: bb9a7399-fefd-11ed-be3c-ae648fd1d160 last_name: Bao - first_name: Amrit full_name: Cassim, Amrit last_name: Cassim - first_name: Shih Wei full_name: Fang, Shih Wei last_name: Fang - first_name: Diego full_name: Jimenez-De La Cuesta, Diego last_name: Jimenez-De La Cuesta - first_name: Paul full_name: Keil, Paul last_name: Keil - first_name: Lukas full_name: Kluft, Lukas last_name: Kluft - first_name: Clarissa full_name: Kroll, Clarissa last_name: Kroll - first_name: Theresa full_name: Lang, Theresa last_name: Lang - first_name: Ulrike full_name: Niemeier, Ulrike last_name: Niemeier - first_name: Andrea full_name: Schneidereit, Andrea last_name: Schneidereit - first_name: Andrew I.L. full_name: Williams, Andrew I.L. last_name: Williams - first_name: Bjorn full_name: Stevens, Bjorn last_name: Stevens citation: ama: Schmidt H, Rast S, Bao J, et al. Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model. Geoscientific Model Development. 2024;17(4):1563-1584. doi:10.5194/gmd-17-1563-2024 apa: Schmidt, H., Rast, S., Bao, J., Cassim, A., Fang, S. W., Jimenez-De La Cuesta, D., … Stevens, B. (2024). Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model. Geoscientific Model Development. European Geosciences Union. https://doi.org/10.5194/gmd-17-1563-2024 chicago: Schmidt, Hauke, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih Wei Fang, Diego Jimenez-De La Cuesta, Paul Keil, et al. “Effects of Vertical Grid Spacing on the Climate Simulated in the ICON-Sapphire Global Storm-Resolving Model.” Geoscientific Model Development. European Geosciences Union, 2024. https://doi.org/10.5194/gmd-17-1563-2024. ieee: H. Schmidt et al., “Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model,” Geoscientific Model Development, vol. 17, no. 4. European Geosciences Union, pp. 1563–1584, 2024. ista: Schmidt H, Rast S, Bao J, Cassim A, Fang SW, Jimenez-De La Cuesta D, Keil P, Kluft L, Kroll C, Lang T, Niemeier U, Schneidereit A, Williams AIL, Stevens B. 2024. Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model. Geoscientific Model Development. 17(4), 1563–1584. mla: Schmidt, Hauke, et al. “Effects of Vertical Grid Spacing on the Climate Simulated in the ICON-Sapphire Global Storm-Resolving Model.” Geoscientific Model Development, vol. 17, no. 4, European Geosciences Union, 2024, pp. 1563–84, doi:10.5194/gmd-17-1563-2024. short: H. Schmidt, S. Rast, J. Bao, A. Cassim, S.W. Fang, D. Jimenez-De La Cuesta, P. Keil, L. Kluft, C. Kroll, T. Lang, U. Niemeier, A. Schneidereit, A.I.L. Williams, B. Stevens, Geoscientific Model Development 17 (2024) 1563–1584. date_created: 2024-03-10T23:00:53Z date_published: 2024-02-22T00:00:00Z date_updated: 2024-03-13T09:01:20Z day: '22' ddc: - '550' department: - _id: CaMu doi: 10.5194/gmd-17-1563-2024 file: - access_level: open_access checksum: 270d2340402729b0532f7072ea914cae content_type: application/pdf creator: dernst date_created: 2024-03-13T08:59:21Z date_updated: 2024-03-13T08:59:21Z file_id: '15111' file_name: 2024_GeoscientificModelDev_Schmidt.pdf file_size: 13364601 relation: main_file success: 1 file_date_updated: 2024-03-13T08:59:21Z has_accepted_license: '1' intvolume: ' 17' issue: '4' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 1563-1584 publication: Geoscientific Model Development publication_identifier: eissn: - 1991-9603 issn: - 1991-959X publication_status: published publisher: European Geosciences Union quality_controlled: '1' scopus_import: '1' status: public title: Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2024' ... --- _id: '12311' abstract: - lang: eng text: In this note, we prove a formula for the cancellation exponent kv,n between division polynomials ψn and ϕn associated with a sequence {nP}n∈N of points on an elliptic curve E defined over a discrete valuation field K. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields. acknowledgement: Silverman, and Paul Voutier for the comments on the earlier version of this paper. The first author acknowledges the support by Dioscuri programme initiated by the Max Planck Society, jointly managed with the National Science Centre (Poland), and mutually funded by the Polish Ministry of Science and Higher Education and the German Federal Ministry of Education and Research. The second author has been supported by MIUR (Italy) through PRIN 2017 ‘Geometric, algebraic and analytic methods in arithmetic’ and has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413. article_number: '2203.02015' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Bartosz full_name: Naskręcki, Bartosz last_name: Naskręcki - first_name: Matteo full_name: Verzobio, Matteo id: 7aa8f170-131e-11ed-88e1-a9efd01027cb last_name: Verzobio orcid: 0000-0002-0854-0306 citation: ama: 'Naskręcki B, Verzobio M. Common valuations of division polynomials. Proceedings of the Royal Society of Edinburgh Section A: Mathematics. 2024. doi:10.1017/prm.2024.7' apa: 'Naskręcki, B., & Verzobio, M. (2024). Common valuations of division polynomials. Proceedings of the Royal Society of Edinburgh Section A: Mathematics. Cambridge University Press. https://doi.org/10.1017/prm.2024.7' chicago: 'Naskręcki, Bartosz, and Matteo Verzobio. “Common Valuations of Division Polynomials.” Proceedings of the Royal Society of Edinburgh Section A: Mathematics. Cambridge University Press, 2024. https://doi.org/10.1017/prm.2024.7.' ieee: 'B. Naskręcki and M. Verzobio, “Common valuations of division polynomials,” Proceedings of the Royal Society of Edinburgh Section A: Mathematics. Cambridge University Press, 2024.' ista: 'Naskręcki B, Verzobio M. 2024. Common valuations of division polynomials. Proceedings of the Royal Society of Edinburgh Section A: Mathematics., 2203.02015.' mla: 'Naskręcki, Bartosz, and Matteo Verzobio. “Common Valuations of Division Polynomials.” Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2203.02015, Cambridge University Press, 2024, doi:10.1017/prm.2024.7.' short: 'B. Naskręcki, M. Verzobio, Proceedings of the Royal Society of Edinburgh Section A: Mathematics (2024).' date_created: 2023-01-16T11:45:22Z date_published: 2024-02-26T00:00:00Z date_updated: 2024-03-13T11:55:21Z day: '26' ddc: - '510' department: - _id: TiBr doi: 10.1017/prm.2024.7 ec_funded: 1 external_id: arxiv: - '2203.02015' has_accepted_license: '1' keyword: - Elliptic curves - Néron models - division polynomials - height functions - discrete valuation rings language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1017/prm.2024.7 month: '02' oa: 1 oa_version: Published Version project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: 'Proceedings of the Royal Society of Edinburgh Section A: Mathematics' publication_identifier: eissn: - 1473-7124 issn: - 0308-2105 publication_status: epub_ahead publisher: Cambridge University Press quality_controlled: '1' scopus_import: '1' status: public title: Common valuations of division polynomials tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15099' abstract: - lang: eng text: Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems. acknowledgement: KJ, MR, and RKB were supported by grants from the Swedish Research Council (2021-0419, 2021-05243, and 2018-03695, respectively). RKB was also supported by the Leverhulme Trust (RPG-2021-141), RF by FCT- Portuguese Science Foundation (PTDC/BIA-EVL/1614/2021 and 2020.00275.CEECIND), and AMW by Norwegian Research Council RCN (Project number 315287). We thank the members of the Integration of Speciation Research network for stimulating discussions, the Littorina research community for important contributions of data and analyses, and Cynthia Riginos for useful comments on an earlier draft. article_processing_charge: Yes (in subscription journal) article_type: review author: - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Alan full_name: Le Moan, Alan last_name: Le Moan - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski citation: ama: Johannesson K, Faria R, Le Moan A, et al. Diverse pathways to speciation revealed by marine snails. Trends in Genetics. 2024. doi:10.1016/j.tig.2024.01.002 apa: Johannesson, K., Faria, R., Le Moan, A., Rafajlović, M., Westram, A. M., Butlin, R. K., & Stankowski, S. (2024). Diverse pathways to speciation revealed by marine snails. Trends in Genetics. Cell Press. https://doi.org/10.1016/j.tig.2024.01.002 chicago: Johannesson, Kerstin, Rui Faria, Alan Le Moan, Marina Rafajlović, Anja M Westram, Roger K. Butlin, and Sean Stankowski. “Diverse Pathways to Speciation Revealed by Marine Snails.” Trends in Genetics. Cell Press, 2024. https://doi.org/10.1016/j.tig.2024.01.002. ieee: K. Johannesson et al., “Diverse pathways to speciation revealed by marine snails,” Trends in Genetics. Cell Press, 2024. ista: Johannesson K, Faria R, Le Moan A, Rafajlović M, Westram AM, Butlin RK, Stankowski S. 2024. Diverse pathways to speciation revealed by marine snails. Trends in Genetics. mla: Johannesson, Kerstin, et al. “Diverse Pathways to Speciation Revealed by Marine Snails.” Trends in Genetics, Cell Press, 2024, doi:10.1016/j.tig.2024.01.002. short: K. Johannesson, R. Faria, A. Le Moan, M. Rafajlović, A.M. Westram, R.K. Butlin, S. Stankowski, Trends in Genetics (2024). date_created: 2024-03-10T23:00:54Z date_published: 2024-02-22T00:00:00Z date_updated: 2024-03-13T12:08:57Z day: '22' ddc: - '570' department: - _id: NiBa doi: 10.1016/j.tig.2024.01.002 external_id: pmid: - '38395682' has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.tig.2024.01.002 month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Trends in Genetics publication_identifier: eissn: - 1362-4555 issn: - 0168-9525 publication_status: epub_ahead publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Diverse pathways to speciation revealed by marine snails tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15098' abstract: - lang: eng text: The paper is devoted to the analysis of the global well-posedness and the interior regularity of the 2D Navier–Stokes equations with inhomogeneous stochastic boundary conditions. The noise, white in time and coloured in space, can be interpreted as the physical law describing the driving mechanism on the atmosphere–ocean interface, i.e. as a balance of the shear stress of the ocean and the horizontal wind force. acknowledgement: The authors thank Professor Franco Flandoli for useful discussions and valuable insight into the subject. In particular, A.A. would like to thank professor Franco Flandoli for hosting and financially contributing to his research visit at Scuola Normale di Pisa in January 2023, where this work started. E.L. would like to express sincere gratitude to Professor Marco Fuhrman for igniting his interest in this particular field of research. E.L. want to thank Professor Matthias Hieber and Dr. Martin Saal for useful discussions. Finally, the authors thank the anonymous referee for helpful comments which improved the paper from its initial version.Open access funding provided by Scuola Normale Superiore within the CRUI-CARE Agreement. A. Agresti has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 948819). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Antonio full_name: Agresti, Antonio id: 673cd0cc-9b9a-11eb-b144-88f30e1fbb72 last_name: Agresti orcid: 0000-0002-9573-2962 - first_name: Eliseo full_name: Luongo, Eliseo last_name: Luongo citation: ama: Agresti A, Luongo E. Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions. Mathematische Annalen. 2024. doi:10.1007/s00208-024-02812-0 apa: Agresti, A., & Luongo, E. (2024). Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions. Mathematische Annalen. Springer Nature. https://doi.org/10.1007/s00208-024-02812-0 chicago: Agresti, Antonio, and Eliseo Luongo. “Global Well-Posedness and Interior Regularity of 2D Navier-Stokes Equations with Stochastic Boundary Conditions.” Mathematische Annalen. Springer Nature, 2024. https://doi.org/10.1007/s00208-024-02812-0. ieee: A. Agresti and E. Luongo, “Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions,” Mathematische Annalen. Springer Nature, 2024. ista: Agresti A, Luongo E. 2024. Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions. Mathematische Annalen. mla: Agresti, Antonio, and Eliseo Luongo. “Global Well-Posedness and Interior Regularity of 2D Navier-Stokes Equations with Stochastic Boundary Conditions.” Mathematische Annalen, Springer Nature, 2024, doi:10.1007/s00208-024-02812-0. short: A. Agresti, E. Luongo, Mathematische Annalen (2024). date_created: 2024-03-10T23:00:54Z date_published: 2024-02-27T00:00:00Z date_updated: 2024-03-13T12:20:23Z day: '27' department: - _id: JuFi doi: 10.1007/s00208-024-02812-0 ec_funded: 1 external_id: arxiv: - '2306.11081' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s00208-024-02812-0 month: '02' oa: 1 oa_version: Published Version project: - _id: 0aa76401-070f-11eb-9043-b5bb049fa26d call_identifier: H2020 grant_number: '948819' name: Bridging Scales in Random Materials publication: Mathematische Annalen publication_identifier: eissn: - 1432-1807 issn: - 0025-5831 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15122' abstract: - lang: eng text: Quantum computers are increasing in size and quality but are still very noisy. Error mitigation extends the size of the quantum circuits that noisy devices can meaningfully execute. However, state-of-the-art error mitigation methods are hard to implement and the limited qubit connectivity in superconducting qubit devices restricts most applications to the hardware's native topology. Here we show a quantum approximate optimization algorithm (QAOA) on nonplanar random regular graphs with up to 40 nodes enabled by a machine learning-based error mitigation. We use a swap network with careful decision-variable-to-qubit mapping and a feed-forward neural network to optimize a depth-two QAOA on up to 40 qubits. We observe a meaningful parameter optimization for the largest graph which requires running quantum circuits with 958 two-qubit gates. Our paper emphasizes the need to mitigate samples, and not only expectation values, in quantum approximate optimization. These results are a step towards executing quantum approximate optimization at a scale that is not classically simulable. Reaching such system sizes is key to properly understanding the true potential of heuristic algorithms like QAOA. acknowledgement: S.H.S. acknowledges support from the IBM Ph.D. fellowship 2022 in quantum computing. The authors also thank M. Serbyn, R. Kueng, R. A. Medina, and S. Woerner for fruitful discussions. article_number: '013223' article_processing_charge: Yes article_type: original author: - first_name: Stefan full_name: Sack, Stefan id: dd622248-f6e0-11ea-865d-ce382a1c81a5 last_name: Sack orcid: 0000-0001-5400-8508 - first_name: Daniel J. full_name: Egger, Daniel J. last_name: Egger citation: ama: Sack S, Egger DJ. Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation. Physical Review Research. 2024;6(1). doi:10.1103/PhysRevResearch.6.013223 apa: Sack, S., & Egger, D. J. (2024). Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation. Physical Review Research. American Physical Society. https://doi.org/10.1103/PhysRevResearch.6.013223 chicago: Sack, Stefan, and Daniel J. Egger. “Large-Scale Quantum Approximate Optimization on Nonplanar Graphs with Machine Learning Noise Mitigation.” Physical Review Research. American Physical Society, 2024. https://doi.org/10.1103/PhysRevResearch.6.013223. ieee: S. Sack and D. J. Egger, “Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation,” Physical Review Research, vol. 6, no. 1. American Physical Society, 2024. ista: Sack S, Egger DJ. 2024. Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation. Physical Review Research. 6(1), 013223. mla: Sack, Stefan, and Daniel J. Egger. “Large-Scale Quantum Approximate Optimization on Nonplanar Graphs with Machine Learning Noise Mitigation.” Physical Review Research, vol. 6, no. 1, 013223, American Physical Society, 2024, doi:10.1103/PhysRevResearch.6.013223. short: S. Sack, D.J. Egger, Physical Review Research 6 (2024). date_created: 2024-03-17T23:00:59Z date_published: 2024-03-01T00:00:00Z date_updated: 2024-03-19T07:24:03Z day: '01' ddc: - '530' department: - _id: MaSe doi: 10.1103/PhysRevResearch.6.013223 external_id: arxiv: - '2307.14427' file: - access_level: open_access checksum: 274c9f1b15b3547a10a03f39e4ccc582 content_type: application/pdf creator: dernst date_created: 2024-03-19T07:16:38Z date_updated: 2024-03-19T07:16:38Z file_id: '15123' file_name: 2024_PhysicalReviewResearch_Sack.pdf file_size: 2777593 relation: main_file success: 1 file_date_updated: 2024-03-19T07:16:38Z has_accepted_license: '1' intvolume: ' 6' issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: bd660c93-d553-11ed-ba76-fb0fb6f49c0d name: Quantum_Quantum Circuits and Software_Variational quantum algorithms on NISQ devices publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2024' ... --- _id: '15119' abstract: - lang: eng text: In this paper we consider an SPDE where the leading term is a second order operator with periodic boundary conditions, coefficients which are measurable in (t,ω) , and Hölder continuous in space. Assuming stochastic parabolicity conditions, we prove Lp((0,T)×Ω,tκdt;Hσ,q(Td)) -estimates. The main novelty is that we do not require p=q . Moreover, we allow arbitrary σ∈R and weights in time. Such mixed regularity estimates play a crucial role in applications to nonlinear SPDEs which is clear from our previous work. To prove our main results we develop a general perturbation theory for SPDEs. Moreover, we prove a new result on pointwise multiplication in spaces with fractional smoothness. acknowledgement: The first author has been partially supported by the Nachwuchsring – Network for the promotion of young scientists – at TU Kaiserslautern. The second author is supported by the VIDI subsidy 639.032.427 of the Netherlands Organisation for Scientific Research (NWO). The authors thank the anonymous referees and Max Sauerbrey for careful reading and helpful suggestions. article_processing_charge: No article_type: original author: - first_name: Antonio full_name: Agresti, Antonio id: 673cd0cc-9b9a-11eb-b144-88f30e1fbb72 last_name: Agresti orcid: 0000-0002-9573-2962 - first_name: Mark full_name: Veraar, Mark last_name: Veraar citation: ama: Agresti A, Veraar M. Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions. Annales de l’institut Henri Poincare Probability and Statistics. 2024;60(1):413-430. doi:10.1214/22-AIHP1333 apa: Agresti, A., & Veraar, M. (2024). Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions. Annales de l’institut Henri Poincare Probability and Statistics. Institute of Mathematical Statistics. https://doi.org/10.1214/22-AIHP1333 chicago: Agresti, Antonio, and Mark Veraar. “Stochastic Maximal Lp(Lq)-Regularity for Second Order Systems with Periodic Boundary Conditions.” Annales de l’institut Henri Poincare Probability and Statistics. Institute of Mathematical Statistics, 2024. https://doi.org/10.1214/22-AIHP1333. ieee: A. Agresti and M. Veraar, “Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions,” Annales de l’institut Henri Poincare Probability and Statistics, vol. 60, no. 1. Institute of Mathematical Statistics, pp. 413–430, 2024. ista: Agresti A, Veraar M. 2024. Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions. Annales de l’institut Henri Poincare Probability and Statistics. 60(1), 413–430. mla: Agresti, Antonio, and Mark Veraar. “Stochastic Maximal Lp(Lq)-Regularity for Second Order Systems with Periodic Boundary Conditions.” Annales de l’institut Henri Poincare Probability and Statistics, vol. 60, no. 1, Institute of Mathematical Statistics, 2024, pp. 413–30, doi:10.1214/22-AIHP1333. short: A. Agresti, M. Veraar, Annales de l’institut Henri Poincare Probability and Statistics 60 (2024) 413–430. date_created: 2024-03-17T23:00:58Z date_published: 2024-02-01T00:00:00Z date_updated: 2024-03-19T08:14:17Z day: '01' department: - _id: JuFi doi: 10.1214/22-AIHP1333 external_id: arxiv: - '2106.01274' intvolume: ' 60' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2106.01274 month: '02' oa: 1 oa_version: Preprint page: 413-430 publication: Annales de l'institut Henri Poincare Probability and Statistics publication_identifier: issn: - 0246-0203 publication_status: published publisher: Institute of Mathematical Statistics quality_controlled: '1' scopus_import: '1' status: public title: Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary conditions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 60 year: '2024' ... --- _id: '14478' abstract: - lang: eng text: Entire chromosomes are typically only transmitted vertically from one generation to the next. The horizontal transfer of such chromosomes has long been considered improbable, yet gained recent support in several pathogenic fungi where it may affect the fitness or host specificity. To date, it is unknown how these transfers occur, how common they are and whether they can occur between different species. In this study, we show multiple independent instances of horizontal transfers of the same accessory chromosome between two distinct strains of the asexual entomopathogenic fungusMetarhizium robertsiiduring experimental co-infection of its insect host, the Argentine ant. Notably, only the one chromosome – but no other – was transferred from the donor to the recipient strain. The recipient strain, now harboring the accessory chromosome, exhibited a competitive advantage under certain host conditions. By phylogenetic analysis we further demonstrate that the same accessory chromosome was horizontally transferred in a natural environment betweenM. robertsiiand another congeneric insect pathogen,M. guizhouense. Hence horizontal chromosome transfer is not limited to the observed frequent events within species during experimental infections but also occurs naturally across species. The transferred accessory chromosome contains genes that might be involved in its preferential horizontal transfer, encoding putative histones and histone-modifying enzymes, but also putative virulence factors that may support its establishment. Our study reveals that both intra- and interspecies horizontal transfer of entire chromosomes is more frequent than previously assumed, likely representing a not uncommon mechanism for gene exchange.Significance StatementThe enormous success of bacterial pathogens has been attributed to their ability to exchange genetic material between one another. Similarly, in eukaryotes, horizontal transfer of genetic material allowed the spread of virulence factors across species. The horizontal transfer of whole chromosomes could be an important pathway for such exchange of genetic material, but little is known about the origin of transferable chromosomes and how frequently they are exchanged. Here, we show that the transfer of accessory chromosomes - chromosomes that are non-essential but may provide fitness benefits - is common during fungal co-infections and is even possible between distant pathogenic species, highlighting the importance of horizontal gene transfer via chromosome transfer also for the evolution and function of eukaryotic pathogens. acknowledgement: We thank Bernhardt Steinwender, Jorgen Eilenberg, and Nicolai V. Meyling for the fungal strains. We further thank Chengshu Wang for providing the short sequencing reads for M. guizhouense ARESF977 he used for his published genome assembly, and Kristian Ullrich for help in the bioinformatics analysis for methylation pattern in Nanopore reads, and the VBC and the Max Planck Society for the use of their sequencing centers. We thank Barbara Milutinović and Hinrich Schulenburg for discussion, and Tal Dagan and Jens Rolff for comments on a previous version of the manuscript. Fig. 1A was created with BioRender.com. This study received funding by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (No. 771402; EPIDEMICSonCHIP) to S.C. and by the German Research Foundation (DFG grant HA9263/1-1) to M.H. article_number: e2316284121 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Michael full_name: Habig, Michael last_name: Habig - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Judith full_name: Müller, Judith last_name: Müller - first_name: Eva H. full_name: Stukenbrock, Eva H. last_name: Stukenbrock - first_name: Hanna full_name: Leitner, Hanna id: 8fc5c6f6-5903-11ec-abad-c83f046253e7 last_name: Leitner - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Habig M, Grasse AV, Müller J, Stukenbrock EH, Leitner H, Cremer S. Frequent horizontal chromosome transfer between asexual fungal insect pathogens. Proceedings of the National Academy of Sciences of the United States of America. 2024;121(11). doi:10.1073/pnas.2316284121 apa: Habig, M., Grasse, A. V., Müller, J., Stukenbrock, E. H., Leitner, H., & Cremer, S. (2024). Frequent horizontal chromosome transfer between asexual fungal insect pathogens. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2316284121 chicago: Habig, Michael, Anna V Grasse, Judith Müller, Eva H. Stukenbrock, Hanna Leitner, and Sylvia Cremer. “Frequent Horizontal Chromosome Transfer between Asexual Fungal Insect Pathogens.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2316284121. ieee: M. Habig, A. V. Grasse, J. Müller, E. H. Stukenbrock, H. Leitner, and S. Cremer, “Frequent horizontal chromosome transfer between asexual fungal insect pathogens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11. Proceedings of the National Academy of Sciences, 2024. ista: Habig M, Grasse AV, Müller J, Stukenbrock EH, Leitner H, Cremer S. 2024. Frequent horizontal chromosome transfer between asexual fungal insect pathogens. Proceedings of the National Academy of Sciences of the United States of America. 121(11), e2316284121. mla: Habig, Michael, et al. “Frequent Horizontal Chromosome Transfer between Asexual Fungal Insect Pathogens.” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11, e2316284121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2316284121. short: M. Habig, A.V. Grasse, J. Müller, E.H. Stukenbrock, H. Leitner, S. Cremer, Proceedings of the National Academy of Sciences of the United States of America 121 (2024). date_created: 2023-10-31T13:30:00Z date_published: 2024-03-12T00:00:00Z date_updated: 2024-03-19T09:07:20Z day: '12' ddc: - '570' department: - _id: SyCr doi: 10.1073/pnas.2316284121 ec_funded: 1 external_id: pmid: - '38442176' file: - access_level: open_access checksum: f5e871db617b682edc71fcd08670dc81 content_type: application/pdf creator: dernst date_created: 2024-03-19T09:02:57Z date_updated: 2024-03-19T09:02:57Z file_id: '15124' file_name: 2024_PNAS_Habig.pdf file_size: 5750361 relation: main_file success: 1 file_date_updated: 2024-03-19T09:02:57Z has_accepted_license: '1' intvolume: ' 121' issue: '11' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Frequent horizontal chromosome transfer between asexual fungal insect pathogens tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ... --- _id: '10045' abstract: - lang: eng text: "Given a fixed finite metric space (V,μ), the {\\em minimum 0-extension problem}, denoted as 0-Ext[μ], is equivalent to the following optimization problem: minimize function of the form minx∈Vn∑ifi(xi)+∑ijcijμ(xi,xj) where cij,cvi are given nonnegative costs and fi:V→R are functions given by fi(xi)=∑v∈Vcviμ(xi,v). The computational complexity of 0-Ext[μ] has been recently established by Karzanov and by Hirai: if metric μ is {\\em orientable modular} then 0-Ext[μ] can be solved in polynomial time, otherwise 0-Ext[μ] is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as L♮-convex functions. We consider a more general version of the problem in which unary functions fi(xi) can additionally have terms of the form cuv;iμ(xi,{u,v}) for {u,v}∈F, where set F⊆(V2) is fixed. We extend the complexity classification above by providing an explicit condition on (μ,F) for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving 0-Ext on orientable modular graphs.\r\n" acknowledgement: We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. Open access funding provided by Institute of Science and Technology (IST Austria). article_number: '2109.10203' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Martin full_name: Dvorak, Martin id: 40ED02A8-C8B4-11E9-A9C0-453BE6697425 last_name: Dvorak orcid: 0000-0001-5293-214X - first_name: Vladimir full_name: Kolmogorov, Vladimir id: 3D50B0BA-F248-11E8-B48F-1D18A9856A87 last_name: Kolmogorov citation: ama: Dvorak M, Kolmogorov V. Generalized minimum 0-extension problem and discrete convexity. Mathematical Programming. 2024. doi:10.1007/s10107-024-02064-5 apa: Dvorak, M., & Kolmogorov, V. (2024). Generalized minimum 0-extension problem and discrete convexity. Mathematical Programming. Springer Nature. https://doi.org/10.1007/s10107-024-02064-5 chicago: Dvorak, Martin, and Vladimir Kolmogorov. “Generalized Minimum 0-Extension Problem and Discrete Convexity.” Mathematical Programming. Springer Nature, 2024. https://doi.org/10.1007/s10107-024-02064-5. ieee: M. Dvorak and V. Kolmogorov, “Generalized minimum 0-extension problem and discrete convexity,” Mathematical Programming. Springer Nature, 2024. ista: Dvorak M, Kolmogorov V. 2024. Generalized minimum 0-extension problem and discrete convexity. Mathematical Programming., 2109.10203. mla: Dvorak, Martin, and Vladimir Kolmogorov. “Generalized Minimum 0-Extension Problem and Discrete Convexity.” Mathematical Programming, 2109.10203, Springer Nature, 2024, doi:10.1007/s10107-024-02064-5. short: M. Dvorak, V. Kolmogorov, Mathematical Programming (2024). date_created: 2021-09-27T10:48:23Z date_published: 2024-03-07T00:00:00Z date_updated: 2024-03-19T08:20:31Z day: '07' ddc: - '004' department: - _id: GradSch - _id: VlKo doi: 10.1007/s10107-024-02064-5 external_id: arxiv: - '2109.10203' file: - access_level: open_access checksum: e7e83065f7bc18b9c188bf93b5ca5db6 content_type: application/pdf creator: mdvorak date_created: 2021-09-27T10:54:51Z date_updated: 2021-09-27T10:54:51Z file_id: '10046' file_name: Generalized-0-Ext.pdf file_size: 603672 relation: main_file success: 1 file_date_updated: 2021-09-27T10:54:51Z has_accepted_license: '1' keyword: - minimum 0-extension problem - metric labeling problem - discrete metric spaces - metric extensions - computational complexity - valued constraint satisfaction problems - discrete convex analysis - L-convex functions language: - iso: eng month: '03' oa: 1 oa_version: Preprint publication: Mathematical Programming publication_identifier: eissn: - 1436-4646 issn: - 0025-5610 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Generalized minimum 0-extension problem and discrete convexity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15121' abstract: - lang: eng text: We present an auction algorithm using multiplicative instead of constant weight updates to compute a (1-E)-approximate maximum weight matching (MWM) in a bipartite graph with n vertices and m edges in time 0(mE-1), beating the running time of the fastest known approximation algorithm of Duan and Pettie [JACM ’14] that runs in 0(mE-1 log E-1). Our algorithm is very simple and it can be extended to give a dynamic data structure that maintains a (1-E)-approximate maximum weight matching under (1) one-sided vertex deletions (with incident edges) and (2) one-sided vertex insertions (with incident edges sorted by weight) to the other side. The total time time used is 0(mE-1), where m is the sum of the number of initially existing and inserted edges. acknowledgement: The first author thanks Chandra Chekuri for useful discussions about this paper. This work was done in part at the University of Vienna. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 101019564 “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)” and from the Austrian Science Fund (FWF) project “Fast Algorithms for a Reactive Network Layer (ReactNet)”, P 33775-N, with additional funding from the netidee SCIENCE Stiftung, 2020–2024. article_processing_charge: No article_type: original author: - first_name: Da Wei full_name: Zheng, Da Wei last_name: Zheng - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 citation: ama: Zheng DW, Henzinger MH. Multiplicative auction algorithm for approximate maximum weight bipartite matching. Mathematical Programming. 2024. doi:10.1007/s10107-024-02066-3 apa: Zheng, D. W., & Henzinger, M. H. (2024). Multiplicative auction algorithm for approximate maximum weight bipartite matching. Mathematical Programming. Springer Nature. https://doi.org/10.1007/s10107-024-02066-3 chicago: Zheng, Da Wei, and Monika H Henzinger. “Multiplicative Auction Algorithm for Approximate Maximum Weight Bipartite Matching.” Mathematical Programming. Springer Nature, 2024. https://doi.org/10.1007/s10107-024-02066-3. ieee: D. W. Zheng and M. H. Henzinger, “Multiplicative auction algorithm for approximate maximum weight bipartite matching,” Mathematical Programming. Springer Nature, 2024. ista: Zheng DW, Henzinger MH. 2024. Multiplicative auction algorithm for approximate maximum weight bipartite matching. Mathematical Programming. mla: Zheng, Da Wei, and Monika H. Henzinger. “Multiplicative Auction Algorithm for Approximate Maximum Weight Bipartite Matching.” Mathematical Programming, Springer Nature, 2024, doi:10.1007/s10107-024-02066-3. short: D.W. Zheng, M.H. Henzinger, Mathematical Programming (2024). date_created: 2024-03-17T23:00:58Z date_published: 2024-03-06T00:00:00Z date_updated: 2024-03-19T08:32:32Z day: '06' department: - _id: MoHe doi: 10.1007/s10107-024-02066-3 ec_funded: 1 external_id: arxiv: - '2301.09217' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2301.09217 month: '03' oa: 1 oa_version: Preprint project: - _id: bd9ca328-d553-11ed-ba76-dc4f890cfe62 call_identifier: H2020 grant_number: '101019564' name: The design and evaluation of modern fully dynamic data structures - _id: bd9e3a2e-d553-11ed-ba76-8aa684ce17fe grant_number: 'P33775 ' name: Fast Algorithms for a Reactive Network Layer publication: Mathematical Programming publication_identifier: eissn: - 1436-4646 issn: - 0025-5610 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13236' relation: earlier_version status: public scopus_import: '1' status: public title: Multiplicative auction algorithm for approximate maximum weight bipartite matching type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15116' abstract: - lang: eng text: Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water–collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H2O/D2O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H2O and D2O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D2O than in H2O, and collagen in D2O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H2O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D2O is less hydrated than in H2O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen–water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly. acknowledgement: We thank Dr. Steven Roeters (Aarhus University), Dr. Federica Burla, and Prof. Dr. Mischa Bonn (Institute for Polymer Research, Mainz, Germany) for the useful discussions. We thank Dr. Wim Roeterdink and Michiel Hilberts for technical support. G.H.K. acknowledges financial support by the “BaSyC Building a Synthetic Cell” Gravitation grant (024.003.019) of The Netherlands Ministry of Education, Culture and Science (OCW) and The Netherlands Organization for Scientific Research and from NWO grant OCENW.GROOT.2019.022. This work has received support from the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT, under Grant No. 2022K1A3A1A04062969. This publication is part of the project (with Project Number VI.Veni.212.240) of the research programme NWO Talent Programme Veni 2021, which is financed by the Dutch Research Council (NWO). I.M.I. acknowledges support from the Sectorplan Bèta & Techniek of the Dutch Government and the Dementia Research - Synapsis Foundation Switzerland. A.Š. and K.K. acknowledge support from Royal Society and European Research Council Starting Grant. G. Giubertoni kindly thanks to the Care4Bones community and the Collagen Café community for reminding that we do not own the knowledge we create, but it is, rather, a collective resource intended for the advancement of human progress. article_number: e2313162121 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Giulia full_name: Giubertoni, Giulia last_name: Giubertoni - first_name: Liru full_name: Feng, Liru last_name: Feng - first_name: Kevin full_name: Klein, Kevin last_name: Klein - first_name: Guido full_name: Giannetti, Guido last_name: Giannetti - first_name: Luco full_name: Rutten, Luco last_name: Rutten - first_name: Yeji full_name: Choi, Yeji last_name: Choi - first_name: Anouk full_name: Van Der Net, Anouk last_name: Van Der Net - first_name: Gerard full_name: Castro-Linares, Gerard last_name: Castro-Linares - first_name: Federico full_name: Caporaletti, Federico last_name: Caporaletti - first_name: Dimitra full_name: Micha, Dimitra last_name: Micha - first_name: Johannes full_name: Hunger, Johannes last_name: Hunger - first_name: Antoine full_name: Deblais, Antoine last_name: Deblais - first_name: Daniel full_name: Bonn, Daniel last_name: Bonn - first_name: Nico full_name: Sommerdijk, Nico last_name: Sommerdijk - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Ioana M. full_name: Ilie, Ioana M. last_name: Ilie - first_name: Gijsje H. full_name: Koenderink, Gijsje H. last_name: Koenderink - first_name: Sander full_name: Woutersen, Sander last_name: Woutersen citation: ama: Giubertoni G, Feng L, Klein K, et al. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proceedings of the National Academy of Sciences of the United States of America. 2024;121(11). doi:10.1073/pnas.2313162121 apa: Giubertoni, G., Feng, L., Klein, K., Giannetti, G., Rutten, L., Choi, Y., … Woutersen, S. (2024). Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2313162121 chicago: Giubertoni, Giulia, Liru Feng, Kevin Klein, Guido Giannetti, Luco Rutten, Yeji Choi, Anouk Van Der Net, et al. “Elucidating the Role of Water in Collagen Self-Assembly by Isotopically Modulating Collagen Hydration.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2313162121. ieee: G. Giubertoni et al., “Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11. Proceedings of the National Academy of Sciences, 2024. ista: Giubertoni G, Feng L, Klein K, Giannetti G, Rutten L, Choi Y, Van Der Net A, Castro-Linares G, Caporaletti F, Micha D, Hunger J, Deblais A, Bonn D, Sommerdijk N, Šarić A, Ilie IM, Koenderink GH, Woutersen S. 2024. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proceedings of the National Academy of Sciences of the United States of America. 121(11), e2313162121. mla: Giubertoni, Giulia, et al. “Elucidating the Role of Water in Collagen Self-Assembly by Isotopically Modulating Collagen Hydration.” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11, e2313162121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2313162121. short: G. Giubertoni, L. Feng, K. Klein, G. Giannetti, L. Rutten, Y. Choi, A. Van Der Net, G. Castro-Linares, F. Caporaletti, D. Micha, J. Hunger, A. Deblais, D. Bonn, N. Sommerdijk, A. Šarić, I.M. Ilie, G.H. Koenderink, S. Woutersen, Proceedings of the National Academy of Sciences of the United States of America 121 (2024). date_created: 2024-03-17T23:00:57Z date_published: 2024-03-12T00:00:00Z date_updated: 2024-03-19T11:41:32Z day: '12' ddc: - '550' department: - _id: AnSa doi: 10.1073/pnas.2313162121 external_id: pmid: - '38451946' file: - access_level: open_access checksum: a3f7fdc29dd9f0a38952ab4e322b3a05 content_type: application/pdf creator: dernst date_created: 2024-03-19T10:22:42Z date_updated: 2024-03-19T10:22:42Z file_id: '15125' file_name: 2024_PNAS_Giubertoni.pdf file_size: 12952586 relation: main_file success: 1 file_date_updated: 2024-03-19T10:22:42Z has_accepted_license: '1' intvolume: ' 121' issue: '11' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: record: - id: '15126' relation: research_data status: public scopus_import: '1' status: public title: Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ... --- _id: '15094' abstract: - lang: eng text: "Point sets, geometric networks, and arrangements of hyperplanes are fundamental objects in\r\ndiscrete geometry that have captivated mathematicians for centuries, if not millennia. This\r\nthesis seeks to cast new light on these structures by illustrating specific instances where a\r\ntopological perspective, specifically through discrete Morse theory and persistent homology,\r\nprovides valuable insights.\r\n\r\nAt first glance, the topology of these geometric objects might seem uneventful: point sets\r\nessentially lack of topology, arrangements of hyperplanes are a decomposition of Rd, which\r\nis a contractible space, and the topology of a network primarily involves the enumeration\r\nof connected components and cycles within the network. However, beneath this apparent\r\nsimplicity, there lies an array of intriguing structures, a small subset of which will be uncovered\r\nin this thesis.\r\n\r\nFocused on three case studies, each addressing one of the mentioned objects, this work\r\nwill showcase connections that intertwine topology with diverse fields such as combinatorial\r\ngeometry, algorithms and data structures, and emerging applications like spatial biology.\r\n\r\n" alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Sebastiano full_name: Cultrera di Montesano, Sebastiano id: 34D2A09C-F248-11E8-B48F-1D18A9856A87 last_name: Cultrera di Montesano orcid: 0000-0001-6249-0832 citation: ama: Cultrera di Montesano S. Persistence and Morse theory for discrete geometric structures. 2024. doi:10.15479/at:ista:15094 apa: Cultrera di Montesano, S. (2024). Persistence and Morse theory for discrete geometric structures. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:15094 chicago: Cultrera di Montesano, Sebastiano. “Persistence and Morse Theory for Discrete Geometric Structures.” Institute of Science and Technology Austria, 2024. https://doi.org/10.15479/at:ista:15094. ieee: S. Cultrera di Montesano, “Persistence and Morse theory for discrete geometric structures,” Institute of Science and Technology Austria, 2024. ista: Cultrera di Montesano S. 2024. Persistence and Morse theory for discrete geometric structures. Institute of Science and Technology Austria. mla: Cultrera di Montesano, Sebastiano. Persistence and Morse Theory for Discrete Geometric Structures. Institute of Science and Technology Austria, 2024, doi:10.15479/at:ista:15094. short: S. Cultrera di Montesano, Persistence and Morse Theory for Discrete Geometric Structures, Institute of Science and Technology Austria, 2024. date_created: 2024-03-08T15:28:10Z date_published: 2024-03-08T00:00:00Z date_updated: 2024-03-20T09:36:57Z day: '08' ddc: - '514' - '500' - '516' degree_awarded: PhD department: - _id: GradSch - _id: HeEd doi: 10.15479/at:ista:15094 ec_funded: 1 file: - access_level: open_access checksum: 1e468bfa42a7dcf04d89f4dadc621c87 content_type: application/pdf creator: scultrer date_created: 2024-03-14T08:55:07Z date_updated: 2024-03-14T08:55:07Z file_id: '15112' file_name: Thesis Sebastiano.pdf file_size: 4106872 relation: main_file success: 1 - access_level: closed checksum: bcbd213490f5a7e68855a092bbce93f1 content_type: application/zip creator: scultrer date_created: 2024-03-14T08:56:24Z date_updated: 2024-03-14T14:14:35Z file_id: '15113' file_name: Thesis (1).zip file_size: 4746234 relation: source_file file_date_updated: 2024-03-14T14:14:35Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '03' oa: 1 oa_version: Published Version page: '108' project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize - _id: 0aa4bc98-070f-11eb-9043-e6fff9c6a316 grant_number: I4887 name: Discretization in Geometry and Dynamics - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '11660' relation: part_of_dissertation status: public - id: '11658' relation: part_of_dissertation status: public - id: '13182' relation: part_of_dissertation status: public - id: '15090' relation: part_of_dissertation status: public - id: '15091' relation: part_of_dissertation status: public - id: '15093' relation: part_of_dissertation status: public status: public supervisor: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 title: Persistence and Morse theory for discrete geometric structures tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2024' ... --- _id: '15093' abstract: - lang: eng text: We present a dynamic data structure for maintaining the persistent homology of a time series of real numbers. The data structure supports local operations, including the insertion and deletion of an item and the cutting and concatenating of lists, each in time O(log n + k), in which n counts the critical items and k the changes in the augmented persistence diagram. To achieve this, we design a tailor-made tree structure with an unconventional representation, referred to as banana tree, which may be useful in its own right. acknowledgement: The first and second authors are funded by the European Research Council under the European Union’s Horizon 2020 research and innovation programme, ERC grant no. 788183,“Alpha Shape Theory Extended (Alpha)”, by the Wittgenstein Prize, FWF grant no. Z 342-N31, and by the DFG Collaborative Research Center TRR 109, FWF grant no. I 02979-N35.The third author received funding by the European Research Council under the European Union’s Horizon 2020research and innovation programme, ERC grant no. 101019564, “The Design of Modern Fully Dynamic DataStructures (MoDynStruct)”, and by the Austrian Science Fund through the Wittgenstein Prize with FWF grant no. Z 422-N, and also by FWF grant no. I 5982-N, and by FWF grant no. P 33775-N, with additional funding from the netidee SCIENCE Stiftung, 2020–2024. The fourth author is funded by the Vienna Graduate School on Computational Optimization, FWF project no. W1260-N35. article_processing_charge: No author: - first_name: Sebastiano full_name: Cultrera di Montesano, Sebastiano id: 34D2A09C-F248-11E8-B48F-1D18A9856A87 last_name: Cultrera di Montesano orcid: 0000-0001-6249-0832 - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Lara full_name: Ost, Lara last_name: Ost citation: ama: 'Cultrera di Montesano S, Edelsbrunner H, Henzinger MH, Ost L. Dynamically maintaining the persistent homology of time series. In: Woodruff DP, ed. Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics; 2024:243-295. doi:10.1137/1.9781611977912.11' apa: 'Cultrera di Montesano, S., Edelsbrunner, H., Henzinger, M. H., & Ost, L. (2024). Dynamically maintaining the persistent homology of time series. In D. P. Woodruff (Ed.), Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 243–295). Alexandria, VA, USA: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611977912.11' chicago: Cultrera di Montesano, Sebastiano, Herbert Edelsbrunner, Monika H Henzinger, and Lara Ost. “Dynamically Maintaining the Persistent Homology of Time Series.” In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), edited by David P. Woodruff, 243–95. Society for Industrial and Applied Mathematics, 2024. https://doi.org/10.1137/1.9781611977912.11. ieee: S. Cultrera di Montesano, H. Edelsbrunner, M. H. Henzinger, and L. Ost, “Dynamically maintaining the persistent homology of time series,” in Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Alexandria, VA, USA, 2024, pp. 243–295. ista: 'Cultrera di Montesano S, Edelsbrunner H, Henzinger MH, Ost L. 2024. Dynamically maintaining the persistent homology of time series. Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SODA: Symposium on Discrete Algorigthms, 243–295.' mla: Cultrera di Montesano, Sebastiano, et al. “Dynamically Maintaining the Persistent Homology of Time Series.” Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), edited by David P. Woodruff, Society for Industrial and Applied Mathematics, 2024, pp. 243–95, doi:10.1137/1.9781611977912.11. short: S. Cultrera di Montesano, H. Edelsbrunner, M.H. Henzinger, L. Ost, in:, D.P. Woodruff (Ed.), Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Society for Industrial and Applied Mathematics, 2024, pp. 243–295. conference: end_date: 2024-01-10 location: Alexandria, VA, USA name: 'SODA: Symposium on Discrete Algorigthms' start_date: 2024-01-07 date_created: 2024-03-08T10:27:39Z date_published: 2024-01-04T00:00:00Z date_updated: 2024-03-20T09:36:56Z day: '04' department: - _id: HeEd - _id: MoHe doi: 10.1137/1.9781611977912.11 ec_funded: 1 editor: - first_name: David P. full_name: Woodruff, David P. last_name: Woodruff external_id: arxiv: - '2311.01115' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2311.01115 month: '01' oa: 1 oa_version: Preprint page: 243 - 295 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize - _id: bd9ca328-d553-11ed-ba76-dc4f890cfe62 call_identifier: H2020 grant_number: '101019564' name: The design and evaluation of modern fully dynamic data structures - _id: 34def286-11ca-11ed-8bc3-da5948e1613c grant_number: Z00422 name: Wittgenstein Award - Monika Henzinger - _id: bd9e3a2e-d553-11ed-ba76-8aa684ce17fe grant_number: 'P33775 ' name: Fast Algorithms for a Reactive Network Layer publication: Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) publication_identifier: eisbn: - '9781611977912' publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' related_material: record: - id: '15094' relation: dissertation_contains status: public status: public title: Dynamically maintaining the persistent homology of time series type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2024' ... --- _id: '15091' abstract: - lang: eng text: "Motivated by applications in the medical sciences, we study finite chromatic\r\nsets in Euclidean space from a topological perspective. Based on the persistent\r\nhomology for images, kernels and cokernels, we design provably stable\r\nhomological quantifiers that describe the geometric micro- and macro-structure\r\nof how the color classes mingle. These can be efficiently computed using\r\nchromatic variants of Delaunay and alpha complexes, and code that does these\r\ncomputations is provided." article_number: '2212.03128' article_processing_charge: No author: - first_name: Sebastiano full_name: Cultrera di Montesano, Sebastiano id: 34D2A09C-F248-11E8-B48F-1D18A9856A87 last_name: Cultrera di Montesano orcid: 0000-0001-6249-0832 - first_name: Ondrej full_name: Draganov, Ondrej id: 2B23F01E-F248-11E8-B48F-1D18A9856A87 last_name: Draganov - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Morteza full_name: Saghafian, Morteza id: f86f7148-b140-11ec-9577-95435b8df824 last_name: Saghafian citation: ama: Cultrera di Montesano S, Draganov O, Edelsbrunner H, Saghafian M. Chromatic alpha complexes. arXiv. apa: Cultrera di Montesano, S., Draganov, O., Edelsbrunner, H., & Saghafian, M. (n.d.). Chromatic alpha complexes. arXiv. chicago: Cultrera di Montesano, Sebastiano, Ondrej Draganov, Herbert Edelsbrunner, and Morteza Saghafian. “Chromatic Alpha Complexes.” ArXiv, n.d. ieee: S. Cultrera di Montesano, O. Draganov, H. Edelsbrunner, and M. Saghafian, “Chromatic alpha complexes,” arXiv. . ista: Cultrera di Montesano S, Draganov O, Edelsbrunner H, Saghafian M. Chromatic alpha complexes. arXiv, 2212.03128. mla: Cultrera di Montesano, Sebastiano, et al. “Chromatic Alpha Complexes.” ArXiv, 2212.03128. short: S. Cultrera di Montesano, O. Draganov, H. Edelsbrunner, M. Saghafian, ArXiv (n.d.). date_created: 2024-03-08T10:13:59Z date_published: 2024-02-07T00:00:00Z date_updated: 2024-03-20T09:36:56Z day: '07' department: - _id: HeEd external_id: arxiv: - '2212.03128' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2212.03128 month: '02' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted related_material: record: - id: '15094' relation: dissertation_contains status: public status: public title: Chromatic alpha complexes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2024' ... --- _id: '15171' abstract: - lang: eng text: The brain’s functionality is developed and maintained through synaptic plasticity. As synapses undergo plasticity, they also affect each other. The nature of such ‘co-dependency’ is difficult to disentangle experimentally, because multiple synapses must be monitored simultaneously. To help understand the experimentally observed phenomena, we introduce a framework that formalizes synaptic co-dependency between different connection types. The resulting model explains how inhibition can gate excitatory plasticity while neighboring excitatory–excitatory interactions determine the strength of long-term potentiation. Furthermore, we show how the interplay between excitatory and inhibitory synapses can account for the quick rise and long-term stability of a variety of synaptic weight profiles, such as orientation tuning and dendritic clustering of co-active synapses. In recurrent neuronal networks, co-dependent plasticity produces rich and stable motor cortex-like dynamics with high input sensitivity. Our results suggest an essential role for the neighborly synaptic interaction during learning, connecting micro-level physiology with network-wide phenomena. acknowledgement: We thank C. Currin, B. Podlaski and the members of the Vogels group for fruitful discussions. E.J.A. and T.P.V. were supported by a Research Project Grant from the Leverhulme Trust (RPG-2016-446; TPV), a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society (WT100000; T.P.V.), a Wellcome Trust Senior Research Fellowship (214316/Z/18/Z; T.P.V.) and a European Research Council Consolidator Grant (SYNAPSEEK, 819603; T.P.V.). For the purpose of open access, the authors have applied a CC BY public copyright license to any author accepted manuscript version arising from this submission. Open access funding provided by University of Basel. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Everton J. full_name: Agnes, Everton J. last_name: Agnes - first_name: Tim P full_name: Vogels, Tim P id: CB6FF8D2-008F-11EA-8E08-2637E6697425 last_name: Vogels orcid: 0000-0003-3295-6181 citation: ama: Agnes EJ, Vogels TP. Co-dependent excitatory and inhibitory plasticity accounts for quick, stable and long-lasting memories in biological networks. Nature Neuroscience. 2024. doi:10.1038/s41593-024-01597-4 apa: Agnes, E. J., & Vogels, T. P. (2024). Co-dependent excitatory and inhibitory plasticity accounts for quick, stable and long-lasting memories in biological networks. Nature Neuroscience. Springer Nature. https://doi.org/10.1038/s41593-024-01597-4 chicago: Agnes, Everton J., and Tim P Vogels. “Co-Dependent Excitatory and Inhibitory Plasticity Accounts for Quick, Stable and Long-Lasting Memories in Biological Networks.” Nature Neuroscience. Springer Nature, 2024. https://doi.org/10.1038/s41593-024-01597-4. ieee: E. J. Agnes and T. P. Vogels, “Co-dependent excitatory and inhibitory plasticity accounts for quick, stable and long-lasting memories in biological networks,” Nature Neuroscience. Springer Nature, 2024. ista: Agnes EJ, Vogels TP. 2024. Co-dependent excitatory and inhibitory plasticity accounts for quick, stable and long-lasting memories in biological networks. Nature Neuroscience. mla: Agnes, Everton J., and Tim P. Vogels. “Co-Dependent Excitatory and Inhibitory Plasticity Accounts for Quick, Stable and Long-Lasting Memories in Biological Networks.” Nature Neuroscience, Springer Nature, 2024, doi:10.1038/s41593-024-01597-4. short: E.J. Agnes, T.P. Vogels, Nature Neuroscience (2024). date_created: 2024-03-24T23:01:00Z date_published: 2024-03-20T00:00:00Z date_updated: 2024-03-25T07:04:05Z day: '20' department: - _id: TiVo doi: 10.1038/s41593-024-01597-4 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41593-024-01597-4 month: '03' oa: 1 oa_version: Published Version project: - _id: 0aacfa84-070f-11eb-9043-d7eb2c709234 call_identifier: H2020 grant_number: '819603' name: Learning the shape of synaptic plasticity rules for neuronal architectures and function through machine learning. publication: Nature Neuroscience publication_identifier: eissn: - 1546-1726 issn: - 1097-6256 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Co-dependent excitatory and inhibitory plasticity accounts for quick, stable and long-lasting memories in biological networks type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15170' abstract: - lang: eng text: 'The James Webb Space Telescope is revealing a new population of dust-reddened broad-line active galactic nuclei (AGN) at redshifts z ≳ 5. Here we present deep NIRSpec/Prism spectroscopy from the Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) of 15 AGN candidates selected to be compact, with red continua in the rest-frame optical but with blue slopes in the UV. From NIRCam photometry alone, they could have been dominated by dusty star formation or an AGN. Here we show that the majority of the compact red sources in UNCOVER are dust-reddened AGN: 60% show definitive evidence for broad-line Hα with a FWHM > 2000 km s −1, 20% of the current data are inconclusive, and 20% are brown dwarf stars. We propose an updated photometric criterion to select red z > 5 AGN that excludes brown dwarfs and is expected to yield >80% AGN. Remarkably, among all zphot > 5 galaxies with F277W – F444W > 1 in UNCOVER at least 33% are AGN regardless of compactness, climbing to at least 80% AGN for sources with F277W – F444W > 1.6. The confirmed AGN have black hole masses of 107–109M⊙. While their UV luminosities (−16 > MUV > −20 AB mag) are low compared to UV-selected AGN at these epochs, consistent with percent-level scattered AGN light or low levels of unobscured star formation, the inferred bolometric luminosities are typical of 107–109M⊙ black holes radiating at ∼10%–40% the Eddington limit. The number densities are surprisingly high at ∼10−5 Mpc−3 mag−1, 100 times more common than the faintest UV-selected quasars, while accounting for ∼1% of the UV-selected galaxies. While their UV faintness suggests they may not contribute strongly to reionization, their ubiquity poses challenges to models of black hole growth.' acknowledgement: J.E.G. and A.D.G acknowledge support from NSF/AAG grant No. 1007094, and J.E.G. also acknowledges support from NSF/AAG grant No. 1007052. A.Z. acknowledges support by grant No. 2020750 from the United States-Israel Binational Science Foundation (BSF) and grant No. 2109066 from the United States National Science Foundation (NSF), and by the Ministry of Science & Technology of Israel. The Cosmic Dawn Center is funded by the Danish National Research Foundation (DNRF) under grant No. 140. This work has received funding from the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number MB22.00072, as well as from the Swiss National Science Foundation (SNSF) through project grant 200020_207349. P.D. acknowledges support from the NWO grant 016.VIDI.189.162 ("ODIN") and from the European Commission's and University of Groningen's CO-FUND Rosalind Franklin program. K.G. and T.N. acknowledge support from Australian Research Council Laureate Fellowship FL180100060. H.A. and I.C. acknowledge support from CNES, focused on the JWST mission, and the Programme National Cosmology and Galaxies (PNCG) of CNRS/INSU with INP and IN2P3, cofunded by CEA and CNES. R.P.N. acknowledges funding from JWST programs GO-1933 and GO-2279. Support for this work was provided by NASA through the NASA Hubble Fellowship grant HST-HF2-51515.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. The research of C.C.W. is supported by NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. B.W. acknowledges support from JWST-GO-02561.022-A. A.J.B. acknowledges funding support from NASA/ADAP grant 21-ADAP21-0187. Support for this work was provided by The Brinson Foundation through a Brinson Prize Fellowship grant. R.P.N. acknowledges support for this work provided by NASA through the NASA Hubble Fellowship grant HST-HF2-51515.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. C.P. thanks Marsha and Ralph Schilling for the generous support of this research. article_number: '39' article_processing_charge: Yes article_type: original author: - first_name: Jenny E. full_name: Greene, Jenny E. last_name: Greene - first_name: Ivo full_name: Labbe, Ivo last_name: Labbe - first_name: Andy D. full_name: Goulding, Andy D. last_name: Goulding - first_name: Lukas J. full_name: Furtak, Lukas J. last_name: Furtak - first_name: Iryna full_name: Chemerynska, Iryna last_name: Chemerynska - first_name: Vasily full_name: Kokorev, Vasily last_name: Kokorev - first_name: Pratika full_name: Dayal, Pratika last_name: Dayal - first_name: Marta full_name: Volonteri, Marta last_name: Volonteri - first_name: Christina C. full_name: Williams, Christina C. last_name: Williams - first_name: Bingjie full_name: Wang, Bingjie last_name: Wang - first_name: David J. full_name: Setton, David J. last_name: Setton - first_name: Adam J. full_name: Burgasser, Adam J. last_name: Burgasser - first_name: Rachel full_name: Bezanson, Rachel last_name: Bezanson - first_name: Hakim full_name: Atek, Hakim last_name: Atek - first_name: Gabriel full_name: Brammer, Gabriel last_name: Brammer - first_name: Sam E. full_name: Cutler, Sam E. last_name: Cutler - first_name: Robert full_name: Feldmann, Robert last_name: Feldmann - first_name: Seiji full_name: Fujimoto, Seiji last_name: Fujimoto - first_name: Karl full_name: Glazebrook, Karl last_name: Glazebrook - first_name: Anna full_name: De Graaff, Anna last_name: De Graaff - first_name: Gourav full_name: Khullar, Gourav last_name: Khullar - first_name: Joel full_name: Leja, Joel last_name: Leja - first_name: Danilo full_name: Marchesini, Danilo last_name: Marchesini - first_name: Michael V. full_name: Maseda, Michael V. last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Tim B. full_name: Miller, Tim B. last_name: Miller - first_name: Rohan P. full_name: Naidu, Rohan P. last_name: Naidu - first_name: Themiya full_name: Nanayakkara, Themiya last_name: Nanayakkara - first_name: Pascal A. full_name: Oesch, Pascal A. last_name: Oesch - first_name: Richard full_name: Pan, Richard last_name: Pan - first_name: Casey full_name: Papovich, Casey last_name: Papovich - first_name: Sedona H. full_name: Price, Sedona H. last_name: Price - first_name: Pieter full_name: Van Dokkum, Pieter last_name: Van Dokkum - first_name: John R. full_name: Weaver, John R. last_name: Weaver - first_name: Katherine E. full_name: Whitaker, Katherine E. last_name: Whitaker - first_name: Adi full_name: Zitrin, Adi last_name: Zitrin citation: ama: Greene JE, Labbe I, Goulding AD, et al. UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5. Astrophysical Journal. 2024;964. doi:10.3847/1538-4357/ad1e5f apa: Greene, J. E., Labbe, I., Goulding, A. D., Furtak, L. J., Chemerynska, I., Kokorev, V., … Zitrin, A. (2024). UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5. Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ad1e5f chicago: Greene, Jenny E., Ivo Labbe, Andy D. Goulding, Lukas J. Furtak, Iryna Chemerynska, Vasily Kokorev, Pratika Dayal, et al. “UNCOVER Spectroscopy Confirms the Surprising Ubiquity of Active Galactic Nuclei in Red Sources at z > 5.” Astrophysical Journal. IOP Publishing, 2024. https://doi.org/10.3847/1538-4357/ad1e5f. ieee: J. E. Greene et al., “UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5,” Astrophysical Journal, vol. 964. IOP Publishing, 2024. ista: Greene JE, Labbe I, Goulding AD, Furtak LJ, Chemerynska I, Kokorev V, Dayal P, Volonteri M, Williams CC, Wang B, Setton DJ, Burgasser AJ, Bezanson R, Atek H, Brammer G, Cutler SE, Feldmann R, Fujimoto S, Glazebrook K, De Graaff A, Khullar G, Leja J, Marchesini D, Maseda MV, Matthee JJ, Miller TB, Naidu RP, Nanayakkara T, Oesch PA, Pan R, Papovich C, Price SH, Van Dokkum P, Weaver JR, Whitaker KE, Zitrin A. 2024. UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5. Astrophysical Journal. 964, 39. mla: Greene, Jenny E., et al. “UNCOVER Spectroscopy Confirms the Surprising Ubiquity of Active Galactic Nuclei in Red Sources at z > 5.” Astrophysical Journal, vol. 964, 39, IOP Publishing, 2024, doi:10.3847/1538-4357/ad1e5f. short: J.E. Greene, I. Labbe, A.D. Goulding, L.J. Furtak, I. Chemerynska, V. Kokorev, P. Dayal, M. Volonteri, C.C. Williams, B. Wang, D.J. Setton, A.J. Burgasser, R. Bezanson, H. Atek, G. Brammer, S.E. Cutler, R. Feldmann, S. Fujimoto, K. Glazebrook, A. De Graaff, G. Khullar, J. Leja, D. Marchesini, M.V. Maseda, J.J. Matthee, T.B. Miller, R.P. Naidu, T. Nanayakkara, P.A. Oesch, R. Pan, C. Papovich, S.H. Price, P. Van Dokkum, J.R. Weaver, K.E. Whitaker, A. Zitrin, Astrophysical Journal 964 (2024). date_created: 2024-03-24T23:00:59Z date_published: 2024-03-01T00:00:00Z date_updated: 2024-03-25T08:04:13Z day: '01' ddc: - '550' department: - _id: JoMa doi: 10.3847/1538-4357/ad1e5f external_id: arxiv: - '2309.05714' file: - access_level: open_access checksum: 389a880e176799d5c062ea7cb82d08c9 content_type: application/pdf creator: dernst date_created: 2024-03-25T08:02:43Z date_updated: 2024-03-25T08:02:43Z file_id: '15176' file_name: 2024_AstrophysicalJourn_Greene.pdf file_size: 2700137 relation: main_file success: 1 file_date_updated: 2024-03-25T08:02:43Z has_accepted_license: '1' intvolume: ' 964' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 964 year: '2024' ... --- _id: '15168' abstract: - lang: eng text: 'A linearly ordered (LO) k-colouring of a hypergraph is a colouring of its vertices with colours 1, … , k such that each edge contains a unique maximal colour. Deciding whether an input hypergraph admits LO k-colouring with a fixed number of colours is NP-complete (and in the special case of graphs, LO colouring coincides with the usual graph colouring). Here, we investigate the complexity of approximating the "linearly ordered chromatic number" of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform hypergraph, distinguish between the case that it is LO 3-colourable, and the case that it is not even LO 4-colourable. We prove this result by a combination of algebraic, topological, and combinatorial methods, building on and extending a topological approach for studying approximate graph colouring introduced by Krokhin, Opršal, Wrochna, and Živný (2023).' acknowledgement: "Marek Filakovský: This research was supported by Charles University (project PRIMUS/\r\n21/SCI/014), the Austrian Science Fund (FWF project P31312-N35), and MSCAfellow5_MUNI\r\n(CZ.02.01.01/00/22_010/0003229). Tamio-Vesa Nakajima: This research was funded by UKRI EP/X024431/1 and by a Clarendon Fund Scholarship. All data is provided in full in the results section of this paper. Jakub Opršal: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 101034413. Uli Wagner: This research was supported by the Austrian Science Fund (FWF project P31312-N35)." alternative_title: - LIPIcs article_number: '34' article_processing_charge: No author: - first_name: Marek full_name: Filakovský, Marek id: 3E8AF77E-F248-11E8-B48F-1D18A9856A87 last_name: Filakovský - first_name: Tamio Vesa full_name: Nakajima, Tamio Vesa last_name: Nakajima - first_name: Jakub full_name: Opršal, Jakub id: ec596741-c539-11ec-b829-c79322a91242 last_name: Opršal orcid: 0000-0003-1245-3456 - first_name: Gianluca full_name: Tasinato, Gianluca id: 0433290C-AF8F-11E9-A4C7-F729E6697425 last_name: Tasinato - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 citation: ama: 'Filakovský M, Nakajima TV, Opršal J, Tasinato G, Wagner U. Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. In: 41st International Symposium on Theoretical Aspects of Computer Science. Vol 289. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2024. doi:10.4230/LIPIcs.STACS.2024.34' apa: 'Filakovský, M., Nakajima, T. V., Opršal, J., Tasinato, G., & Wagner, U. (2024). Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. In 41st International Symposium on Theoretical Aspects of Computer Science (Vol. 289). Clermont-Ferrand, France: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2024.34' chicago: Filakovský, Marek, Tamio Vesa Nakajima, Jakub Opršal, Gianluca Tasinato, and Uli Wagner. “Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs.” In 41st International Symposium on Theoretical Aspects of Computer Science, Vol. 289. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. https://doi.org/10.4230/LIPIcs.STACS.2024.34. ieee: M. Filakovský, T. V. Nakajima, J. Opršal, G. Tasinato, and U. Wagner, “Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs,” in 41st International Symposium on Theoretical Aspects of Computer Science, Clermont-Ferrand, France, 2024, vol. 289. ista: 'Filakovský M, Nakajima TV, Opršal J, Tasinato G, Wagner U. 2024. Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. 41st International Symposium on Theoretical Aspects of Computer Science. STACS: Symposium on Theoretical Aspects of Computer Science, LIPIcs, vol. 289, 34.' mla: Filakovský, Marek, et al. “Hardness of Linearly Ordered 4-Colouring of 3-Colourable 3-Uniform Hypergraphs.” 41st International Symposium on Theoretical Aspects of Computer Science, vol. 289, 34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024, doi:10.4230/LIPIcs.STACS.2024.34. short: M. Filakovský, T.V. Nakajima, J. Opršal, G. Tasinato, U. Wagner, in:, 41st International Symposium on Theoretical Aspects of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. conference: end_date: 2024-03-14 location: Clermont-Ferrand, France name: 'STACS: Symposium on Theoretical Aspects of Computer Science' start_date: 2024-03-12 date_created: 2024-03-24T23:00:59Z date_published: 2024-03-01T00:00:00Z date_updated: 2024-03-25T07:45:54Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.STACS.2024.34 ec_funded: 1 external_id: arxiv: - '2312.12981' file: - access_level: open_access checksum: 0524d4189fd1ed08989546511343edf3 content_type: application/pdf creator: dernst date_created: 2024-03-25T07:44:30Z date_updated: 2024-03-25T07:44:30Z file_id: '15175' file_name: 2024_LIPICs_Filakovsky.pdf file_size: 927290 relation: main_file success: 1 file_date_updated: 2024-03-25T07:44:30Z has_accepted_license: '1' intvolume: ' 289' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 26611F5C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31312 name: Algorithms for Embeddings and Homotopy Theory - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: 41st International Symposium on Theoretical Aspects of Computer Science publication_identifier: eissn: - 1868-8969 isbn: - '9783959773119' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 289 year: '2024' ... --- _id: '15164' abstract: - lang: eng text: Primary implant stability, which refers to the stability of the implant during the initial healing period is a crucial factor in determining the long-term success of the implant and lays the foundation for secondary implant stability achieved through osseointegration. Factors affecting primary stability include implant design, surgical technique, and patient-specific factors like bone quality and morphology. In vivo, the cyclic nature of anatomical loading puts osteosynthesis locking screws under dynamic loads, which can lead to the formation of micro cracks and defects that slowly degrade the mechanical connection between the bone and screw, thus compromising the initial stability and secondary stability of the implant. Monotonic quasi-static loading used for testing the holding capacity of implanted screws is not well suited to capture this behavior since it cannot capture the progressive deterioration of peri‑implant bone at small displacements. In order to address this issue, this study aims to determine a critical point of loss of primary implant stability in osteosynthesis locking screws under cyclic overloading by investigating the evolution of damage, dissipated energy, and permanent deformation. A custom-made test setup was used to test implanted 2.5 mm locking screws under cyclic overloading test. For each loading cycle, maximum forces and displacement were recorded as well as initial and final cycle displacements and used to calculate damage and energy dissipation evolution. The results of this study demonstrate that for axial, shear, and mixed loading significant damage and energy dissipation can be observed at approximately 20 % of the failure force. Additionally, at this load level, permanent deformations on the screw-bone interface were found to be in the range of 50 to 150 mm which promotes osseointegration and secondary implant stability. This research can assist surgeons in making informed preoperative decisions by providing a better understanding of the critical point of loss of primary implant stability, thus improving the long-term success of the implant and overall patient satisfaction. acknowledgement: The authors declare no conflict of interest related to this study. This project was funded by the Gesellschaft fuer Forschungsfoerderung Niederoesterreich m.b.H. Life Science Call 2017 Grant No. LS17004 and Science call 2019 Dissertationen Grant No. SC19014. No ethical approval was required for this study. article_number: '104143' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Juan D. full_name: Silva-Henao, Juan D. last_name: Silva-Henao - first_name: Sophie full_name: Schober, Sophie id: 80b0a0ef-4b9f-11ec-b119-8d9d94c4a1d8 last_name: Schober - first_name: Dieter H. full_name: Pahr, Dieter H. last_name: Pahr - first_name: Andreas G. full_name: Reisinger, Andreas G. last_name: Reisinger citation: ama: Silva-Henao JD, Schober S, Pahr DH, Reisinger AG. Critical loss of primary implant stability in osteosynthesis locking screws under cyclic overloading. Medical Engineering and Physics. 2024;126. doi:10.1016/j.medengphy.2024.104143 apa: Silva-Henao, J. D., Schober, S., Pahr, D. H., & Reisinger, A. G. (2024). Critical loss of primary implant stability in osteosynthesis locking screws under cyclic overloading. Medical Engineering and Physics. Elsevier. https://doi.org/10.1016/j.medengphy.2024.104143 chicago: Silva-Henao, Juan D., Sophie Schober, Dieter H. Pahr, and Andreas G. Reisinger. “Critical Loss of Primary Implant Stability in Osteosynthesis Locking Screws under Cyclic Overloading.” Medical Engineering and Physics. Elsevier, 2024. https://doi.org/10.1016/j.medengphy.2024.104143. ieee: J. D. Silva-Henao, S. Schober, D. H. Pahr, and A. G. Reisinger, “Critical loss of primary implant stability in osteosynthesis locking screws under cyclic overloading,” Medical Engineering and Physics, vol. 126. Elsevier, 2024. ista: Silva-Henao JD, Schober S, Pahr DH, Reisinger AG. 2024. Critical loss of primary implant stability in osteosynthesis locking screws under cyclic overloading. Medical Engineering and Physics. 126, 104143. mla: Silva-Henao, Juan D., et al. “Critical Loss of Primary Implant Stability in Osteosynthesis Locking Screws under Cyclic Overloading.” Medical Engineering and Physics, vol. 126, 104143, Elsevier, 2024, doi:10.1016/j.medengphy.2024.104143. short: J.D. Silva-Henao, S. Schober, D.H. Pahr, A.G. Reisinger, Medical Engineering and Physics 126 (2024). date_created: 2024-03-24T23:00:58Z date_published: 2024-04-01T00:00:00Z date_updated: 2024-03-25T08:31:01Z day: '01' ddc: - '610' department: - _id: PreCl doi: 10.1016/j.medengphy.2024.104143 file: - access_level: open_access checksum: 974acbf2731e7382dcf5920ac762e551 content_type: application/pdf creator: dernst date_created: 2024-03-25T08:29:52Z date_updated: 2024-03-25T08:29:52Z file_id: '15177' file_name: 2024_MedEngineeringPhysics_SilvaHenao.pdf file_size: 10039402 relation: main_file success: 1 file_date_updated: 2024-03-25T08:29:52Z has_accepted_license: '1' intvolume: ' 126' language: - iso: eng month: '04' oa: 1 oa_version: Published Version publication: Medical Engineering and Physics publication_identifier: eissn: - 1873-4030 issn: - 1350-4533 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Critical loss of primary implant stability in osteosynthesis locking screws under cyclic overloading tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 126 year: '2024' ... --- _id: '15167' abstract: - lang: eng text: We perform a diagrammatic analysis of the energy of a mobile impurity immersed in a strongly interacting two-component Fermi gas to second order in the impurity-bath interaction. These corrections demonstrate divergent behavior in the limit of large impurity momentum. We show the fundamental processes responsible for these logarithmically divergent terms. We study the problem in the general case without any assumptions regarding the fermion-fermion interactions in the bath. We show that the divergent term can be summed up to all orders in the Fermi-Fermi interaction and that the resulting expression is equivalent to the one obtained in the few-body calculation. Finally, we provide a perturbative calculation to the second order in the Fermi-Fermi interaction, and we show the diagrams responsible for these terms. acknowledgement: We thank Félix Werner and Kris Van Houcke for interesting discussions. article_number: '033315' article_processing_charge: No article_type: original author: - first_name: Ragheed full_name: Al Hyder, Ragheed id: d1c405be-ae15-11ed-8510-ccf53278162e last_name: Al Hyder - first_name: F. full_name: Chevy, F. last_name: Chevy - first_name: X. full_name: Leyronas, X. last_name: Leyronas citation: ama: Al Hyder R, Chevy F, Leyronas X. Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy. Physical Review A. 2024;109(3). doi:10.1103/PhysRevA.109.033315 apa: Al Hyder, R., Chevy, F., & Leyronas, X. (2024). Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.109.033315 chicago: Al Hyder, Ragheed, F. Chevy, and X. Leyronas. “Exploring Beyond-Mean-Field Logarithmic Divergences in Fermi-Polaron Energy.” Physical Review A. American Physical Society, 2024. https://doi.org/10.1103/PhysRevA.109.033315. ieee: R. Al Hyder, F. Chevy, and X. Leyronas, “Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy,” Physical Review A, vol. 109, no. 3. American Physical Society, 2024. ista: Al Hyder R, Chevy F, Leyronas X. 2024. Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy. Physical Review A. 109(3), 033315. mla: Al Hyder, Ragheed, et al. “Exploring Beyond-Mean-Field Logarithmic Divergences in Fermi-Polaron Energy.” Physical Review A, vol. 109, no. 3, 033315, American Physical Society, 2024, doi:10.1103/PhysRevA.109.033315. short: R. Al Hyder, F. Chevy, X. Leyronas, Physical Review A 109 (2024). date_created: 2024-03-24T23:00:59Z date_published: 2024-03-19T00:00:00Z date_updated: 2024-03-25T07:36:55Z day: '19' department: - _id: MiLe doi: 10.1103/PhysRevA.109.033315 external_id: arxiv: - '2311.14536' intvolume: ' 109' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2311.14536 month: '03' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 109 year: '2024' ... --- _id: '15163' abstract: - lang: eng text: For some k∈Z≥0∪{∞}, we call a linear forest k-bounded if each of its components has at most k edges. We will say a (k,ℓ)-bounded linear forest decomposition of a graph G is a partition of E(G) into the edge sets of two linear forests Fk,Fℓ where Fk is k-bounded and Fℓ is ℓ-bounded. We show that the problem of deciding whether a given graph has such a decomposition is NP-complete if both k and ℓ are at least 2, NP-complete if k≥9 and ℓ=1, and is in P for (k,ℓ)=(2,1). Before this, the only known NP-complete cases were the (2,2) and (3,3) cases. Our hardness result answers a question of Bermond et al. from 1984. We also show that planar graphs of girth at least nine decompose into a linear forest and a matching, which in particular is stronger than 3-edge-colouring such graphs. acknowledgement: We wish to thank Dániel Marx and András Sebő for making us aware of the results in [8] and some clarifications on them. article_number: '113962' article_processing_charge: No article_type: original author: - first_name: Rutger full_name: Campbell, Rutger last_name: Campbell - first_name: Florian full_name: Hörsch, Florian last_name: Hörsch - first_name: Benjamin full_name: Moore, Benjamin id: 6dc1a1be-bf1c-11ed-8d2b-d044840f49d6 last_name: Moore citation: ama: Campbell R, Hörsch F, Moore B. Decompositions into two linear forests of bounded lengths. Discrete Mathematics. 2024;347(6). doi:10.1016/j.disc.2024.113962 apa: Campbell, R., Hörsch, F., & Moore, B. (2024). Decompositions into two linear forests of bounded lengths. Discrete Mathematics. Elsevier. https://doi.org/10.1016/j.disc.2024.113962 chicago: Campbell, Rutger, Florian Hörsch, and Benjamin Moore. “Decompositions into Two Linear Forests of Bounded Lengths.” Discrete Mathematics. Elsevier, 2024. https://doi.org/10.1016/j.disc.2024.113962. ieee: R. Campbell, F. Hörsch, and B. Moore, “Decompositions into two linear forests of bounded lengths,” Discrete Mathematics, vol. 347, no. 6. Elsevier, 2024. ista: Campbell R, Hörsch F, Moore B. 2024. Decompositions into two linear forests of bounded lengths. Discrete Mathematics. 347(6), 113962. mla: Campbell, Rutger, et al. “Decompositions into Two Linear Forests of Bounded Lengths.” Discrete Mathematics, vol. 347, no. 6, 113962, Elsevier, 2024, doi:10.1016/j.disc.2024.113962. short: R. Campbell, F. Hörsch, B. Moore, Discrete Mathematics 347 (2024). date_created: 2024-03-24T23:00:58Z date_published: 2024-03-19T00:00:00Z date_updated: 2024-03-25T08:09:43Z day: '19' department: - _id: MaKw doi: 10.1016/j.disc.2024.113962 external_id: arxiv: - '2301.11615' intvolume: ' 347' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2301.11615 month: '03' oa: 1 oa_version: Preprint publication: Discrete Mathematics publication_identifier: issn: - 0012-365X publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Decompositions into two linear forests of bounded lengths type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 347 year: '2024' ... --- _id: '15180' abstract: - lang: eng text: Characterizing the prevalence and properties of faint active galactic nuclei (AGNs) in the early Universe is key for understanding the formation of supermassive black holes (SMBHs) and determining their role in cosmic reionization. We perform a spectroscopic search for broad Hα emitters at z ≈ 4–6 using deep JWST/NIRCam imaging and wide field slitless spectroscopy from the EIGER and FRESCO surveys. We identify 20 Hα lines at z = 4.2–5.5 that have broad components with line widths from ∼1200–3700 km s−1, contributing ∼30%–90% of the total line flux. We interpret these broad components as being powered by accretion onto SMBHs with implied masses ∼107–8M⊙. In the UV luminosity range MUV,AGN+host = −21 to −18, we measure number densities of ≈10−5 cMpc−3. This is an order of magnitude higher than expected from extrapolating quasar UV luminosity functions (LFs). Yet, such AGN are found in only <1% of star-forming galaxies at z ∼ 5. The number density discrepancy is much lower when compared to the broad Hα LF. The SMBH mass function agrees with large cosmological simulations. In two objects, we detect complex Hα profiles that we tentatively interpret as caused by absorption signatures from dense gas fueling SMBH growth and outflows. We may be witnessing early AGN feedback that will clear dust-free pathways through which more massive blue quasars are seen. We uncover a strong correlation between reddening and the fraction of total galaxy luminosity arising from faint AGN. This implies that early SMBH growth is highly obscured and that faint AGN are only minor contributors to cosmic reionization. acknowledgement: "We thank the anonymous referee for constructive comments that helped improve the manuscript. This work is based on observations made with the NASA/ESA/CSA James Webb Space Telescope. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with program Nos. 1243 and 1895. The specific observations analyzed can be accessed via doi:10.17909/4xx0-zj76. Funded by the European Union (ERC, AGENTS, 101076224). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. R.P.N. acknowledges funding from JWST programs GO-1933 and GO-2279. Support for this work for R.P.N. was provided by NASA through the NASA Hubble Fellowship grant HST-HF2-51515.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. Support for this work for G.I. was provided by NASA through grant JWST-GO-01895 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work has received funding from the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract No. MB22.00072, as well as from the Swiss National Science Foundation (SNSF) through project grant 200020_207349. The Cosmic Dawn Center (DAWN) is funded by the Danish National Research Foundation under grant No. 140.\r\nFacility: JWST - James Webb Space Telescope, HST - Hubble Space Telescope satellite\r\nSoftware:​​​​​​​ Python, matplotlib (Hunter 2007), numpy (Harris et al. 2020), scipy (Virtanen et al. 2020), Astropy (Astropy Collaboration et al. 2013, 2018), Imfit (Erwin 2015)." article_number: '129' article_processing_charge: Yes article_type: original author: - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Rohan P. full_name: Naidu, Rohan P. last_name: Naidu - first_name: Gabriel full_name: Brammer, Gabriel last_name: Brammer - first_name: John full_name: Chisholm, John last_name: Chisholm - first_name: Anna-Christina full_name: Eilers, Anna-Christina last_name: Eilers - first_name: Andy full_name: Goulding, Andy last_name: Goulding - first_name: Jenny full_name: Greene, Jenny last_name: Greene - first_name: Daichi full_name: Kashino, Daichi last_name: Kashino - first_name: Ivo full_name: Labbe, Ivo last_name: Labbe - first_name: Simon J. full_name: Lilly, Simon J. last_name: Lilly - first_name: Ruari full_name: Mackenzie, Ruari last_name: Mackenzie - first_name: Pascal A. full_name: Oesch, Pascal A. last_name: Oesch - first_name: Andrea full_name: Weibel, Andrea last_name: Weibel - first_name: Stijn full_name: Wuyts, Stijn last_name: Wuyts - first_name: Mengyuan full_name: Xiao, Mengyuan last_name: Xiao - first_name: Rongmon full_name: Bordoloi, Rongmon last_name: Bordoloi - first_name: Rychard full_name: Bouwens, Rychard last_name: Bouwens - first_name: Pieter full_name: van Dokkum, Pieter last_name: van Dokkum - first_name: Garth full_name: Illingworth, Garth last_name: Illingworth - first_name: Ivan full_name: Kramarenko, Ivan last_name: Kramarenko - first_name: Michael V. full_name: Maseda, Michael V. last_name: Maseda - first_name: Charlotte full_name: Mason, Charlotte last_name: Mason - first_name: Romain A. full_name: Meyer, Romain A. last_name: Meyer - first_name: Erica J. full_name: Nelson, Erica J. last_name: Nelson - first_name: Naveen A. full_name: Reddy, Naveen A. last_name: Reddy - first_name: Irene full_name: Shivaei, Irene last_name: Shivaei - first_name: Robert A. full_name: Simcoe, Robert A. last_name: Simcoe - first_name: Minghao full_name: Yue, Minghao last_name: Yue citation: ama: 'Matthee JJ, Naidu RP, Brammer G, et al. Little Red Dots: An abundant population of faint active galactic nuclei at z ∼ 5 revealed by the EIGER and FRESCO JWST surveys. The Astrophysical Journal. 2024;963(2). doi:10.3847/1538-4357/ad2345' apa: 'Matthee, J. J., Naidu, R. P., Brammer, G., Chisholm, J., Eilers, A.-C., Goulding, A., … Yue, M. (2024). Little Red Dots: An abundant population of faint active galactic nuclei at z ∼ 5 revealed by the EIGER and FRESCO JWST surveys. The Astrophysical Journal. American Astronomical Society. https://doi.org/10.3847/1538-4357/ad2345' chicago: 'Matthee, Jorryt J, Rohan P. Naidu, Gabriel Brammer, John Chisholm, Anna-Christina Eilers, Andy Goulding, Jenny Greene, et al. “Little Red Dots: An Abundant Population of Faint Active Galactic Nuclei at z ∼ 5 Revealed by the EIGER and FRESCO JWST Surveys.” The Astrophysical Journal. American Astronomical Society, 2024. https://doi.org/10.3847/1538-4357/ad2345.' ieee: 'J. J. Matthee et al., “Little Red Dots: An abundant population of faint active galactic nuclei at z ∼ 5 revealed by the EIGER and FRESCO JWST surveys,” The Astrophysical Journal, vol. 963, no. 2. American Astronomical Society, 2024.' ista: 'Matthee JJ, Naidu RP, Brammer G, Chisholm J, Eilers A-C, Goulding A, Greene J, Kashino D, Labbe I, Lilly SJ, Mackenzie R, Oesch PA, Weibel A, Wuyts S, Xiao M, Bordoloi R, Bouwens R, van Dokkum P, Illingworth G, Kramarenko I, Maseda MV, Mason C, Meyer RA, Nelson EJ, Reddy NA, Shivaei I, Simcoe RA, Yue M. 2024. Little Red Dots: An abundant population of faint active galactic nuclei at z ∼ 5 revealed by the EIGER and FRESCO JWST surveys. The Astrophysical Journal. 963(2), 129.' mla: 'Matthee, Jorryt J., et al. “Little Red Dots: An Abundant Population of Faint Active Galactic Nuclei at z ∼ 5 Revealed by the EIGER and FRESCO JWST Surveys.” The Astrophysical Journal, vol. 963, no. 2, 129, American Astronomical Society, 2024, doi:10.3847/1538-4357/ad2345.' short: J.J. Matthee, R.P. Naidu, G. Brammer, J. Chisholm, A.-C. Eilers, A. Goulding, J. Greene, D. Kashino, I. Labbe, S.J. Lilly, R. Mackenzie, P.A. Oesch, A. Weibel, S. Wuyts, M. Xiao, R. Bordoloi, R. Bouwens, P. van Dokkum, G. Illingworth, I. Kramarenko, M.V. Maseda, C. Mason, R.A. Meyer, E.J. Nelson, N.A. Reddy, I. Shivaei, R.A. Simcoe, M. Yue, The Astrophysical Journal 963 (2024). date_created: 2024-03-25T08:54:47Z date_published: 2024-03-07T00:00:00Z date_updated: 2024-03-25T09:37:27Z day: '07' ddc: - '550' department: - _id: JoMa doi: 10.3847/1538-4357/ad2345 file: - access_level: open_access checksum: dc7af4694f9f94a551417ab49fa43edf content_type: application/pdf creator: dernst date_created: 2024-03-25T09:31:58Z date_updated: 2024-03-25T09:31:58Z file_id: '15184' file_name: 2024_AstrophysicalJourn_Matthee.pdf file_size: 6047536 relation: main_file success: 1 file_date_updated: 2024-03-25T09:31:58Z has_accepted_license: '1' intvolume: ' 963' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: bd9b2118-d553-11ed-ba76-db24564edfea grant_number: '101076224' name: Young galaxies as tracers and agents of cosmic reionization publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: American Astronomical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Little Red Dots: An abundant population of faint active galactic nuclei at z ∼ 5 revealed by the EIGER and FRESCO JWST surveys' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 963 year: '2024' ... --- _id: '15179' abstract: - lang: eng text: The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis—a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors. acknowledgement: "We thank Milaboratory (milaboratory.com) for the access to computing and storage infrastructure. We thank J. Petrasek for providing the BY-2 cell culture line. We thank Konstantin Lukyanov laboratory and Sergey Deyev laboratory for assistance with experiments.\r\nThis study was partially funded by Light Bio and Planta. The Synthetic biology Group is funded by the MRC London Institute of Medical Sciences (UKRI MC-A658-5QEA0). Cloning and luminescent assays performed in BY-2 were partially supported by RSF, project number 22-14-00400, https://rscf.ru/project/22-14-00400/. Plant transformations were funded by RFBR and MOST, project number 21-54-52004. Plant imaging experiments were funded by RSF, project number 22-74-00124, https://rscf.ru/project/22-74-00124/. Viral delivery experiments were funded by the grant PID2019-108203RB-I00 Plan Nacional I + D from the Ministerio de Ciencia e Innovación (Spain) through the Agencia Estatal de Investigación (cofinanced by the European Regional Development Fund)." article_number: adk1992 article_processing_charge: Yes article_type: original author: - first_name: Kseniia A. full_name: Palkina, Kseniia A. last_name: Palkina - first_name: Tatiana A. full_name: Karataeva, Tatiana A. last_name: Karataeva - first_name: Maxim M. full_name: Perfilov, Maxim M. last_name: Perfilov - first_name: Liliia I. full_name: Fakhranurova, Liliia I. last_name: Fakhranurova - first_name: Nadezhda M. full_name: Markina, Nadezhda M. last_name: Markina - first_name: Louisa full_name: Gonzalez Somermeyer, Louisa id: 4720D23C-F248-11E8-B48F-1D18A9856A87 last_name: Gonzalez Somermeyer orcid: 0000-0001-9139-5383 - first_name: Elena full_name: Garcia-Perez, Elena last_name: Garcia-Perez - first_name: Marta full_name: Vazquez-Vilar, Marta last_name: Vazquez-Vilar - first_name: Marta full_name: Rodriguez-Rodriguez, Marta last_name: Rodriguez-Rodriguez - first_name: Victor full_name: Vazquez-Vilriales, Victor last_name: Vazquez-Vilriales - first_name: Ekaterina S. full_name: Shakhova, Ekaterina S. last_name: Shakhova - first_name: Tatiana full_name: Mitiouchkina, Tatiana last_name: Mitiouchkina - first_name: Olga A. full_name: Belozerova, Olga A. last_name: Belozerova - first_name: Sergey I. full_name: Kovalchuk, Sergey I. last_name: Kovalchuk - first_name: Anna full_name: Alekberova, Anna last_name: Alekberova - first_name: Alena K. full_name: Malyshevskaia, Alena K. last_name: Malyshevskaia - first_name: Evgenia N. full_name: Bugaeva, Evgenia N. last_name: Bugaeva - first_name: Elena B. full_name: Guglya, Elena B. last_name: Guglya - first_name: Anastasia full_name: Balakireva, Anastasia last_name: Balakireva - first_name: Nikita full_name: Sytov, Nikita last_name: Sytov - first_name: Anastasia full_name: Bezlikhotnova, Anastasia last_name: Bezlikhotnova - first_name: Daria I. full_name: Boldyreva, Daria I. last_name: Boldyreva - first_name: Vladislav V. full_name: Babenko, Vladislav V. last_name: Babenko - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Vladimir V. full_name: Choob, Vladimir V. last_name: Choob - first_name: Diego full_name: Orzaez, Diego last_name: Orzaez - first_name: Ilia V. full_name: Yampolsky, Ilia V. last_name: Yampolsky - first_name: Alexander S. full_name: Mishin, Alexander S. last_name: Mishin - first_name: Karen S. full_name: Sarkisyan, Karen S. last_name: Sarkisyan citation: ama: Palkina KA, Karataeva TA, Perfilov MM, et al. A hybrid pathway for self-sustained luminescence. Science Advances. 2024;10(10). doi:10.1126/sciadv.adk1992 apa: Palkina, K. A., Karataeva, T. A., Perfilov, M. M., Fakhranurova, L. I., Markina, N. M., Gonzalez Somermeyer, L., … Sarkisyan, K. S. (2024). A hybrid pathway for self-sustained luminescence. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.adk1992 chicago: Palkina, Kseniia A., Tatiana A. Karataeva, Maxim M. Perfilov, Liliia I. Fakhranurova, Nadezhda M. Markina, Louisa Gonzalez Somermeyer, Elena Garcia-Perez, et al. “A Hybrid Pathway for Self-Sustained Luminescence.” Science Advances. American Association for the Advancement of Science, 2024. https://doi.org/10.1126/sciadv.adk1992. ieee: K. A. Palkina et al., “A hybrid pathway for self-sustained luminescence,” Science Advances, vol. 10, no. 10. American Association for the Advancement of Science, 2024. ista: Palkina KA, Karataeva TA, Perfilov MM, Fakhranurova LI, Markina NM, Gonzalez Somermeyer L, Garcia-Perez E, Vazquez-Vilar M, Rodriguez-Rodriguez M, Vazquez-Vilriales V, Shakhova ES, Mitiouchkina T, Belozerova OA, Kovalchuk SI, Alekberova A, Malyshevskaia AK, Bugaeva EN, Guglya EB, Balakireva A, Sytov N, Bezlikhotnova A, Boldyreva DI, Babenko VV, Kondrashov F, Choob VV, Orzaez D, Yampolsky IV, Mishin AS, Sarkisyan KS. 2024. A hybrid pathway for self-sustained luminescence. Science Advances. 10(10), adk1992. mla: Palkina, Kseniia A., et al. “A Hybrid Pathway for Self-Sustained Luminescence.” Science Advances, vol. 10, no. 10, adk1992, American Association for the Advancement of Science, 2024, doi:10.1126/sciadv.adk1992. short: K.A. Palkina, T.A. Karataeva, M.M. Perfilov, L.I. Fakhranurova, N.M. Markina, L. Gonzalez Somermeyer, E. Garcia-Perez, M. Vazquez-Vilar, M. Rodriguez-Rodriguez, V. Vazquez-Vilriales, E.S. Shakhova, T. Mitiouchkina, O.A. Belozerova, S.I. Kovalchuk, A. Alekberova, A.K. Malyshevskaia, E.N. Bugaeva, E.B. Guglya, A. Balakireva, N. Sytov, A. Bezlikhotnova, D.I. Boldyreva, V.V. Babenko, F. Kondrashov, V.V. Choob, D. Orzaez, I.V. Yampolsky, A.S. Mishin, K.S. Sarkisyan, Science Advances 10 (2024). date_created: 2024-03-25T08:54:33Z date_published: 2024-03-01T00:00:00Z date_updated: 2024-03-25T09:44:53Z day: '01' ddc: - '580' department: - _id: FyKo doi: 10.1126/sciadv.adk1992 file: - access_level: open_access checksum: a19c43b260ea0bbaf895a29712e3153c content_type: application/pdf creator: dernst date_created: 2024-03-25T09:42:10Z date_updated: 2024-03-25T09:42:10Z file_id: '15185' file_name: 2024_ScienceAdv_Palkina.pdf file_size: 1499302 relation: main_file success: 1 file_date_updated: 2024-03-25T09:42:10Z has_accepted_license: '1' intvolume: ' 10' issue: '10' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: Science Advances publication_identifier: issn: - 2375-2548 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: A hybrid pathway for self-sustained luminescence tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2024' ... --- _id: '15186' abstract: - lang: eng text: The elimination of rain evaporation in the planetary boundary layer (PBL) has been found to lead to convective self‐aggregation (CSA) even without radiative feedback, but the precise mechanisms underlying this phenomenon remain unclear. We conducted cloud‐resolving simulations with two domain sizes and progressively reduced rain evaporation in the PBL. Surprisingly, CSA only occurred when rain evaporation was almost completely removed. The additional convective heating resulting from the reduction of evaporative cooling in the moist patch was found to be the trigger, thereafter a dry subsidence intrusion into the PBL in the dry patch takes over and sets CSA in motion. Temperature and moisture anomalies oppose each other in their buoyancy effects, hence explaining the need for almost total rain evaporation removal. We also found radiative cooling and not cold pools to be the leading cause for the comparative ease of CSA to take place in the larger domain. acknowledgement: "YLH is supported by funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant 101034413. CM gratefully acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Project CLUSTER, Grant 805041). The authors warmly thank Steven Sherwood, Jiawei Bao, Bidyut Goswami, and Martin Janssens for stimulating and helpful discussions. They also thank Christopher Holloway and an anonymous reviewer for providing helpful feedback that greatly improved this manuscript.\r\n" article_number: ' e2023GL106523' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Yi-Ling full_name: Hwong, Yi-Ling id: 1217aa61-4dd1-11ec-9ac3-f2ba3f17ee22 last_name: Hwong orcid: 0000-0001-9281-3479 - first_name: Caroline J full_name: Muller, Caroline J id: f978ccb0-3f7f-11eb-b193-b0e2bd13182b last_name: Muller orcid: 0000-0001-5836-5350 citation: ama: Hwong Y-L, Muller CJ. The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation. Geophysical Research Letters. 2024;51(6). doi:10.1029/2023gl106523 apa: Hwong, Y.-L., & Muller, C. J. (2024). The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation. Geophysical Research Letters. American Geophysical Union. https://doi.org/10.1029/2023gl106523 chicago: Hwong, Yi-Ling, and Caroline J Muller. “The Unreasonable Efficiency of Total Rain Evaporation Removal in Triggering Convective Self‐aggregation.” Geophysical Research Letters. American Geophysical Union, 2024. https://doi.org/10.1029/2023gl106523. ieee: Y.-L. Hwong and C. J. Muller, “The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation,” Geophysical Research Letters, vol. 51, no. 6. American Geophysical Union, 2024. ista: Hwong Y-L, Muller CJ. 2024. The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation. Geophysical Research Letters. 51(6), e2023GL106523. mla: Hwong, Yi-Ling, and Caroline J. Muller. “The Unreasonable Efficiency of Total Rain Evaporation Removal in Triggering Convective Self‐aggregation.” Geophysical Research Letters, vol. 51, no. 6, e2023GL106523, American Geophysical Union, 2024, doi:10.1029/2023gl106523. short: Y.-L. Hwong, C.J. Muller, Geophysical Research Letters 51 (2024). date_created: 2024-03-25T10:27:30Z date_published: 2024-03-19T00:00:00Z date_updated: 2024-03-25T11:32:06Z day: '19' ddc: - '550' department: - _id: CaMu doi: 10.1029/2023gl106523 ec_funded: 1 file: - access_level: open_access checksum: eacb011091a503b9e7b748fef639ba4c content_type: application/pdf creator: dernst date_created: 2024-03-25T11:28:25Z date_updated: 2024-03-25T11:28:25Z file_id: '15187' file_name: 2024_GeophysResLetters_Hwong.pdf file_size: 1280108 relation: main_file success: 1 file_date_updated: 2024-03-25T11:28:25Z has_accepted_license: '1' intvolume: ' 51' issue: '6' keyword: - General Earth and Planetary Sciences - Geophysics language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' - _id: 629205d8-2b32-11ec-9570-e1356ff73576 call_identifier: H2020 grant_number: '805041' name: organization of CLoUdS, and implications of Tropical cyclones and for the Energetics of the tropics, in current and waRming climate publication: Geophysical Research Letters publication_identifier: eissn: - 1944-8007 issn: - 0094-8276 publication_status: published publisher: American Geophysical Union quality_controlled: '1' status: public title: The unreasonable efficiency of total rain evaporation removal in triggering convective self‐aggregation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 51 year: '2024' ... --- _id: '15181' abstract: - lang: eng text: We demonstrate the failure of the adiabatic Born-Oppenheimer approximation to describe the ground state of a quantum impurity within an ultracold Fermi gas despite substantial mass differences between the bath and impurity species. Increasing repulsion leads to the appearance of nonadiabatic couplings between the fast bath and slow impurity degrees of freedom, which reduce the parity symmetry of the latter according to the pseudo Jahn-Teller effect. The presence of this mechanism is associated to a conical intersection involving the impurity position and the inverse of the interaction strength, which acts as a synthetic dimension. We elucidate the presence of these effects via a detailed ground-state analysis involving the comparison of ab initio fully correlated simulations with effective models. Our study suggests ultracold atomic ensembles as potent emulators of complex molecular phenomena. acknowledgement: "This work has been funded by the Cluster of Excellence “Advanced Imaging of Matter” of the Deutsche Forschungsgemeinschaft (DFG) - EXC 2056 - Project ID 390715994.\r\nG.M.K. gratefully acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413." article_number: '013257' article_processing_charge: Yes article_type: original author: - first_name: A. full_name: Becker, A. last_name: Becker - first_name: Georgios full_name: Koutentakis, Georgios id: d7b23d3a-9e21-11ec-b482-f76739596b95 last_name: Koutentakis - first_name: P. full_name: Schmelcher, P. last_name: Schmelcher citation: ama: Becker A, Koutentakis G, Schmelcher P. Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions. Physical Review Research. 2024;6(1). doi:10.1103/physrevresearch.6.013257 apa: Becker, A., Koutentakis, G., & Schmelcher, P. (2024). Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.6.013257 chicago: Becker, A., Georgios Koutentakis, and P. Schmelcher. “Synthetic Dimension-Induced Pseudo Jahn-Teller Effect in One-Dimensional Confined Fermions.” Physical Review Research. American Physical Society, 2024. https://doi.org/10.1103/physrevresearch.6.013257. ieee: A. Becker, G. Koutentakis, and P. Schmelcher, “Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions,” Physical Review Research, vol. 6, no. 1. American Physical Society, 2024. ista: Becker A, Koutentakis G, Schmelcher P. 2024. Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions. Physical Review Research. 6(1), 013257. mla: Becker, A., et al. “Synthetic Dimension-Induced Pseudo Jahn-Teller Effect in One-Dimensional Confined Fermions.” Physical Review Research, vol. 6, no. 1, 013257, American Physical Society, 2024, doi:10.1103/physrevresearch.6.013257. short: A. Becker, G. Koutentakis, P. Schmelcher, Physical Review Research 6 (2024). date_created: 2024-03-25T08:57:07Z date_published: 2024-03-01T00:00:00Z date_updated: 2024-03-25T09:27:37Z day: '01' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.6.013257 ec_funded: 1 external_id: arxiv: - '2310.17995' file: - access_level: open_access checksum: 4e0e58d1f58386fb016284c84db2a300 content_type: application/pdf creator: dernst date_created: 2024-03-25T09:24:55Z date_updated: 2024-03-25T09:24:55Z file_id: '15183' file_name: 2024_PhysicalReviewResearch_Becker.pdf file_size: 2207067 relation: main_file success: 1 file_date_updated: 2024-03-25T09:24:55Z has_accepted_license: '1' intvolume: ' 6' issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2024' ... --- _id: '15182' abstract: - lang: eng text: Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high-performance materials is limited. Traditional high-temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution-based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n-type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high-performance thermoelectric materials for practical applications. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: NanoFab acknowledgement: This work was supported by the Scientific Service Units (SSU) of ISTA through resources provided by the Electron Microscopy Facility (EMF), the Lab Support Facility (LSF), and the Nanofabrication Facility (NNF). This work was financially supported by ISTA and the Werner Siemens Foundation. The USTEM Service Unit of the Technical University of Vienna is acknowledged for EBSD sample preparation and analysis. R.L.B. acknowledges the National Science Foundation for funding the mass spectrometry analysis under award DMR 1904719. J.L. is a Serra Húnter Fellow and is grateful to the ICREA Academia program and projects MICINN/FEDER PID2021-124572OB-C31 and GC 2021 SGR 01061. article_number: '2400408' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Tobias full_name: Kleinhanns, Tobias id: 8BD9DE16-AB3C-11E9-9C8C-2A03E6697425 last_name: Kleinhanns - first_name: Francesco full_name: Milillo, Francesco id: 38b830db-ea88-11ee-bf9b-929beaf79054 last_name: Milillo - first_name: Mariano full_name: Calcabrini, Mariano id: 45D7531A-F248-11E8-B48F-1D18A9856A87 last_name: Calcabrini orcid: 0000-0003-4566-5877 - first_name: Christine full_name: Fiedler, Christine id: bd3fceba-dc74-11ea-a0a7-c17f71817366 last_name: Fiedler - first_name: Sharona full_name: Horta, Sharona id: 03a7e858-01b1-11ec-8b71-99ae6c4a05bc last_name: Horta - first_name: Daniel full_name: Balazs, Daniel id: 302BADF6-85FC-11EA-9E3B-B9493DDC885E last_name: Balazs orcid: 0000-0001-7597-043X - first_name: Marissa J. full_name: Strumolo, Marissa J. last_name: Strumolo - first_name: Roger full_name: Hasler, Roger last_name: Hasler - first_name: Jordi full_name: Llorca, Jordi last_name: Llorca - first_name: Michael full_name: Tkadletz, Michael last_name: Tkadletz - first_name: Richard L. full_name: Brutchey, Richard L. last_name: Brutchey - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 citation: ama: 'Kleinhanns T, Milillo F, Calcabrini M, et al. A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se. Advanced Energy Materials. 2024. doi:10.1002/aenm.202400408' apa: 'Kleinhanns, T., Milillo, F., Calcabrini, M., Fiedler, C., Horta, S., Balazs, D., … Ibáñez, M. (2024). A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se. Advanced Energy Materials. Wiley. https://doi.org/10.1002/aenm.202400408' chicago: 'Kleinhanns, Tobias, Francesco Milillo, Mariano Calcabrini, Christine Fiedler, Sharona Horta, Daniel Balazs, Marissa J. Strumolo, et al. “A Route to High Thermoelectric Performance: Solution‐based Control of Microstructure and Composition in Ag2Se.” Advanced Energy Materials. Wiley, 2024. https://doi.org/10.1002/aenm.202400408.' ieee: 'T. Kleinhanns et al., “A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se,” Advanced Energy Materials. Wiley, 2024.' ista: 'Kleinhanns T, Milillo F, Calcabrini M, Fiedler C, Horta S, Balazs D, Strumolo MJ, Hasler R, Llorca J, Tkadletz M, Brutchey RL, Ibáñez M. 2024. A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se. Advanced Energy Materials., 2400408.' mla: 'Kleinhanns, Tobias, et al. “A Route to High Thermoelectric Performance: Solution‐based Control of Microstructure and Composition in Ag2Se.” Advanced Energy Materials, 2400408, Wiley, 2024, doi:10.1002/aenm.202400408.' short: T. Kleinhanns, F. Milillo, M. Calcabrini, C. Fiedler, S. Horta, D. Balazs, M.J. Strumolo, R. Hasler, J. Llorca, M. Tkadletz, R.L. Brutchey, M. Ibáñez, Advanced Energy Materials (2024). date_created: 2024-03-25T08:57:40Z date_published: 2024-03-13T00:00:00Z date_updated: 2024-03-25T09:21:05Z day: '13' department: - _id: MaIb - _id: LifeSc doi: 10.1002/aenm.202400408 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1002/aenm.202400408 month: '03' oa: 1 oa_version: Published Version project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: Advanced Energy Materials publication_identifier: eissn: - 1614-6840 issn: - 1614-6832 publication_status: epub_ahead publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15165' abstract: - lang: eng text: Current knowledge suggests a drought Indian monsoon (perhaps a severe one) when the El Nino Southern Oscillation and Pacific Decadal Oscillation each exhibit positive phases (a joint positive phase). For the monsoons, which are exceptions in this regard, we found northeast India often gets excess pre-monsoon rainfall. Further investigation reveals that this excess pre-monsoon rainfall is produced by the interaction of the large-scale circulation associated with the joint phase with the mountains in northeast India. We posit that a warmer troposphere, a consequence of excess rainfall over northeast India, drives a stronger monsoon circulation and enhances monsoon rainfall over central India. Hence, we argue that pre-monsoon rainfall over northeast India can be used for seasonal monsoon rainfall prediction over central India. Most importantly, its predictive value is at its peak when the Pacific Ocean exhibits a joint positive phase and the threat of extreme drought monsoon looms over India. acknowledgement: The author gratefully acknowledges ISTA for supporting this research through funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Project CLUSTER, grant agreement No. 805041). article_number: e2023GL106569 article_processing_charge: Yes article_type: original author: - first_name: Bidyut B full_name: Goswami, Bidyut B id: 3a4ac09c-6d61-11ec-bf66-884cde66b64b last_name: Goswami orcid: 0000-0001-8602-3083 citation: ama: GOSWAMI BB. A pre-monsoon signal of false alarms of Indian monsoon droughts. Geophysical Research Letters. 2024;51(5). doi:10.1029/2023GL106569 apa: GOSWAMI, B. B. (2024). A pre-monsoon signal of false alarms of Indian monsoon droughts. Geophysical Research Letters. Wiley. https://doi.org/10.1029/2023GL106569 chicago: GOSWAMI, BIDYUT B. “A Pre-Monsoon Signal of False Alarms of Indian Monsoon Droughts.” Geophysical Research Letters. Wiley, 2024. https://doi.org/10.1029/2023GL106569. ieee: B. B. GOSWAMI, “A pre-monsoon signal of false alarms of Indian monsoon droughts,” Geophysical Research Letters, vol. 51, no. 5. Wiley, 2024. ista: GOSWAMI BB. 2024. A pre-monsoon signal of false alarms of Indian monsoon droughts. Geophysical Research Letters. 51(5), e2023GL106569. mla: GOSWAMI, BIDYUT B. “A Pre-Monsoon Signal of False Alarms of Indian Monsoon Droughts.” Geophysical Research Letters, vol. 51, no. 5, e2023GL106569, Wiley, 2024, doi:10.1029/2023GL106569. short: B.B. GOSWAMI, Geophysical Research Letters 51 (2024). date_created: 2024-03-24T23:00:58Z date_published: 2024-03-16T00:00:00Z date_updated: 2024-03-25T10:00:57Z day: '16' ddc: - '550' department: - _id: CaMu doi: 10.1029/2023GL106569 ec_funded: 1 file: - access_level: open_access checksum: 243bd966aca968ec7d9e474af8639f8d content_type: application/pdf creator: dernst date_created: 2024-03-25T08:36:00Z date_updated: 2024-03-25T08:36:00Z file_id: '15178' file_name: 2024_GeophysResLetters_Goswami.pdf file_size: 2887134 relation: main_file success: 1 file_date_updated: 2024-03-25T08:36:00Z has_accepted_license: '1' intvolume: ' 51' issue: '5' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 629205d8-2b32-11ec-9570-e1356ff73576 call_identifier: H2020 grant_number: '805041' name: organization of CLoUdS, and implications of Tropical cyclones and for the Energetics of the tropics, in current and waRming climate publication: Geophysical Research Letters publication_identifier: eissn: - 1944-8007 issn: - 0094-8276 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: A pre-monsoon signal of false alarms of Indian monsoon droughts tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 51 year: '2024' ... --- _id: '15146' abstract: - lang: eng text: The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly. acknowledged_ssus: - _id: LifeSc - _id: ScienComp - _id: EM-Fac - _id: M-Shop acknowledgement: "Open Access funding provided by IST Austria. We thank Armel Nicolas and his team at the ISTA proteomics facility, Alois Schloegl, Stefano Elefante, and colleagues at the ISTA Scientific Computing facility, Tommaso Constanzo and Ludek Lovicar at the Electron Microsocpy Facility (EMF), and Thomas Menner at the Miba Machine shop for their support. We also thank Wanda Kukulski (University of Bern) as well as Darío Porley, Andreas Thader, and other members of the Schur group for helpful discussions. Matt Swulius and Jessica Heebner provided great support in using Dragonfly. We thank Dorotea Fracciolla (Art & Science) for support in figure illustration.\r\n\r\nThis research was supported by the Scientific Service Units of ISTA through resources provided by Scientific Computing, the Lab Support Facility, and the Electron Microscopy Facility. We acknowledge funding support from the following sources: Austrian Science Fund (FWF) grant P33367 (to F.K.M. Schur), the Federation of European Biochemical Societies (to F.K.M. Schur), Niederösterreich (NÖ) Fonds (to B. Zens), FWF grant E435 (to J.M. Hansen), European Research Council under the European Union’s Horizon 2020 research (grant agreement No. 724373) (to M. Sixt), and Jenny and Antti Wihuri Foundation (to J. Alanko). This publication has been made possible in part by CZI grant DAF2021-234754 and grant DOI https://doi.org/10.37921/812628ebpcwg from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation (to F.K.M. Schur)." article_number: e202309125 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Bettina full_name: Zens, Bettina id: 45FD126C-F248-11E8-B48F-1D18A9856A87 last_name: Zens - first_name: Florian full_name: Fäßler, Florian id: 404F5528-F248-11E8-B48F-1D18A9856A87 last_name: Fäßler orcid: 0000-0001-7149-769X - first_name: Jesse full_name: Hansen, Jesse id: 1063c618-6f9b-11ec-9123-f912fccded63 last_name: Hansen - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Julia full_name: Datler, Julia id: 3B12E2E6-F248-11E8-B48F-1D18A9856A87 last_name: Datler orcid: 0000-0002-3616-8580 - first_name: Victor-Valentin full_name: Hodirnau, Victor-Valentin id: 3661B498-F248-11E8-B48F-1D18A9856A87 last_name: Hodirnau - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Jonna H full_name: Alanko, Jonna H id: 2CC12E8C-F248-11E8-B48F-1D18A9856A87 last_name: Alanko orcid: 0000-0002-7698-3061 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Zens B, Fäßler F, Hansen J, et al. Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix. Journal of Cell Biology. 2024;223(6). doi:10.1083/jcb.202309125 apa: Zens, B., Fäßler, F., Hansen, J., Hauschild, R., Datler, J., Hodirnau, V.-V., … Schur, F. K. (2024). Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix. Journal of Cell Biology. Rockefeller University Press. https://doi.org/10.1083/jcb.202309125 chicago: Zens, Bettina, Florian Fäßler, Jesse Hansen, Robert Hauschild, Julia Datler, Victor-Valentin Hodirnau, Vanessa Zheden, Jonna H Alanko, Michael K Sixt, and Florian KM Schur. “Lift-out Cryo-FIBSEM and Cryo-ET Reveal the Ultrastructural Landscape of Extracellular Matrix.” Journal of Cell Biology. Rockefeller University Press, 2024. https://doi.org/10.1083/jcb.202309125. ieee: B. Zens et al., “Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix,” Journal of Cell Biology, vol. 223, no. 6. Rockefeller University Press, 2024. ista: Zens B, Fäßler F, Hansen J, Hauschild R, Datler J, Hodirnau V-V, Zheden V, Alanko JH, Sixt MK, Schur FK. 2024. Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix. Journal of Cell Biology. 223(6), e202309125. mla: Zens, Bettina, et al. “Lift-out Cryo-FIBSEM and Cryo-ET Reveal the Ultrastructural Landscape of Extracellular Matrix.” Journal of Cell Biology, vol. 223, no. 6, e202309125, Rockefeller University Press, 2024, doi:10.1083/jcb.202309125. short: B. Zens, F. Fäßler, J. Hansen, R. Hauschild, J. Datler, V.-V. Hodirnau, V. Zheden, J.H. Alanko, M.K. Sixt, F.K. Schur, Journal of Cell Biology 223 (2024). date_created: 2024-03-21T06:45:51Z date_published: 2024-03-20T00:00:00Z date_updated: 2024-03-25T13:03:57Z day: '20' ddc: - '570' department: - _id: FlSc - _id: MiSi - _id: Bio - _id: EM-Fac doi: 10.1083/jcb.202309125 ec_funded: 1 external_id: pmid: - '38506714' file: - access_level: open_access checksum: 90d1984a93660735e506c2a304bc3f73 content_type: application/pdf creator: dernst date_created: 2024-03-25T12:52:04Z date_updated: 2024-03-25T12:52:04Z file_id: '15188' file_name: 2024_JCB_Zens.pdf file_size: 11907016 relation: main_file success: 1 file_date_updated: 2024-03-25T12:52:04Z has_accepted_license: '1' intvolume: ' 223' issue: '6' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 9B954C5C-BA93-11EA-9121-9846C619BF3A grant_number: P33367 name: Structure and isoform diversity of the Arp2/3 complex - _id: 7bd318a1-9f16-11ee-852c-cc9217763180 grant_number: E435 name: In Situ Actin Structures via Hybrid Cryo-electron Microscopy - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients - _id: 059B463C-7A3F-11EA-A408-12923DDC885E name: NÖ-Fonds Preis für die Jungforscherin des Jahres am IST Austria - _id: 2615199A-B435-11E9-9278-68D0E5697425 grant_number: '21317' name: Spatiotemporal regulation of chemokine-induced signalling in leukocyte chemotaxis - _id: 62909c6f-2b32-11ec-9570-e1476aab5308 grant_number: CZI01 name: CryoMinflux-guided in-situ visual proteomics and structure determination publication: Journal of Cell Biology publication_identifier: eissn: - 1540-8140 issn: - 0021-9525 publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 223 year: '2024' ... --- _id: '14931' abstract: - lang: eng text: We prove an upper bound on the ground state energy of the dilute spin-polarized Fermi gas capturing the leading correction to the kinetic energy resulting from repulsive interactions. One of the main ingredients in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin et al. (1971) [15]. acknowledgement: A.B.L. would like to thank Johannes Agerskov and Jan Philip Solovej for valuable discussions. We thank Alessandro Giuliani for helpful discussions and for pointing out the reference [18]. Funding from the European Union's Horizon 2020 research and innovation programme under the ERC grant agreement No 694227 is acknowledged. Financial support by the Austrian Science Fund (FWF) through project number I 6427-N (as part of the SFB/TRR 352) is gratefully acknowledged. article_number: '110320' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Asbjørn Bækgaard full_name: Lauritsen, Asbjørn Bækgaard id: e1a2682f-dc8d-11ea-abe3-81da9ac728f1 last_name: Lauritsen orcid: 0000-0003-4476-2288 - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: 'Lauritsen AB, Seiringer R. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion. Journal of Functional Analysis. 2024;286(7). doi:10.1016/j.jfa.2024.110320' apa: 'Lauritsen, A. B., & Seiringer, R. (2024). Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion. Journal of Functional Analysis. Elsevier. https://doi.org/10.1016/j.jfa.2024.110320' chicago: 'Lauritsen, Asbjørn Bækgaard, and Robert Seiringer. “Ground State Energy of the Dilute Spin-Polarized Fermi Gas: Upper Bound via Cluster Expansion.” Journal of Functional Analysis. Elsevier, 2024. https://doi.org/10.1016/j.jfa.2024.110320.' ieee: 'A. B. Lauritsen and R. Seiringer, “Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion,” Journal of Functional Analysis, vol. 286, no. 7. Elsevier, 2024.' ista: 'Lauritsen AB, Seiringer R. 2024. Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion. Journal of Functional Analysis. 286(7), 110320.' mla: 'Lauritsen, Asbjørn Bækgaard, and Robert Seiringer. “Ground State Energy of the Dilute Spin-Polarized Fermi Gas: Upper Bound via Cluster Expansion.” Journal of Functional Analysis, vol. 286, no. 7, 110320, Elsevier, 2024, doi:10.1016/j.jfa.2024.110320.' short: A.B. Lauritsen, R. Seiringer, Journal of Functional Analysis 286 (2024). date_created: 2024-02-04T23:00:53Z date_published: 2024-01-24T00:00:00Z date_updated: 2024-03-28T10:54:02Z day: '24' department: - _id: RoSe doi: 10.1016/j.jfa.2024.110320 ec_funded: 1 external_id: arxiv: - '2301.04894' intvolume: ' 286' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.jfa.2024.110320 month: '01' oa: 1 oa_version: Published Version project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: bda63fe5-d553-11ed-ba76-a16e3d2f256b grant_number: I06427 name: Mathematical Challenges in BCS Theory of Superconductivity publication: Journal of Functional Analysis publication_identifier: eissn: - 1096--0783 issn: - 0022-1236 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Ground state energy of the dilute spin-polarized Fermi gas: Upper bound via cluster expansion' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 286 year: '2024' ... --- _id: '12428' abstract: - lang: eng text: The mammary gland consists of a bilayered epithelial structure with an extensively branched morphology. The majority of this epithelial tree is laid down during puberty, during which actively proliferating terminal end buds repeatedly elongate and bifurcate to form the basic structure of the ductal tree. Mammary ducts consist of a basal and luminal cell layer with a multitude of identified sub-lineages within both layers. The understanding of how these different cell lineages are cooperatively driving branching morphogenesis is a problem of crossing multiple scales, as this requires information on the macroscopic branched structure of the gland, as well as data on single-cell dynamics driving the morphogenic program. Here we describe a method to combine genetic lineage tracing with whole-gland branching analysis. Quantitative data on the global organ structure can be used to derive a model for mammary gland branching morphogenesis and provide a backbone on which the dynamics of individual cell lineages can be simulated and compared to lineage-tracing approaches. Eventually, these quantitative models and experiments allow to understand the couplings between the macroscopic shape of the mammary gland and the underlying single-cell dynamics driving branching morphogenesis. alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Colinda L.G.J. full_name: Scheele, Colinda L.G.J. last_name: Scheele citation: ama: 'Hannezo EB, Scheele CLGJ. A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland. In: Margadant C, ed. Cell Migration in Three Dimensions. Vol 2608. MIMB. Springer Nature; 2023:183-205. doi:10.1007/978-1-0716-2887-4_12' apa: Hannezo, E. B., & Scheele, C. L. G. J. (2023). A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland. In C. Margadant (Ed.), Cell Migration in Three Dimensions (Vol. 2608, pp. 183–205). Springer Nature. https://doi.org/10.1007/978-1-0716-2887-4_12 chicago: Hannezo, Edouard B, and Colinda L.G.J. Scheele. “A Guide Toward Multi-Scale and Quantitative Branching Analysis in the Mammary Gland.” In Cell Migration in Three Dimensions, edited by Coert Margadant, 2608:183–205. MIMB. Springer Nature, 2023. https://doi.org/10.1007/978-1-0716-2887-4_12. ieee: E. B. Hannezo and C. L. G. J. Scheele, “A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland,” in Cell Migration in Three Dimensions, vol. 2608, C. Margadant, Ed. Springer Nature, 2023, pp. 183–205. ista: 'Hannezo EB, Scheele CLGJ. 2023.A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland. In: Cell Migration in Three Dimensions. Methods in Molecular Biology, vol. 2608, 183–205.' mla: Hannezo, Edouard B., and Colinda L. G. J. Scheele. “A Guide Toward Multi-Scale and Quantitative Branching Analysis in the Mammary Gland.” Cell Migration in Three Dimensions, edited by Coert Margadant, vol. 2608, Springer Nature, 2023, pp. 183–205, doi:10.1007/978-1-0716-2887-4_12. short: E.B. Hannezo, C.L.G.J. Scheele, in:, C. Margadant (Ed.), Cell Migration in Three Dimensions, Springer Nature, 2023, pp. 183–205. date_created: 2023-01-29T23:00:58Z date_published: 2023-01-19T00:00:00Z date_updated: 2023-02-03T10:58:56Z day: '19' ddc: - '570' department: - _id: EdHa doi: 10.1007/978-1-0716-2887-4_12 editor: - first_name: Coert full_name: Margadant, Coert last_name: Margadant external_id: pmid: - '36653709' file: - access_level: open_access checksum: aec1b8d3ba938ddf9d8fcb777f3c38ee content_type: application/pdf creator: dernst date_created: 2023-02-03T10:56:39Z date_updated: 2023-02-03T10:56:39Z file_id: '12500' file_name: 2023_MIMB_Hannezo.pdf file_size: 826598 relation: main_file success: 1 file_date_updated: 2023-02-03T10:56:39Z has_accepted_license: '1' intvolume: ' 2608' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 183-205 pmid: 1 publication: Cell Migration in Three Dimensions publication_identifier: eisbn: - '9781071628874' eissn: - 1940-6029 isbn: - '9781071628867' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: MIMB status: public title: A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2608 year: '2023' ... --- _id: '12534' abstract: - lang: eng text: Brownian motion of a mobile impurity in a bath is affected by spin-orbit coupling (SOC). Here, we discuss a Caldeira-Leggett-type model that can be used to propose and interpret quantum simulators of this problem in cold Bose gases. First, we derive a master equation that describes the model and explore it in a one-dimensional (1D) setting. To validate the standard assumptions needed for our derivation, we analyze available experimental data without SOC; as a byproduct, this analysis suggests that the quench dynamics of the impurity is beyond the 1D Bose-polaron approach at temperatures currently accessible in a cold-atom laboratory—motion of the impurity is mainly driven by dissipation. For systems with SOC, we demonstrate that 1D spin-orbit coupling can be gauged out even in the presence of dissipation—the information about SOC is incorporated in the initial conditions. Observables sensitive to this information (such as spin densities) can be used to study formation of steady spin polarization domains during quench dynamics. acknowledgement: "We thank Rafael Barfknecht for help at the initial stages of this project; Fabian Brauneis for useful discussions; Miguel A. Garcia-March, Georgios Koutentakis, and Simeon Mistakidis\r\nfor comments on the paper. M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON)." article_number: '013029' article_processing_charge: No article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Alberto full_name: Cappellaro, Alberto id: 9d13b3cb-30a2-11eb-80dc-f772505e8660 last_name: Cappellaro orcid: 0000-0001-6110-2359 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Ghazaryan A, Cappellaro A, Lemeshko M, Volosniev A. Dissipative dynamics of an impurity with spin-orbit coupling. Physical Review Research. 2023;5(1). doi:10.1103/physrevresearch.5.013029 apa: Ghazaryan, A., Cappellaro, A., Lemeshko, M., & Volosniev, A. (2023). Dissipative dynamics of an impurity with spin-orbit coupling. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.5.013029 chicago: Ghazaryan, Areg, Alberto Cappellaro, Mikhail Lemeshko, and Artem Volosniev. “Dissipative Dynamics of an Impurity with Spin-Orbit Coupling.” Physical Review Research. American Physical Society, 2023. https://doi.org/10.1103/physrevresearch.5.013029. ieee: A. Ghazaryan, A. Cappellaro, M. Lemeshko, and A. Volosniev, “Dissipative dynamics of an impurity with spin-orbit coupling,” Physical Review Research, vol. 5, no. 1. American Physical Society, 2023. ista: Ghazaryan A, Cappellaro A, Lemeshko M, Volosniev A. 2023. Dissipative dynamics of an impurity with spin-orbit coupling. Physical Review Research. 5(1), 013029. mla: Ghazaryan, Areg, et al. “Dissipative Dynamics of an Impurity with Spin-Orbit Coupling.” Physical Review Research, vol. 5, no. 1, 013029, American Physical Society, 2023, doi:10.1103/physrevresearch.5.013029. short: A. Ghazaryan, A. Cappellaro, M. Lemeshko, A. Volosniev, Physical Review Research 5 (2023). date_created: 2023-02-10T09:02:26Z date_published: 2023-01-20T00:00:00Z date_updated: 2023-02-20T07:02:00Z day: '20' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.5.013029 ec_funded: 1 file: - access_level: open_access checksum: 6068b62874c0099628a108bb9c5c6bd2 content_type: application/pdf creator: dernst date_created: 2023-02-13T10:38:10Z date_updated: 2023-02-13T10:38:10Z file_id: '12546' file_name: 2023_PhysicalReviewResearch_Ghazaryan.pdf file_size: 865150 relation: main_file success: 1 file_date_updated: 2023-02-13T10:38:10Z has_accepted_license: '1' intvolume: ' 5' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Dissipative dynamics of an impurity with spin-orbit coupling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2023' ... --- _id: '12158' abstract: - lang: eng text: 'Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages.' acknowledgement: We thank A. Giladi for sharing mRNA abundance tables of cell types together with J. van den Berg for critical reading of the manuscript. We thank M. Bartosovic for sharing method comparison data. pK19pA-MN was a gift from Ulrich Laemmli (Addgene plasmid 86973, http://n2t.net/addgene:86973; RRID:Addgene_86973). Figure 8 is adopted from Hematopoiesis (human) diagram by A. Rad and M. Häggström under CC-BY-SA 3.0 license. This work was supported by European Research Council Advanced under grant ERC-AdG 742225-IntScOmics and Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) TOP award NWO-CW 714.016.001. The SNF (P2BSP3-174991), HFSP (LT000209/2018-L) and Marie Skłodowska-Curie Actions (798573) supported P.Z. The SNF (P2ELP3_184488) and HFSP (LT000097/2019-L) supported J.Y. and the EMBO LTF (ALTF 1197–2019) supported V.B. This work is part of the Oncode Institute, which is partly financed by the Dutch Cancer Society. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. article_processing_charge: No article_type: review author: - first_name: Peter full_name: Zeller, Peter last_name: Zeller - first_name: Jake full_name: Yeung, Jake id: 123012b2-db30-11eb-b4d8-a35840c0551b last_name: Yeung orcid: 0000-0003-1732-1559 - first_name: Helena full_name: Viñas Gaza, Helena last_name: Viñas Gaza - first_name: Buys Anton full_name: de Barbanson, Buys Anton last_name: de Barbanson - first_name: Vivek full_name: Bhardwaj, Vivek last_name: Bhardwaj - first_name: Maria full_name: Florescu, Maria last_name: Florescu - first_name: Reinier full_name: van der Linden, Reinier last_name: van der Linden - first_name: Alexander full_name: van Oudenaarden, Alexander last_name: van Oudenaarden citation: ama: Zeller P, Yeung J, Viñas Gaza H, et al. Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis. Nature Genetics. 2023;55:333-345. doi:10.1038/s41588-022-01260-3 apa: Zeller, P., Yeung, J., Viñas Gaza, H., de Barbanson, B. A., Bhardwaj, V., Florescu, M., … van Oudenaarden, A. (2023). Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis. Nature Genetics. Springer Nature. https://doi.org/10.1038/s41588-022-01260-3 chicago: Zeller, Peter, Jake Yeung, Helena Viñas Gaza, Buys Anton de Barbanson, Vivek Bhardwaj, Maria Florescu, Reinier van der Linden, and Alexander van Oudenaarden. “Single-Cell SortChIC Identifies Hierarchical Chromatin Dynamics during Hematopoiesis.” Nature Genetics. Springer Nature, 2023. https://doi.org/10.1038/s41588-022-01260-3. ieee: P. Zeller et al., “Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis,” Nature Genetics, vol. 55. Springer Nature, pp. 333–345, 2023. ista: Zeller P, Yeung J, Viñas Gaza H, de Barbanson BA, Bhardwaj V, Florescu M, van der Linden R, van Oudenaarden A. 2023. Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis. Nature Genetics. 55, 333–345. mla: Zeller, Peter, et al. “Single-Cell SortChIC Identifies Hierarchical Chromatin Dynamics during Hematopoiesis.” Nature Genetics, vol. 55, Springer Nature, 2023, pp. 333–45, doi:10.1038/s41588-022-01260-3. short: P. Zeller, J. Yeung, H. Viñas Gaza, B.A. de Barbanson, V. Bhardwaj, M. Florescu, R. van der Linden, A. van Oudenaarden, Nature Genetics 55 (2023) 333–345. date_created: 2023-01-12T12:09:09Z date_published: 2023-02-01T00:00:00Z date_updated: 2023-02-27T07:48:24Z day: '01' ddc: - '570' - '000' department: - _id: ScienComp doi: 10.1038/s41588-022-01260-3 file: - access_level: open_access checksum: 6fdb8e34fbeea63edd0f2c6c2cc5823e content_type: application/pdf creator: dernst date_created: 2023-02-27T07:46:45Z date_updated: 2023-02-27T07:46:45Z file_id: '12688' file_name: 2023_NatureGenetics_Zeller.pdf file_size: 21484855 relation: main_file success: 1 file_date_updated: 2023-02-27T07:46:45Z has_accepted_license: '1' intvolume: ' 55' keyword: - Genetics language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 333-345 publication: Nature Genetics publication_identifier: eissn: - 1546-1718 issn: - 1061-4036 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 55 year: '2023' ... --- _id: '12676' abstract: - lang: eng text: Turn-based stochastic games (aka simple stochastic games) are two-player zero-sum games played on directed graphs with probabilistic transitions. The goal of player-max is to maximize the probability to reach a target state against the adversarial player-min. These games lie in NP ∩ coNP and are among the rare combinatorial problems that belong to this complexity class for which the existence of polynomial-time algorithm is a major open question. While randomized sub-exponential time algorithm exists, all known deterministic algorithms require exponential time in the worst-case. An important open question has been whether faster algorithms can be obtained parametrized by the treewidth of the game graph. Even deterministic sub-exponential time algorithm for constant treewidth turn-based stochastic games has remain elusive. In this work our main result is a deterministic algorithm to solve turn-based stochastic games that, given a game with n states, treewidth at most t, and the bit-complexity of the probabilistic transition function log D, has running time O ((tn2 log D)t log n). In particular, our algorithm is quasi-polynomial time for games with constant or poly-logarithmic treewidth. acknowledgement: This research was partially supported by the ERC CoG 863818 (ForM-SMArt) grant. article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Tobias full_name: Meggendorfer, Tobias id: b21b0c15-30a2-11eb-80dc-f13ca25802e1 last_name: Meggendorfer orcid: 0000-0002-1712-2165 - first_name: Raimundo J full_name: Saona Urmeneta, Raimundo J id: BD1DF4C4-D767-11E9-B658-BC13E6697425 last_name: Saona Urmeneta orcid: 0000-0001-5103-038X - first_name: Jakub full_name: Svoboda, Jakub id: 130759D2-D7DD-11E9-87D2-DE0DE6697425 last_name: Svoboda citation: ama: 'Chatterjee K, Meggendorfer T, Saona Urmeneta RJ, Svoboda J. Faster algorithm for turn-based stochastic games with bounded treewidth. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics; 2023:4590-4605. doi:10.1137/1.9781611977554.ch173' apa: 'Chatterjee, K., Meggendorfer, T., Saona Urmeneta, R. J., & Svoboda, J. (2023). Faster algorithm for turn-based stochastic games with bounded treewidth. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 4590–4605). Florence, Italy: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611977554.ch173' chicago: Chatterjee, Krishnendu, Tobias Meggendorfer, Raimundo J Saona Urmeneta, and Jakub Svoboda. “Faster Algorithm for Turn-Based Stochastic Games with Bounded Treewidth.” In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms, 4590–4605. Society for Industrial and Applied Mathematics, 2023. https://doi.org/10.1137/1.9781611977554.ch173. ieee: K. Chatterjee, T. Meggendorfer, R. J. Saona Urmeneta, and J. Svoboda, “Faster algorithm for turn-based stochastic games with bounded treewidth,” in Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms, Florence, Italy, 2023, pp. 4590–4605. ista: 'Chatterjee K, Meggendorfer T, Saona Urmeneta RJ, Svoboda J. 2023. Faster algorithm for turn-based stochastic games with bounded treewidth. Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms, 4590–4605.' mla: Chatterjee, Krishnendu, et al. “Faster Algorithm for Turn-Based Stochastic Games with Bounded Treewidth.” Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2023, pp. 4590–605, doi:10.1137/1.9781611977554.ch173. short: K. Chatterjee, T. Meggendorfer, R.J. Saona Urmeneta, J. Svoboda, in:, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2023, pp. 4590–4605. conference: end_date: 2023-01-25 location: Florence, Italy name: 'SODA: Symposium on Discrete Algorithms' start_date: 2023-01-22 date_created: 2023-02-24T12:20:47Z date_published: 2023-02-01T00:00:00Z date_updated: 2023-02-27T09:01:16Z day: '01' department: - _id: GradSch - _id: KrCh doi: 10.1137/1.9781611977554.ch173 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1137/1.9781611977554.ch173 month: '02' oa: 1 oa_version: Published Version page: 4590-4605 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms publication_identifier: isbn: - '9781611977554' publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' status: public title: Faster algorithm for turn-based stochastic games with bounded treewidth type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12735' abstract: - lang: eng text: "Asynchronous programming has gained significant popularity over the last decade: support for this programming pattern is available in many popular languages via libraries and native language implementations, typically in the form of coroutines or the async/await construct. Instead of programming via shared memory, this concept assumes implicit synchronization through message passing. The key data structure enabling such communication is the rendezvous channel. Roughly, a rendezvous channel is a blocking queue of size zero, so both send(e) and receive() operations wait for each other, performing a rendezvous when they meet. To optimize the message passing pattern, channels are usually equipped with a fixed-size buffer, so sends do not suspend and put elements into the buffer until its capacity is exceeded. This primitive is known as a buffered channel.\r\n\r\nThis paper presents a fast and scalable algorithm for both rendezvous and buffered channels. Similarly to modern queues, our solution is based on an infinite array with two positional counters for send(e) and receive() operations, leveraging the unconditional Fetch-And-Add instruction to update them. Yet, the algorithm requires non-trivial modifications of this classic pattern, in order to support the full channel semantics, such as buffering and cancellation of waiting requests. We compare the performance of our solution to that of the Kotlin implementation, as well as against other academic proposals, showing up to 9.8× speedup. To showcase its expressiveness and performance, we also integrated the proposed algorithm into the standard Kotlin Coroutines library, replacing the previous channel implementations." article_processing_charge: No author: - first_name: Nikita full_name: Koval, Nikita id: 2F4DB10C-F248-11E8-B48F-1D18A9856A87 last_name: Koval - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Roman full_name: Elizarov, Roman last_name: Elizarov citation: ama: 'Koval N, Alistarh D-A, Elizarov R. Fast and scalable channels in Kotlin Coroutines. In: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. Association for Computing Machinery; 2023:107-118. doi:10.1145/3572848.3577481' apa: 'Koval, N., Alistarh, D.-A., & Elizarov, R. (2023). Fast and scalable channels in Kotlin Coroutines. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (pp. 107–118). Montreal, QC, Canada: Association for Computing Machinery. https://doi.org/10.1145/3572848.3577481' chicago: Koval, Nikita, Dan-Adrian Alistarh, and Roman Elizarov. “Fast and Scalable Channels in Kotlin Coroutines.” In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 107–18. Association for Computing Machinery, 2023. https://doi.org/10.1145/3572848.3577481. ieee: N. Koval, D.-A. Alistarh, and R. Elizarov, “Fast and scalable channels in Kotlin Coroutines,” in Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Montreal, QC, Canada, 2023, pp. 107–118. ista: 'Koval N, Alistarh D-A, Elizarov R. 2023. Fast and scalable channels in Kotlin Coroutines. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP: Sympopsium on Principles and Practice of Parallel Programming, 107–118.' mla: Koval, Nikita, et al. “Fast and Scalable Channels in Kotlin Coroutines.” Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2023, pp. 107–18, doi:10.1145/3572848.3577481. short: N. Koval, D.-A. Alistarh, R. Elizarov, in:, Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2023, pp. 107–118. conference: end_date: 2023-03-01 location: Montreal, QC, Canada name: 'PPoPP: Sympopsium on Principles and Practice of Parallel Programming' start_date: 2023-02-25 date_created: 2023-03-19T23:00:58Z date_published: 2023-02-25T00:00:00Z date_updated: 2023-03-20T07:29:28Z day: '25' department: - _id: DaAl doi: 10.1145/3572848.3577481 external_id: arxiv: - '2211.04986' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2211.04986 month: '02' oa: 1 oa_version: Preprint page: 107-118 publication: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming publication_identifier: isbn: - '9798400700156' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Fast and scalable channels in Kotlin Coroutines type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12736' abstract: - lang: eng text: Although a wide variety of handcrafted concurrent data structures have been proposed, there is considerable interest in universal approaches (Universal Constructions or UCs) for building concurrent data structures. UCs (semi-)automatically convert a sequential data structure into a concurrent one. The simplest approach uses locks [3, 6] that protect a sequential data structure and allow only one process to access it at a time. However, the resulting data structure is blocking. Most work on UCs instead focuses on obtaining non-blocking progress guarantees such as obstruction-freedom, lock-freedom or wait-freedom. Many non-blocking UCs have appeared. Key examples include the seminal wait-free UC [2] by Herlihy, a NUMA-aware UC [10] by Yi et al., and an efficient UC for large objects [1] by Fatourou et al. acknowledgement: 'This work was supported by: the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Program grant: RGPIN-2019-04227, and the Canada Foundation for Innovation John R. Evans Leaders Fund (CFI-JELF) with equal support from the Ontario Research Fund CFI Leaders Opportunity Fund: 38512.' article_processing_charge: No author: - first_name: Vitaly full_name: Aksenov, Vitaly last_name: Aksenov - first_name: Trevor A full_name: Brown, Trevor A id: 3569F0A0-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Alexander full_name: Fedorov, Alexander id: 2e711909-896a-11ed-bdf8-eb0f5a2984c6 last_name: Fedorov - first_name: Ilya full_name: Kokorin, Ilya last_name: Kokorin citation: ama: Aksenov V, Brown TA, Fedorov A, Kokorin I. Unexpected Scaling in Path Copying Trees. Association for Computing Machinery; 2023:438-440. doi:10.1145/3572848.3577512 apa: 'Aksenov, V., Brown, T. A., Fedorov, A., & Kokorin, I. (2023). Unexpected scaling in path copying trees. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (pp. 438–440). Montreal, QB, Canada: Association for Computing Machinery. https://doi.org/10.1145/3572848.3577512' chicago: Aksenov, Vitaly, Trevor A Brown, Alexander Fedorov, and Ilya Kokorin. Unexpected Scaling in Path Copying Trees. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. Association for Computing Machinery, 2023. https://doi.org/10.1145/3572848.3577512. ieee: V. Aksenov, T. A. Brown, A. Fedorov, and I. Kokorin, Unexpected scaling in path copying trees. Association for Computing Machinery, 2023, pp. 438–440. ista: Aksenov V, Brown TA, Fedorov A, Kokorin I. 2023. Unexpected scaling in path copying trees, Association for Computing Machinery,p. mla: Aksenov, Vitaly, et al. “Unexpected Scaling in Path Copying Trees.” Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2023, pp. 438–40, doi:10.1145/3572848.3577512. short: V. Aksenov, T.A. Brown, A. Fedorov, I. Kokorin, Unexpected Scaling in Path Copying Trees, Association for Computing Machinery, 2023. conference: end_date: 2023-03-01 location: Montreal, QB, Canada name: 'PPoPP: Sympopsium on Principles and Practice of Parallel Programming' start_date: 2023-02-25 date_created: 2023-03-19T23:00:58Z date_published: 2023-02-25T00:00:00Z date_updated: 2023-03-20T07:57:27Z day: '25' department: - _id: DaAl - _id: GradSch doi: 10.1145/3572848.3577512 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1145/3572848.3577512 month: '02' oa: 1 oa_version: Published Version page: 438-440 publication: Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming publication_identifier: isbn: - '9798400700156' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Unexpected scaling in path copying trees type: conference_poster user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12760' abstract: - lang: eng text: "Dynamic programming (DP) is one of the fundamental paradigms in algorithm design. However,\r\nmany DP algorithms have to fill in large DP tables, represented by two-dimensional arrays, which causes at least quadratic running times and space usages. This has led to the development of improved algorithms for special cases when the DPs satisfy additional properties like, e.g., the Monge property or total monotonicity.\r\nIn this paper, we consider a new condition which assumes (among some other technical assumptions) that the rows of the DP table are monotone. Under this assumption, we introduce\r\na novel data structure for computing (1 + ϵ)-approximate DP solutions in near-linear time and\r\nspace in the static setting, and with polylogarithmic update times when the DP entries change\r\ndynamically. To the best of our knowledge, our new condition is incomparable to previous conditions and is the first which allows to derive dynamic algorithms based on existing DPs. Instead of using two-dimensional arrays to store the DP tables, we store the rows of the DP tables using monotone piecewise constant functions. This allows us to store length-n DP table rows with entries in [0, W] using only polylog(n, W) bits, and to perform operations, such as (min, +)-convolution or rounding, on these functions in polylogarithmic time.\r\nWe further present several applications of our data structure. For bicriteria versions of k-balanced graph partitioning and simultaneous source location, we obtain the first dynamic algorithms with subpolynomial update times, as well as the first static algorithms using only near-linear time and space. Additionally, we obtain the currently fastest algorithm for fully dynamic knapsack." acknowledgement: "Monika Henzinger: This project has received funding from the European Research Council\r\n(ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant\r\nagreement No. 101019564 “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)” and from the Austrian Science Fund (FWF) project “Fast Algorithms for a Reactive Network Layer (ReactNet)”, P 33775-N, with additional funding from the netidee SCIENCE Stiftung, 2020–2024.\r\nStefan Neumann: This research is supported by the the ERC Advanced Grant REBOUND (834862) and the EC H2020 RIA project SoBigData++ (871042).\r\nStefan Schmid: Research supported by Austrian Science Fund (FWF) project I 5025-N (DELTA), 2020-2024." alternative_title: - LIPIcs article_number: '36' article_processing_charge: No author: - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Stefan full_name: Neumann, Stefan last_name: Neumann - first_name: Harald full_name: Räcke, Harald last_name: Räcke - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid citation: ama: 'Henzinger MH, Neumann S, Räcke H, Schmid S. Dynamic maintenance of monotone dynamic programs and applications. In: 40th International Symposium on Theoretical Aspects of Computer Science. Vol 254. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023. doi:10.4230/LIPIcs.STACS.2023.36' apa: 'Henzinger, M. H., Neumann, S., Räcke, H., & Schmid, S. (2023). Dynamic maintenance of monotone dynamic programs and applications. In 40th International Symposium on Theoretical Aspects of Computer Science (Vol. 254). Hamburg, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2023.36' chicago: Henzinger, Monika H, Stefan Neumann, Harald Räcke, and Stefan Schmid. “Dynamic Maintenance of Monotone Dynamic Programs and Applications.” In 40th International Symposium on Theoretical Aspects of Computer Science, Vol. 254. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.STACS.2023.36. ieee: M. H. Henzinger, S. Neumann, H. Räcke, and S. Schmid, “Dynamic maintenance of monotone dynamic programs and applications,” in 40th International Symposium on Theoretical Aspects of Computer Science, Hamburg, Germany, 2023, vol. 254. ista: 'Henzinger MH, Neumann S, Räcke H, Schmid S. 2023. Dynamic maintenance of monotone dynamic programs and applications. 40th International Symposium on Theoretical Aspects of Computer Science. STACS: Symposium on Theoretical Aspects of Computer Science, LIPIcs, vol. 254, 36.' mla: Henzinger, Monika H., et al. “Dynamic Maintenance of Monotone Dynamic Programs and Applications.” 40th International Symposium on Theoretical Aspects of Computer Science, vol. 254, 36, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:10.4230/LIPIcs.STACS.2023.36. short: M.H. Henzinger, S. Neumann, H. Räcke, S. Schmid, in:, 40th International Symposium on Theoretical Aspects of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. conference: end_date: 2023-03-09 location: Hamburg, Germany name: 'STACS: Symposium on Theoretical Aspects of Computer Science' start_date: 2023-03-07 date_created: 2023-03-26T22:01:07Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-03-27T06:46:27Z day: '01' ddc: - '000' department: - _id: MoHe doi: 10.4230/LIPIcs.STACS.2023.36 external_id: arxiv: - '2301.01744' file: - access_level: open_access checksum: 22141ab8bc55188e2dfff665e5daecbd content_type: application/pdf creator: dernst date_created: 2023-03-27T06:37:22Z date_updated: 2023-03-27T06:37:22Z file_id: '12769' file_name: 2023_LIPICS_HenzingerM.pdf file_size: 872706 relation: main_file success: 1 file_date_updated: 2023-03-27T06:37:22Z has_accepted_license: '1' intvolume: ' 254' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: 40th International Symposium on Theoretical Aspects of Computer Science publication_identifier: isbn: - '9783959772662' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Dynamic maintenance of monotone dynamic programs and applications tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 254 year: '2023' ... --- _id: '12716' abstract: - lang: eng text: "The process of detecting and evaluating sensory information to guide behaviour is termed perceptual decision-making (PDM), and is critical for the ability of an organism to interact with its external world. Individuals with autism, a neurodevelopmental condition primarily characterised by social and communication difficulties, frequently exhibit altered sensory processing and PDM difficulties are widely reported. Recent technological advancements have pushed forward our understanding of the genetic changes accompanying this condition, however our understanding of how these mutations affect the function of specific neuronal circuits and bring about the corresponding behavioural changes remains limited. Here, we use an innate PDM task, the looming avoidance response (LAR) paradigm, to identify a convergent behavioural abnormality across three molecularly distinct genetic mouse models of autism (Cul3, Setd5 and Ptchd1). Although mutant mice can rapidly detect threatening visual stimuli, their responses are consistently delayed, requiring longer to initiate an appropriate response than their wild-type siblings. Mutant animals show abnormal adaptation in both their stimulus- evoked escape responses and exploratory dynamics following repeated stimulus presentations. Similarly delayed behavioural responses are observed in wild-type animals when faced with more ambiguous threats, suggesting the mutant phenotype could arise from a dysfunction in the flexible control of this PDM process.\r\nOur knowledge of the core neuronal circuitry mediating the LAR facilitated a detailed dissection of the neuronal mechanisms underlying the behavioural impairment. In vivo extracellular recording revealed that visual responses were unaffected within a key brain region for the rapid processing of visual threats, the superior colliculus (SC), indicating that the behavioural delay was unlikely to originate from sensory impairments. Delayed behavioural responses were recapitulated in the Setd5 model following optogenetic stimulation of the excitatory output neurons of the SC, which are known to mediate escape initiation through the activation of cells in the underlying dorsal periaqueductal grey (dPAG). In vitro patch-clamp recordings of dPAG cells uncovered a stark hypoexcitability phenotype in two out of the three genetic models investigated (Setd5 and Ptchd1), that in Setd5, is mediated by the misregulation of voltage-gated potassium channels. Overall, our results show that the ability to use visual information to drive efficient escape responses is impaired in three diverse genetic mouse models of autism and that, in one of the models studied, this behavioural delay likely originates from differences in the intrinsic excitability of a key subcortical node, the dPAG. Furthermore, this work showcases the use of an innate behavioural paradigm to mechanistically dissect PDM processes in autism." acknowledged_ssus: - _id: PreCl - _id: Bio - _id: LifeSc - _id: M-Shop - _id: CampIT alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Laura full_name: Burnett, Laura id: 3B717F68-F248-11E8-B48F-1D18A9856A87 last_name: Burnett orcid: 0000-0002-8937-410X citation: ama: Burnett L. To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. 2023. doi:10.15479/at:ista:12716 apa: Burnett, L. (2023). To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12716 chicago: Burnett, Laura. “To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12716. ieee: L. Burnett, “To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism,” Institute of Science and Technology Austria, 2023. ista: Burnett L. 2023. To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. Institute of Science and Technology Austria. mla: Burnett, Laura. To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12716. short: L. Burnett, To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism, Institute of Science and Technology Austria, 2023. date_created: 2023-03-08T15:19:45Z date_published: 2023-03-10T00:00:00Z date_updated: 2023-04-05T10:59:04Z day: '10' ddc: - '599' - '573' degree_awarded: PhD department: - _id: GradSch - _id: MaJö doi: 10.15479/at:ista:12716 ec_funded: 1 file: - access_level: closed checksum: 6c6d9cc2c4cdacb74e6b1047a34d7332 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: lburnett date_created: 2023-03-08T15:08:46Z date_updated: 2023-03-08T15:08:46Z file_id: '12717' file_name: Burnett_Thesis_2023.docx file_size: 23029260 relation: source_file - access_level: open_access checksum: cebc77705288bf4382db9b3541483cd0 content_type: application/pdf creator: lburnett date_created: 2023-03-08T15:08:46Z date_updated: 2023-03-08T15:08:46Z file_id: '12718' file_name: Burnett_Thesis_2023_pdfA.pdf file_size: 11959869 relation: main_file success: 1 file_date_updated: 2023-03-08T15:08:46Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '178' project: - _id: 2634E9D2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '756502' name: Circuits of Visual Attention publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 title: To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12854' abstract: - lang: eng text: "The main idea behind BUBAAK is to run multiple program analyses in parallel and use runtime monitoring and enforcement to observe and control their progress in real time. The analyses send information about (un)explored states of the program and discovered invariants to a monitor. The monitor processes the received data and can force an analysis to stop the search of certain program parts (which have already been analyzed by other analyses), or to make it utilize a program invariant found by another analysis.\r\nAt SV-COMP 2023, the implementation of data exchange between the monitor and the analyses was not yet completed, which is why BUBAAK only ran several analyses in parallel, without any coordination. Still, BUBAAK won the meta-category FalsificationOverall and placed very well in several other (sub)-categories of the competition." acknowledgement: This work was supported by the ERC-2020-AdG 10102009 grant. alternative_title: - LNCS article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Henzinger TA. Bubaak: Runtime monitoring of program verifiers. In: Tools and Algorithms for the Construction and Analysis of Systems. Vol 13994. Springer Nature; 2023:535-540. doi:10.1007/978-3-031-30820-8_32' apa: 'Chalupa, M., & Henzinger, T. A. (2023). Bubaak: Runtime monitoring of program verifiers. In Tools and Algorithms for the Construction and Analysis of Systems (Vol. 13994, pp. 535–540). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30820-8_32' chicago: 'Chalupa, Marek, and Thomas A Henzinger. “Bubaak: Runtime Monitoring of Program Verifiers.” In Tools and Algorithms for the Construction and Analysis of Systems, 13994:535–40. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30820-8_32.' ieee: 'M. Chalupa and T. A. Henzinger, “Bubaak: Runtime monitoring of program verifiers,” in Tools and Algorithms for the Construction and Analysis of Systems, Paris, France, 2023, vol. 13994, pp. 535–540.' ista: 'Chalupa M, Henzinger TA. 2023. Bubaak: Runtime monitoring of program verifiers. Tools and Algorithms for the Construction and Analysis of Systems. TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 13994, 535–540.' mla: 'Chalupa, Marek, and Thomas A. Henzinger. “Bubaak: Runtime Monitoring of Program Verifiers.” Tools and Algorithms for the Construction and Analysis of Systems, vol. 13994, Springer Nature, 2023, pp. 535–40, doi:10.1007/978-3-031-30820-8_32.' short: M. Chalupa, T.A. Henzinger, in:, Tools and Algorithms for the Construction and Analysis of Systems, Springer Nature, 2023, pp. 535–540. conference: end_date: 2023-04-27 location: Paris, France name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2023-04-22 date_created: 2023-04-20T08:22:53Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-04-25T07:02:43Z day: '20' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-30820-8_32 ec_funded: 1 file: - access_level: open_access checksum: 120d2c2a38384058ad0630fdf8288312 content_type: application/pdf creator: dernst date_created: 2023-04-25T06:58:36Z date_updated: 2023-04-25T06:58:36Z file_id: '12864' file_name: 2023_LNCS_Chalupa.pdf file_size: 16096413 relation: main_file success: 1 file_date_updated: 2023-04-25T06:58:36Z has_accepted_license: '1' intvolume: ' 13994' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 535-540 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Tools and Algorithms for the Construction and Analysis of Systems publication_identifier: eisbn: - '9783031308208' eissn: - 1611-3349 isbn: - '9783031308192' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: 'Bubaak: Runtime monitoring of program verifiers' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13994 year: '2023' ... --- _id: '12846' abstract: - lang: eng text: We present a formula for the signed area of a spherical polygon via prequantization. In contrast to the traditional formula based on the Gauss-Bonnet theorem that requires measuring angles, the new formula mimics Green's theorem and is applicable to a wider range of degenerate spherical curves and polygons. acknowledgement: The authors acknowledge Chris Wojtan for his continuous support to the present work through discussions and advice. The second author thanks Anna Sisak for a fruitful discussion on prequantum bundles. This project was funded in part by the European Research Council (ERC Consolidator Grant 101045083 CoDiNA). article_number: '2303.14555' article_processing_charge: No author: - first_name: Albert full_name: Chern, Albert last_name: Chern - first_name: Sadashige full_name: Ishida, Sadashige id: 6F7C4B96-A8E9-11E9-A7CA-09ECE5697425 last_name: Ishida citation: ama: Chern A, Ishida S. Area formula for spherical polygons via prequantization. arXiv. doi:10.48550/arXiv.2303.14555 apa: Chern, A., & Ishida, S. (n.d.). Area formula for spherical polygons via prequantization. arXiv. https://doi.org/10.48550/arXiv.2303.14555 chicago: Chern, Albert, and Sadashige Ishida. “Area Formula for Spherical Polygons via Prequantization.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2303.14555. ieee: A. Chern and S. Ishida, “Area formula for spherical polygons via prequantization,” arXiv. . ista: Chern A, Ishida S. Area formula for spherical polygons via prequantization. arXiv, 2303.14555. mla: Chern, Albert, and Sadashige Ishida. “Area Formula for Spherical Polygons via Prequantization.” ArXiv, 2303.14555, doi:10.48550/arXiv.2303.14555. short: A. Chern, S. Ishida, ArXiv (n.d.). date_created: 2023-04-18T19:16:06Z date_published: 2023-03-25T00:00:00Z date_updated: 2023-04-25T06:51:21Z day: '25' department: - _id: GradSch - _id: ChWo doi: 10.48550/arXiv.2303.14555 external_id: arxiv: - '2303.14555' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2303.14555 month: '03' oa: 1 oa_version: Preprint project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: arXiv publication_status: submitted status: public title: Area formula for spherical polygons via prequantization type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12856' abstract: - lang: eng text: "As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both.\r\n\r\nWe present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems.\r\nWe implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch." acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093. The authors would like to thank the anonymous FASE reviewers for their valuable feedback and suggestions. alternative_title: - LNCS article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Stefanie full_name: Muroya Lei, Stefanie id: a376de31-8972-11ed-ae7b-d0251c13c8ff last_name: Muroya Lei - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. Vamos: Middleware for best-effort third-party monitoring. In: Fundamental Approaches to Software Engineering. Vol 13991. Springer Nature; 2023:260-281. doi:10.1007/978-3-031-30826-0_15' apa: 'Chalupa, M., Mühlböck, F., Muroya Lei, S., & Henzinger, T. A. (2023). Vamos: Middleware for best-effort third-party monitoring. In Fundamental Approaches to Software Engineering (Vol. 13991, pp. 260–281). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30826-0_15' chicago: 'Chalupa, Marek, Fabian Mühlböck, Stefanie Muroya Lei, and Thomas A Henzinger. “Vamos: Middleware for Best-Effort Third-Party Monitoring.” In Fundamental Approaches to Software Engineering, 13991:260–81. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30826-0_15.' ieee: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, and T. A. Henzinger, “Vamos: Middleware for best-effort third-party monitoring,” in Fundamental Approaches to Software Engineering, Paris, France, 2023, vol. 13991, pp. 260–281.' ista: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. 2023. Vamos: Middleware for best-effort third-party monitoring. Fundamental Approaches to Software Engineering. FASE: Fundamental Approaches to Software Engineering, LNCS, vol. 13991, 260–281.' mla: 'Chalupa, Marek, et al. “Vamos: Middleware for Best-Effort Third-Party Monitoring.” Fundamental Approaches to Software Engineering, vol. 13991, Springer Nature, 2023, pp. 260–81, doi:10.1007/978-3-031-30826-0_15.' short: M. Chalupa, F. Mühlböck, S. Muroya Lei, T.A. Henzinger, in:, Fundamental Approaches to Software Engineering, Springer Nature, 2023, pp. 260–281. conference: end_date: 2023-04-27 location: Paris, France name: 'FASE: Fundamental Approaches to Software Engineering' start_date: 2023-04-22 date_created: 2023-04-20T08:29:42Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-04-25T07:19:07Z day: '20' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-30826-0_15 ec_funded: 1 file: - access_level: open_access checksum: 17a7c8e08be609cf2408d37ea55e322c content_type: application/pdf creator: dernst date_created: 2023-04-25T07:16:36Z date_updated: 2023-04-25T07:16:36Z file_id: '12865' file_name: 2023_LNCS_ChalupaM.pdf file_size: 580828 relation: main_file success: 1 file_date_updated: 2023-04-25T07:16:36Z has_accepted_license: '1' intvolume: ' 13991' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 260-281 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: Fundamental Approaches to Software Engineering publication_identifier: eisbn: - '9783031308260' eissn: - 1611-3349 isbn: - '9783031308253' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12407' relation: earlier_version status: public status: public title: 'Vamos: Middleware for best-effort third-party monitoring' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13991 year: '2023' ... --- _id: '12407' abstract: - lang: eng text: "As the complexity and criticality of software increase every year, so does the importance of run-time monitoring. Third-party monitoring, with limited knowledge of the monitored software, and best-effort monitoring, which keeps pace with the monitored software, are especially valuable, yet underexplored areas of run-time monitoring. Most existing monitoring frameworks do not support their combination because they either require access to the monitored code for instrumentation purposes or the processing of all observed events, or both.\r\n\r\nWe present a middleware framework, VAMOS, for the run-time monitoring of software which is explicitly designed to support third-party and best-effort scenarios. The design goals of VAMOS are (i) efficiency (keeping pace at low overhead), (ii) flexibility (the ability to monitor black-box code through a variety of different event channels, and the connectability to monitors written in different specification languages), and (iii) ease-of-use. To achieve its goals, VAMOS combines aspects of event broker and event recognition systems with aspects of stream processing systems.\r\n\r\nWe implemented a prototype toolchain for VAMOS and conducted experiments including a case study of monitoring for data races. The results indicate that VAMOS enables writing useful yet efficient monitors, is compatible with a variety of event sources and monitor specifications, and simplifies key aspects of setting up a monitoring system from scratch." acknowledgement: "This work was supported in part by the ERC-2020-AdG 101020093. \r\nThe authors would like to thank the anonymous FASE reviewers for their valuable feedback and suggestions." alternative_title: - IST Austria Technical Report article_processing_charge: No author: - first_name: Marek full_name: Chalupa, Marek id: 87e34708-d6c6-11ec-9f5b-9391e7be2463 last_name: Chalupa - first_name: Fabian full_name: Mühlböck, Fabian id: 6395C5F6-89DF-11E9-9C97-6BDFE5697425 last_name: Mühlböck orcid: 0000-0003-1548-0177 - first_name: Stefanie full_name: Muroya Lei, Stefanie id: a376de31-8972-11ed-ae7b-d0251c13c8ff last_name: Muroya Lei - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria; 2023. doi:10.15479/AT:ISTA:12407' apa: 'Chalupa, M., Mühlböck, F., Muroya Lei, S., & Henzinger, T. A. (2023). VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:12407' chicago: 'Chalupa, Marek, Fabian Mühlböck, Stefanie Muroya Lei, and Thomas A Henzinger. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:12407.' ieee: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, and T. A. Henzinger, VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023.' ista: 'Chalupa M, Mühlböck F, Muroya Lei S, Henzinger TA. 2023. VAMOS: Middleware for Best-Effort Third-Party Monitoring, Institute of Science and Technology Austria, 38p.' mla: 'Chalupa, Marek, et al. VAMOS: Middleware for Best-Effort Third-Party Monitoring. Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:12407.' short: 'M. Chalupa, F. Mühlböck, S. Muroya Lei, T.A. Henzinger, VAMOS: Middleware for Best-Effort Third-Party Monitoring, Institute of Science and Technology Austria, 2023.' date_created: 2023-01-27T03:18:08Z date_published: 2023-01-27T00:00:00Z date_updated: 2023-04-25T07:19:06Z day: '27' ddc: - '005' department: - _id: ToHe doi: 10.15479/AT:ISTA:12407 ec_funded: 1 file: - access_level: open_access checksum: 55426e463fdeafe9777fc3ff635154c7 content_type: application/pdf creator: fmuehlbo date_created: 2023-01-27T03:18:34Z date_updated: 2023-01-27T03:18:34Z file_id: '12408' file_name: main.pdf file_size: 662409 relation: main_file success: 1 file_date_updated: 2023-01-27T03:18:34Z has_accepted_license: '1' keyword: - runtime monitoring - best effort - third party language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '38' project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication_identifier: eissn: - 2664-1690 publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '12856' relation: later_version status: public status: public title: 'VAMOS: Middleware for Best-Effort Third-Party Monitoring' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13048' abstract: - lang: eng text: In this paper we introduce a pruning of the medial axis called the (λ,α)-medial axis (axλα). We prove that the (λ,α)-medial axis of a set K is stable in a Gromov-Hausdorff sense under weak assumptions. More formally we prove that if K and K′ are close in the Hausdorff (dH) sense then the (λ,α)-medial axes of K and K′ are close as metric spaces, that is the Gromov-Hausdorff distance (dGH) between the two is 1/4-Hölder in the sense that dGH (axλα(K),axλα(K′)) ≲ dH(K,K′)1/4. The Hausdorff distance between the two medial axes is also bounded, by dH (axλα(K),λα(K′)) ≲ dH(K,K′)1/2. These quantified stability results provide guarantees for practical computations of medial axes from approximations. Moreover, they provide key ingredients for studying the computability of the medial axis in the context of computable analysis. acknowledgement: "We are greatly indebted to Erin Chambers for posing a number of questions that eventually led to this paper. We would also like to thank the other organizers of the workshop on ‘Algorithms\r\nfor the medial axis’. We are also indebted to Tatiana Ezubova for helping with the search for and translation of Russian literature. The second author thanks all members of the Edelsbrunner and Datashape groups for the atmosphere in which the research was conducted.\r\nThe research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement No. 339025 GUDHI (Algorithmic Foundations of Geometry Understanding in Higher Dimensions). Supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411. The Austrian science fund (FWF) M-3073." article_processing_charge: No author: - first_name: André full_name: Lieutier, André last_name: Lieutier - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: 'Lieutier A, Wintraecken M. Hausdorff and Gromov-Hausdorff stable subsets of the medial axis. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing. Association for Computing Machinery; 2023:1768-1776. doi:10.1145/3564246.3585113' apa: 'Lieutier, A., & Wintraecken, M. (2023). Hausdorff and Gromov-Hausdorff stable subsets of the medial axis. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (pp. 1768–1776). Orlando, FL, United States: Association for Computing Machinery. https://doi.org/10.1145/3564246.3585113' chicago: Lieutier, André, and Mathijs Wintraecken. “Hausdorff and Gromov-Hausdorff Stable Subsets of the Medial Axis.” In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, 1768–76. Association for Computing Machinery, 2023. https://doi.org/10.1145/3564246.3585113. ieee: A. Lieutier and M. Wintraecken, “Hausdorff and Gromov-Hausdorff stable subsets of the medial axis,” in Proceedings of the 55th Annual ACM Symposium on Theory of Computing, Orlando, FL, United States, 2023, pp. 1768–1776. ista: 'Lieutier A, Wintraecken M. 2023. Hausdorff and Gromov-Hausdorff stable subsets of the medial axis. Proceedings of the 55th Annual ACM Symposium on Theory of Computing. STOC: Symposium on Theory of Computing, 1768–1776.' mla: Lieutier, André, and Mathijs Wintraecken. “Hausdorff and Gromov-Hausdorff Stable Subsets of the Medial Axis.” Proceedings of the 55th Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, 2023, pp. 1768–76, doi:10.1145/3564246.3585113. short: A. Lieutier, M. Wintraecken, in:, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, 2023, pp. 1768–1776. conference: end_date: 2023-06-23 location: Orlando, FL, United States name: 'STOC: Symposium on Theory of Computing' start_date: 2023-06-20 date_created: 2023-05-22T08:02:02Z date_published: 2023-06-02T00:00:00Z date_updated: 2023-05-22T08:15:19Z day: '02' department: - _id: HeEd doi: 10.1145/3564246.3585113 ec_funded: 1 external_id: arxiv: - '2303.04014' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2303.04014 month: '06' oa: 1 oa_version: Preprint page: 1768-1776 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: fc390959-9c52-11eb-aca3-afa58bd282b2 grant_number: M03073 name: Learning and triangulating manifolds via collapses publication: Proceedings of the 55th Annual ACM Symposium on Theory of Computing publication_identifier: isbn: - '9781450399135' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Hausdorff and Gromov-Hausdorff stable subsets of the medial axis type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13053' abstract: - lang: eng text: 'Deep neural networks (DNNs) often have to be compressed, via pruning and/or quantization, before they can be deployed in practical settings. In this work we propose a new compression-aware minimizer dubbed CrAM that modifies the optimization step in a principled way, in order to produce models whose local loss behavior is stable under compression operations such as pruning. Thus, dense models trained via CrAM should be compressible post-training, in a single step, without significant accuracy loss. Experimental results on standard benchmarks, such as residual networks for ImageNet classification and BERT models for language modelling, show that CrAM produces dense models that can be more accurate than the standard SGD/Adam-based baselines, but which are stable under weight pruning: specifically, we can prune models in one-shot to 70-80% sparsity with almost no accuracy loss, and to 90% with reasonable (∼1%) accuracy loss, which is competitive with gradual compression methods. Additionally, CrAM can produce sparse models which perform well for transfer learning, and it also works for semi-structured 2:4 pruning patterns supported by GPU hardware. The code for reproducing the results is available at this https URL .' acknowledged_ssus: - _id: ScienComp acknowledgement: "AP, EK, DA received funding from the European Research Council (ERC) under the European\r\nUnion’s Horizon 2020 research and innovation programme (grant agreement No 805223 ScaleML). AV acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grant ANR-21-CE48-0016 (project COMCOPT). We further acknowledge the support from the Scientific Service Units (SSU) of ISTA through resources provided by Scientific Computing (SciComp)-" article_processing_charge: No author: - first_name: Elena-Alexandra full_name: Peste, Elena-Alexandra id: 32D78294-F248-11E8-B48F-1D18A9856A87 last_name: Peste - first_name: Adrian full_name: Vladu, Adrian last_name: Vladu - first_name: Eldar full_name: Kurtic, Eldar id: 47beb3a5-07b5-11eb-9b87-b108ec578218 last_name: Kurtic - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Peste E-A, Vladu A, Kurtic E, Lampert C, Alistarh D-A. CrAM: A Compression-Aware Minimizer. In: 11th International Conference on Learning Representations .' apa: 'Peste, E.-A., Vladu, A., Kurtic, E., Lampert, C., & Alistarh, D.-A. (n.d.). CrAM: A Compression-Aware Minimizer. In 11th International Conference on Learning Representations . Kigali, Rwanda .' chicago: 'Peste, Elena-Alexandra, Adrian Vladu, Eldar Kurtic, Christoph Lampert, and Dan-Adrian Alistarh. “CrAM: A Compression-Aware Minimizer.” In 11th International Conference on Learning Representations , n.d.' ieee: 'E.-A. Peste, A. Vladu, E. Kurtic, C. Lampert, and D.-A. Alistarh, “CrAM: A Compression-Aware Minimizer,” in 11th International Conference on Learning Representations , Kigali, Rwanda .' ista: 'Peste E-A, Vladu A, Kurtic E, Lampert C, Alistarh D-A. CrAM: A Compression-Aware Minimizer. 11th International Conference on Learning Representations . ICLR: International Conference on Learning Representations.' mla: 'Peste, Elena-Alexandra, et al. “CrAM: A Compression-Aware Minimizer.” 11th International Conference on Learning Representations .' short: E.-A. Peste, A. Vladu, E. Kurtic, C. Lampert, D.-A. Alistarh, in:, 11th International Conference on Learning Representations , n.d. conference: end_date: 2023-05-05 location: 'Kigali, Rwanda ' name: 'ICLR: International Conference on Learning Representations' start_date: 2023-05-01 date_created: 2023-05-23T11:36:18Z date_published: 2023-05-01T00:00:00Z date_updated: 2023-06-01T12:54:45Z department: - _id: GradSch - _id: DaAl - _id: ChLa ec_funded: 1 external_id: arxiv: - '2207.14200' language: - iso: eng main_file_link: - open_access: '1' url: https://openreview.net/pdf?id=_eTZBs-yedr month: '05' oa: 1 oa_version: Preprint project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: '11th International Conference on Learning Representations ' publication_status: accepted quality_controlled: '1' related_material: record: - id: '13074' relation: dissertation_contains status: public status: public title: 'CrAM: A Compression-Aware Minimizer' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13143' abstract: - lang: eng text: "GIMPS and PrimeGrid are large-scale distributed projects dedicated to searching giant prime numbers, usually of special forms like Mersenne and Proth primes. The numbers in the current search-space are millions of digits large and the participating volunteers need to run resource-consuming primality tests. Once a candidate prime N has been found, the only way for another party to independently verify the primality of N used to be by repeating the expensive primality test. To avoid the need for second recomputation of each primality test, these projects have recently adopted certifying mechanisms that enable efficient verification of performed tests. However, the mechanisms presently in place only detect benign errors and there is no guarantee against adversarial behavior: a malicious volunteer can mislead the project to reject a giant prime as being non-prime.\r\nIn this paper, we propose a practical, cryptographically-sound mechanism for certifying the non-primality of Proth numbers. That is, a volunteer can – parallel to running the primality test for N – generate an efficiently verifiable proof at a little extra cost certifying that N is not prime. The interactive protocol has statistical soundness and can be made non-interactive using the Fiat-Shamir heuristic.\r\nOur approach is based on a cryptographic primitive called Proof of Exponentiation (PoE) which, for a group G, certifies that a tuple (x,y,T)∈G2×N satisfies x2T=y (Pietrzak, ITCS 2019 and Wesolowski, J. Cryptol. 2020). In particular, we show how to adapt Pietrzak’s PoE at a moderate additional cost to make it a cryptographically-sound certificate of non-primality." acknowledgement: 'We are grateful to Pavel Atnashev for clarifying via e-mail several aspects of the primality tests implementated in the PrimeGrid project. Pavel Hubáček is supported by the Czech Academy of Sciences (RVO 67985840), the Grant Agency of the Czech Republic under the grant agreement no. 19-27871X, and by the Charles University project UNCE/SCI/004. Chethan Kamath is supported by Azrieli International Postdoctoral Fellowship, ISF grants 484/18 and 1789/19, and ERC StG project SPP: Secrecy Preserving Proofs.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Charlotte full_name: Hoffmann, Charlotte id: 0f78d746-dc7d-11ea-9b2f-83f92091afe7 last_name: Hoffmann - first_name: Pavel full_name: Hubáček, Pavel last_name: Hubáček - first_name: Chethan full_name: Kamath, Chethan last_name: Kamath - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Hoffmann C, Hubáček P, Kamath C, Pietrzak KZ. Certifying giant nonprimes. In: Public-Key Cryptography - PKC 2023. Vol 13940. Springer Nature; 2023:530-553. doi:10.1007/978-3-031-31368-4_19' apa: 'Hoffmann, C., Hubáček, P., Kamath, C., & Pietrzak, K. Z. (2023). Certifying giant nonprimes. In Public-Key Cryptography - PKC 2023 (Vol. 13940, pp. 530–553). Atlanta, GA, United States: Springer Nature. https://doi.org/10.1007/978-3-031-31368-4_19' chicago: Hoffmann, Charlotte, Pavel Hubáček, Chethan Kamath, and Krzysztof Z Pietrzak. “Certifying Giant Nonprimes.” In Public-Key Cryptography - PKC 2023, 13940:530–53. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-31368-4_19. ieee: C. Hoffmann, P. Hubáček, C. Kamath, and K. Z. Pietrzak, “Certifying giant nonprimes,” in Public-Key Cryptography - PKC 2023, Atlanta, GA, United States, 2023, vol. 13940, pp. 530–553. ista: 'Hoffmann C, Hubáček P, Kamath C, Pietrzak KZ. 2023. Certifying giant nonprimes. Public-Key Cryptography - PKC 2023. PKC: Public-Key Cryptography, LNCS, vol. 13940, 530–553.' mla: Hoffmann, Charlotte, et al. “Certifying Giant Nonprimes.” Public-Key Cryptography - PKC 2023, vol. 13940, Springer Nature, 2023, pp. 530–53, doi:10.1007/978-3-031-31368-4_19. short: C. Hoffmann, P. Hubáček, C. Kamath, K.Z. Pietrzak, in:, Public-Key Cryptography - PKC 2023, Springer Nature, 2023, pp. 530–553. conference: end_date: 2023-05-10 location: Atlanta, GA, United States name: 'PKC: Public-Key Cryptography' start_date: 2023-05-07 date_created: 2023-06-18T22:00:47Z date_published: 2023-05-02T00:00:00Z date_updated: 2023-06-19T08:03:37Z day: '02' department: - _id: KrPi doi: 10.1007/978-3-031-31368-4_19 intvolume: ' 13940' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2023/238 month: '05' oa: 1 oa_version: Submitted Version page: 530-553 publication: Public-Key Cryptography - PKC 2023 publication_identifier: eissn: - 1611-3349 isbn: - '9783031313677' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Certifying giant nonprimes type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13940 year: '2023' ... --- _id: '13142' abstract: - lang: eng text: Reinforcement learning has received much attention for learning controllers of deterministic systems. We consider a learner-verifier framework for stochastic control systems and survey recent methods that formally guarantee a conjunction of reachability and safety properties. Given a property and a lower bound on the probability of the property being satisfied, our framework jointly learns a control policy and a formal certificate to ensure the satisfaction of the property with a desired probability threshold. Both the control policy and the formal certificate are continuous functions from states to reals, which are learned as parameterized neural networks. While in the deterministic case, the certificates are invariant and barrier functions for safety, or Lyapunov and ranking functions for liveness, in the stochastic case the certificates are supermartingales. For certificate verification, we use interval arithmetic abstract interpretation to bound the expected values of neural network functions. acknowledgement: This work was supported in part by the ERC-2020-AdG 101020093, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic citation: ama: 'Chatterjee K, Henzinger TA, Lechner M, Zikelic D. A learner-verifier framework for neural network controllers and certificates of stochastic systems. In: Tools and Algorithms for the Construction and Analysis of Systems . Vol 13993. Springer Nature; 2023:3-25. doi:10.1007/978-3-031-30823-9_1' apa: 'Chatterjee, K., Henzinger, T. A., Lechner, M., & Zikelic, D. (2023). A learner-verifier framework for neural network controllers and certificates of stochastic systems. In Tools and Algorithms for the Construction and Analysis of Systems (Vol. 13993, pp. 3–25). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30823-9_1' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, Mathias Lechner, and Dorde Zikelic. “A Learner-Verifier Framework for Neural Network Controllers and Certificates of Stochastic Systems.” In Tools and Algorithms for the Construction and Analysis of Systems , 13993:3–25. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30823-9_1. ieee: K. Chatterjee, T. A. Henzinger, M. Lechner, and D. Zikelic, “A learner-verifier framework for neural network controllers and certificates of stochastic systems,” in Tools and Algorithms for the Construction and Analysis of Systems , Paris, France, 2023, vol. 13993, pp. 3–25. ista: 'Chatterjee K, Henzinger TA, Lechner M, Zikelic D. 2023. A learner-verifier framework for neural network controllers and certificates of stochastic systems. Tools and Algorithms for the Construction and Analysis of Systems . TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 13993, 3–25.' mla: Chatterjee, Krishnendu, et al. “A Learner-Verifier Framework for Neural Network Controllers and Certificates of Stochastic Systems.” Tools and Algorithms for the Construction and Analysis of Systems , vol. 13993, Springer Nature, 2023, pp. 3–25, doi:10.1007/978-3-031-30823-9_1. short: K. Chatterjee, T.A. Henzinger, M. Lechner, D. Zikelic, in:, Tools and Algorithms for the Construction and Analysis of Systems , Springer Nature, 2023, pp. 3–25. conference: end_date: 2023-04-27 location: Paris, France name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2023-04-22 date_created: 2023-06-18T22:00:47Z date_published: 2023-04-22T00:00:00Z date_updated: 2023-06-19T08:30:54Z day: '22' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.1007/978-3-031-30823-9_1 ec_funded: 1 file: - access_level: open_access checksum: 3d8a8bb24d211bc83360dfc2fd744307 content_type: application/pdf creator: dernst date_created: 2023-06-19T08:29:30Z date_updated: 2023-06-19T08:29:30Z file_id: '13150' file_name: 2023_LNCS_Chatterjee.pdf file_size: 528455 relation: main_file success: 1 file_date_updated: 2023-06-19T08:29:30Z has_accepted_license: '1' intvolume: ' 13993' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 3-25 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 'Tools and Algorithms for the Construction and Analysis of Systems ' publication_identifier: eissn: - 1611-3349 isbn: - '9783031308222' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A learner-verifier framework for neural network controllers and certificates of stochastic systems tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13993 year: '2023' ... --- _id: '13141' abstract: - lang: eng text: "We automatically compute a new class of environment assumptions in two-player turn-based finite graph games which characterize an “adequate cooperation” needed from the environment to allow the system player to win. Given an ω-regular winning condition Φ for the system player, we compute an ω-regular assumption Ψ for the environment player, such that (i) every environment strategy compliant with Ψ allows the system to fulfill Φ (sufficiency), (ii) Ψ\r\n can be fulfilled by the environment for every strategy of the system (implementability), and (iii) Ψ does not prevent any cooperative strategy choice (permissiveness).\r\nFor parity games, which are canonical representations of ω-regular games, we present a polynomial-time algorithm for the symbolic computation of adequately permissive assumptions and show that our algorithm runs faster and produces better assumptions than existing approaches—both theoretically and empirically. To the best of our knowledge, for ω\r\n-regular games, we provide the first algorithm to compute sufficient and implementable environment assumptions that are also permissive." alternative_title: - LNCS article_processing_charge: No author: - first_name: Ashwani full_name: Anand, Ashwani last_name: Anand - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 - first_name: Satya Prakash full_name: Nayak, Satya Prakash last_name: Nayak - first_name: Anne Kathrin full_name: Schmuck, Anne Kathrin last_name: Schmuck citation: ama: 'Anand A, Mallik K, Nayak SP, Schmuck AK. Computing adequately permissive assumptions for synthesis. In: TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems. Vol 13994. Springer Nature; 2023:211-228. doi:10.1007/978-3-031-30820-8_15' apa: 'Anand, A., Mallik, K., Nayak, S. P., & Schmuck, A. K. (2023). Computing adequately permissive assumptions for synthesis. In TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems (Vol. 13994, pp. 211–228). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30820-8_15' chicago: 'Anand, Ashwani, Kaushik Mallik, Satya Prakash Nayak, and Anne Kathrin Schmuck. “Computing Adequately Permissive Assumptions for Synthesis.” In TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems, 13994:211–28. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30820-8_15.' ieee: 'A. Anand, K. Mallik, S. P. Nayak, and A. K. Schmuck, “Computing adequately permissive assumptions for synthesis,” in TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems, Paris, France, 2023, vol. 13994, pp. 211–228.' ista: 'Anand A, Mallik K, Nayak SP, Schmuck AK. 2023. Computing adequately permissive assumptions for synthesis. TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems. TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS, vol. 13994, 211–228.' mla: 'Anand, Ashwani, et al. “Computing Adequately Permissive Assumptions for Synthesis.” TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems, vol. 13994, Springer Nature, 2023, pp. 211–28, doi:10.1007/978-3-031-30820-8_15.' short: 'A. Anand, K. Mallik, S.P. Nayak, A.K. Schmuck, in:, TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems, Springer Nature, 2023, pp. 211–228.' conference: end_date: 2023-04-27 location: Paris, France name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2023-04-22 date_created: 2023-06-18T22:00:47Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-06-19T08:49:46Z day: '20' ddc: - '000' department: - _id: ToHe doi: 10.1007/978-3-031-30820-8_15 file: - access_level: open_access checksum: 60dcafc1b4f6f070be43bad3fe877974 content_type: application/pdf creator: dernst date_created: 2023-06-19T08:43:21Z date_updated: 2023-06-19T08:43:21Z file_id: '13151' file_name: 2023_LNCS_Anand.pdf file_size: 521425 relation: main_file success: 1 file_date_updated: 2023-06-19T08:43:21Z has_accepted_license: '1' intvolume: ' 13994' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 211-228 publication: 'TACAS 2023: Tools and Algorithms for the Construction and Analysis of Systems' publication_identifier: eissn: - 1611-3349 isbn: - '9783031308192' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Computing adequately permissive assumptions for synthesis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13994 year: '2023' ... --- _id: '12826' abstract: - lang: eng text: "During navigation, animals can infer the structure of the environment by computing the optic flow cues elicited by their own movements, and subsequently use this information to instruct proper locomotor actions. These computations require a panoramic assessment of the visual environment in order to disambiguate similar sensory experiences that may require distinct behavioral responses. The estimation of the global motion patterns is therefore essential for successful navigation. Yet, our understanding of the algorithms and implementations that enable coherent panoramic visual perception remains scarce. Here I pursue this problem by dissecting the functional aspects of interneuronal communication in the lobula plate tangential cell network in Drosophila melanogaster. The results presented in the thesis demonstrate that the basis for effective interpretation of the optic flow in this circuit are stereotyped synaptic connections that mediate the formation of distinct subnetworks, each extracting a particular pattern of global motion. \r\nFirstly, I show that gap junctions are essential for a correct interpretation of binocular motion cues by horizontal motion-sensitive cells. HS cells form electrical synapses with contralateral H2 neurons that are involved in detecting yaw rotation and translation. I developed an FlpStop-mediated mutant of a gap junction protein ShakB that disrupts these electrical synapses. While the loss of electrical synapses does not affect the tuning of the direction selectivity in HS neurons, it severely alters their sensitivity to horizontal motion in the contralateral side. These physiological changes result in an inappropriate integration of binocular motion cues in walking animals. While wild-type flies form a binocular perception of visual motion by non-linear integration of monocular optic flow cues, the mutant flies sum the monocular inputs linearly. These results indicate that rather than averaging signals in neighboring neurons, gap-junctions operate in conjunction with chemical synapses to mediate complex non-linear optic flow computations.\r\nSecondly, I show that stochastic manipulation of neuronal activity in the lobula plate tangential cell network is a powerful approach to study the neuronal implementation of optic flow-based navigation in flies. Tangential neurons form multiple subnetworks, each mediating course-stabilizing response to a particular global pattern of visual motion. Application of genetic mosaic techniques can provide sparse optogenetic activation of HS cells in numerous combinations. These distinct combinations of activated neurons drive an array of distinct behavioral responses, providing important insights into how visuomotor transformation is performed in the lobula plate tangential cell network. This approach can be complemented by stochastic silencing of tangential neurons, enabling direct assessment of the functional role of individual tangential neurons in the processing of specific visual motion patterns.\r\n\tTaken together, the findings presented in this thesis suggest that establishing specific activity patterns of tangential cells via stereotyped synaptic connectivity is a key to efficient optic flow-based navigation in Drosophila melanogaster." acknowledged_ssus: - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Victoria full_name: Pokusaeva, Victoria id: 3184041C-F248-11E8-B48F-1D18A9856A87 last_name: Pokusaeva orcid: 0000-0001-7660-444X citation: ama: Pokusaeva V. Neural control of optic flow-based navigation in Drosophila melanogaster. 2023. doi:10.15479/at:ista:12826 apa: Pokusaeva, V. (2023). Neural control of optic flow-based navigation in Drosophila melanogaster. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12826 chicago: Pokusaeva, Victoria. “Neural Control of Optic Flow-Based Navigation in Drosophila Melanogaster.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12826. ieee: V. Pokusaeva, “Neural control of optic flow-based navigation in Drosophila melanogaster,” Institute of Science and Technology Austria, 2023. ista: Pokusaeva V. 2023. Neural control of optic flow-based navigation in Drosophila melanogaster. Institute of Science and Technology Austria. mla: Pokusaeva, Victoria. Neural Control of Optic Flow-Based Navigation in Drosophila Melanogaster. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12826. short: V. Pokusaeva, Neural Control of Optic Flow-Based Navigation in Drosophila Melanogaster, Institute of Science and Technology Austria, 2023. date_created: 2023-04-14T14:56:04Z date_published: 2023-04-18T00:00:00Z date_updated: 2023-06-23T09:47:36Z day: '18' ddc: - '570' - '571' degree_awarded: PhD department: - _id: MaJö - _id: GradSch doi: 10.15479/at:ista:12826 ec_funded: 1 file: - access_level: closed checksum: 5f589a9af025f7eeebfd0c186209913e content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: vpokusae date_created: 2023-04-20T09:14:38Z date_updated: 2023-04-20T09:26:51Z file_id: '12857' file_name: Thesis_Pokusaeva.docx file_size: 14507243 relation: source_file - access_level: open_access checksum: bbeed76db45a996b4c91a9abe12ce0ec content_type: application/pdf creator: vpokusae date_created: 2023-04-20T09:14:44Z date_updated: 2023-04-20T09:14:44Z file_id: '12858' file_name: Thesis_Pokusaeva.pdf file_size: 10090711 relation: main_file success: 1 file_date_updated: 2023-04-20T09:26:51Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: '106' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 title: Neural control of optic flow-based navigation in Drosophila melanogaster tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12086' abstract: - lang: eng text: We present a simple algorithm for computing higher-order Delaunay mosaics that works in Euclidean spaces of any finite dimensions. The algorithm selects the vertices of the order-k mosaic from incrementally constructed lower-order mosaics and uses an algorithm for weighted first-order Delaunay mosaics as a black-box to construct the order-k mosaic from its vertices. Beyond this black-box, the algorithm uses only combinatorial operations, thus facilitating easy implementation. We extend this algorithm to compute higher-order α-shapes and provide open-source implementations. We present experimental results for properties of higher-order Delaunay mosaics of random point sets. acknowledgement: Open access funding provided by Austrian Science Fund (FWF). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, Grant No. 788183, from the Wittgenstein Prize, Austrian Science Fund (FWF), Grant No. Z 342-N31, and from the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, Austrian Science Fund (FWF), Grant No. I 02979-N35. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Georg F full_name: Osang, Georg F id: 464B40D6-F248-11E8-B48F-1D18A9856A87 last_name: Osang citation: ama: Edelsbrunner H, Osang GF. A simple algorithm for higher-order Delaunay mosaics and alpha shapes. Algorithmica. 2023;85:277-295. doi:10.1007/s00453-022-01027-6 apa: Edelsbrunner, H., & Osang, G. F. (2023). A simple algorithm for higher-order Delaunay mosaics and alpha shapes. Algorithmica. Springer Nature. https://doi.org/10.1007/s00453-022-01027-6 chicago: Edelsbrunner, Herbert, and Georg F Osang. “A Simple Algorithm for Higher-Order Delaunay Mosaics and Alpha Shapes.” Algorithmica. Springer Nature, 2023. https://doi.org/10.1007/s00453-022-01027-6. ieee: H. Edelsbrunner and G. F. Osang, “A simple algorithm for higher-order Delaunay mosaics and alpha shapes,” Algorithmica, vol. 85. Springer Nature, pp. 277–295, 2023. ista: Edelsbrunner H, Osang GF. 2023. A simple algorithm for higher-order Delaunay mosaics and alpha shapes. Algorithmica. 85, 277–295. mla: Edelsbrunner, Herbert, and Georg F. Osang. “A Simple Algorithm for Higher-Order Delaunay Mosaics and Alpha Shapes.” Algorithmica, vol. 85, Springer Nature, 2023, pp. 277–95, doi:10.1007/s00453-022-01027-6. short: H. Edelsbrunner, G.F. Osang, Algorithmica 85 (2023) 277–295. date_created: 2022-09-11T22:01:57Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-06-27T12:53:43Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s00453-022-01027-6 ec_funded: 1 external_id: isi: - '000846967100001' file: - access_level: open_access checksum: 71685ca5121f4c837f40c3f8eb50c915 content_type: application/pdf creator: dernst date_created: 2023-01-20T10:02:48Z date_updated: 2023-01-20T10:02:48Z file_id: '12322' file_name: 2023_Algorithmica_Edelsbrunner.pdf file_size: 911017 relation: main_file success: 1 file_date_updated: 2023-01-20T10:02:48Z has_accepted_license: '1' intvolume: ' 85' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 277-295 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Algorithmica publication_identifier: eissn: - 1432-0541 issn: - 0178-4617 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A simple algorithm for higher-order Delaunay mosaics and alpha shapes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 volume: 85 year: '2023' ... --- _id: '12104' abstract: - lang: eng text: We study ergodic decompositions of Dirichlet spaces under intertwining via unitary order isomorphisms. We show that the ergodic decomposition of a quasi-regular Dirichlet space is unique up to a unique isomorphism of the indexing space. Furthermore, every unitary order isomorphism intertwining two quasi-regular Dirichlet spaces is decomposable over their ergodic decompositions up to conjugation via an isomorphism of the corresponding indexing spaces. acknowledgement: Research supported by the Austrian Science Fund (FWF) grant F65 at the Institute of Science and Technology Austria and by the European Research Council (ERC) (Grant agreement No. 716117 awarded to Prof. Dr. Jan Maas). L.D.S. gratefully acknowledges funding of his current position by the Austrian Science Fund (FWF) through the ESPRIT Programme (Grant No. 208). M.W. gratefully acknowledges funding of his current position by the Austrian Science Fund (FWF) through the ESPRIT Programme (Grant No. 156). article_number: '9' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Lorenzo full_name: Dello Schiavo, Lorenzo id: ECEBF480-9E4F-11EA-B557-B0823DDC885E last_name: Dello Schiavo orcid: 0000-0002-9881-6870 - first_name: Melchior full_name: Wirth, Melchior id: 88644358-0A0E-11EA-8FA5-49A33DDC885E last_name: Wirth orcid: 0000-0002-0519-4241 citation: ama: Dello Schiavo L, Wirth M. Ergodic decompositions of Dirichlet forms under order isomorphisms. Journal of Evolution Equations. 2023;23(1). doi:10.1007/s00028-022-00859-7 apa: Dello Schiavo, L., & Wirth, M. (2023). Ergodic decompositions of Dirichlet forms under order isomorphisms. Journal of Evolution Equations. Springer Nature. https://doi.org/10.1007/s00028-022-00859-7 chicago: Dello Schiavo, Lorenzo, and Melchior Wirth. “Ergodic Decompositions of Dirichlet Forms under Order Isomorphisms.” Journal of Evolution Equations. Springer Nature, 2023. https://doi.org/10.1007/s00028-022-00859-7. ieee: L. Dello Schiavo and M. Wirth, “Ergodic decompositions of Dirichlet forms under order isomorphisms,” Journal of Evolution Equations, vol. 23, no. 1. Springer Nature, 2023. ista: Dello Schiavo L, Wirth M. 2023. Ergodic decompositions of Dirichlet forms under order isomorphisms. Journal of Evolution Equations. 23(1), 9. mla: Dello Schiavo, Lorenzo, and Melchior Wirth. “Ergodic Decompositions of Dirichlet Forms under Order Isomorphisms.” Journal of Evolution Equations, vol. 23, no. 1, 9, Springer Nature, 2023, doi:10.1007/s00028-022-00859-7. short: L. Dello Schiavo, M. Wirth, Journal of Evolution Equations 23 (2023). date_created: 2023-01-08T23:00:53Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-06-28T11:54:35Z day: '01' ddc: - '510' department: - _id: JaMa doi: 10.1007/s00028-022-00859-7 ec_funded: 1 external_id: isi: - '000906214600004' file: - access_level: open_access checksum: 1f34f3e2cb521033de6154f274ea3a4e content_type: application/pdf creator: dernst date_created: 2023-01-20T10:45:06Z date_updated: 2023-01-20T10:45:06Z file_id: '12325' file_name: 2023_JourEvolutionEquations_DelloSchiavo.pdf file_size: 422612 relation: main_file success: 1 file_date_updated: 2023-01-20T10:45:06Z has_accepted_license: '1' intvolume: ' 23' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: fc31cba2-9c52-11eb-aca3-ff467d239cd2 grant_number: F6504 name: Taming Complexity in Partial Differential Systems - _id: 256E75B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '716117' name: Optimal Transport and Stochastic Dynamics - _id: 34dbf174-11ca-11ed-8bc3-afe9d43d4b9c grant_number: E208 name: Configuration Spaces over Non-Smooth Spaces - _id: 34c6ea2d-11ca-11ed-8bc3-c04f3c502833 grant_number: ESP156_N name: Gradient flow techniques for quantum Markov semigroups publication: Journal of Evolution Equations publication_identifier: eissn: - 1424-3202 issn: - 1424-3199 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Ergodic decompositions of Dirichlet forms under order isomorphisms tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2023' ... --- _id: '12467' abstract: - lang: eng text: Safety and liveness are elementary concepts of computation, and the foundation of many verification paradigms. The safety-liveness classification of boolean properties characterizes whether a given property can be falsified by observing a finite prefix of an infinite computation trace (always for safety, never for liveness). In quantitative specification and verification, properties assign not truth values, but quantitative values to infinite traces (e.g., a cost, or the distance to a boolean property). We introduce quantitative safety and liveness, and we prove that our definitions induce conservative quantitative generalizations of both (1)~the safety-progress hierarchy of boolean properties and (2)~the safety-liveness decomposition of boolean properties. In particular, we show that every quantitative property can be written as the pointwise minimum of a quantitative safety property and a quantitative liveness property. Consequently, like boolean properties, also quantitative properties can be min-decomposed into safety and liveness parts, or alternatively, max-decomposed into co-safety and co-liveness parts. Moreover, quantitative properties can be approximated naturally. We prove that every quantitative property that has both safe and co-safe approximations can be monitored arbitrarily precisely by a monitor that uses only a finite number of states. acknowledgement: We thank the anonymous reviewers for their helpful comments. This work was supported in part by the ERC-2020-AdG 101020093. alternative_title: - LNCS article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Nicolas Adrien full_name: Mazzocchi, Nicolas Adrien id: b26baa86-3308-11ec-87b0-8990f34baa85 last_name: Mazzocchi - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Henzinger TA, Mazzocchi NA, Sarac NE. Quantitative safety and liveness. In: 26th International Conference Foundations of Software Science and Computation Structures. Vol 13992. Springer Nature; 2023:349-370. doi:10.1007/978-3-031-30829-1_17' apa: 'Henzinger, T. A., Mazzocchi, N. A., & Sarac, N. E. (2023). Quantitative safety and liveness. In 26th International Conference Foundations of Software Science and Computation Structures (Vol. 13992, pp. 349–370). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-30829-1_17' chicago: Henzinger, Thomas A, Nicolas Adrien Mazzocchi, and Naci E Sarac. “Quantitative Safety and Liveness.” In 26th International Conference Foundations of Software Science and Computation Structures, 13992:349–70. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-30829-1_17. ieee: T. A. Henzinger, N. A. Mazzocchi, and N. E. Sarac, “Quantitative safety and liveness,” in 26th International Conference Foundations of Software Science and Computation Structures, Paris, France, 2023, vol. 13992, pp. 349–370. ista: 'Henzinger TA, Mazzocchi NA, Sarac NE. 2023. Quantitative safety and liveness. 26th International Conference Foundations of Software Science and Computation Structures. FOSSACS: Foundations of Software Science and Computation Structures, LNCS, vol. 13992, 349–370.' mla: Henzinger, Thomas A., et al. “Quantitative Safety and Liveness.” 26th International Conference Foundations of Software Science and Computation Structures, vol. 13992, Springer Nature, 2023, pp. 349–70, doi:10.1007/978-3-031-30829-1_17. short: T.A. Henzinger, N.A. Mazzocchi, N.E. Sarac, in:, 26th International Conference Foundations of Software Science and Computation Structures, Springer Nature, 2023, pp. 349–370. conference: end_date: 2023-04-27 location: Paris, France name: 'FOSSACS: Foundations of Software Science and Computation Structures' start_date: 2023-04-22 date_created: 2023-01-31T07:23:56Z date_published: 2023-04-21T00:00:00Z date_updated: 2023-07-14T11:20:27Z day: '21' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.1007/978-3-031-30829-1_17 ec_funded: 1 external_id: arxiv: - '2301.11175' file: - access_level: open_access checksum: 981025aed580b6b27c426cb8856cf63e content_type: application/pdf creator: esarac date_created: 2023-01-31T07:22:21Z date_updated: 2023-01-31T07:22:21Z file_id: '12468' file_name: qsl.pdf file_size: 449027 relation: main_file success: 1 - access_level: open_access checksum: f16e2af1e0eb243158ab0f0fe74e7d5a content_type: application/pdf creator: dernst date_created: 2023-06-19T10:28:09Z date_updated: 2023-06-19T10:28:09Z file_id: '13153' file_name: 2023_LNCS_HenzingerT.pdf file_size: 1048171 relation: main_file success: 1 file_date_updated: 2023-06-19T10:28:09Z has_accepted_license: '1' intvolume: ' 13992' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 349-370 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 26th International Conference Foundations of Software Science and Computation Structures publication_identifier: eissn: - 1611-3349 isbn: - '9783031308284' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Quantitative safety and liveness tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 13992 year: '2023' ... --- _id: '13179' abstract: - lang: eng text: "Writing concurrent code that is both correct and efficient is notoriously difficult. Thus, programmers often prefer to use synchronization abstractions, which render code simpler and easier to reason about. Despite a wealth of work on this topic, there is still a gap between the rich semantics provided by synchronization abstractions in modern programming languages—specifically, fair FIFO ordering of synchronization requests and support for abortable operations—and frameworks for implementing it correctly and efficiently. Supporting such semantics is critical given the rising popularity of constructs for asynchronous programming, such as coroutines, which abort frequently and are cheaper to suspend and resume compared to native threads.\r\n\r\nThis paper introduces a new framework called CancellableQueueSynchronizer (CQS), which enables simple yet efficient implementations of a wide range of fair and abortable synchronization primitives: mutexes, semaphores, barriers, count-down latches, and blocking pools. Our main contribution is algorithmic, as implementing both fairness and abortability efficiently at this level of generality is non-trivial. Importantly, all our algorithms, including the CQS framework and the primitives built on top of it, come with formal proofs in the Iris framework for Coq for many of their properties. These proofs are modular, so it is easy to show correctness for new primitives implemented on top of CQS. From a practical perspective, implementation of CQS for native threads on the JVM improves throughput by up to two orders of magnitude over Java’s AbstractQueuedSynchronizer, the only practical abstraction offering similar semantics. Further, we successfully integrated CQS as a core component of the popular Kotlin Coroutines library, validating the framework’s practical impact and expressiveness in a real-world environment. In sum, CancellableQueueSynchronizer is the first framework to combine expressiveness with formal guarantees and solid practical performance. Our approach should be extensible to other languages and families of synchronization primitives." article_number: '116' article_processing_charge: No article_type: original author: - first_name: Nikita full_name: Koval, Nikita id: 2F4DB10C-F248-11E8-B48F-1D18A9856A87 last_name: Koval - first_name: Dmitry full_name: Khalanskiy, Dmitry last_name: Khalanskiy - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Koval N, Khalanskiy D, Alistarh D-A. CQS: A formally-verified framework for fair and abortable synchronization. Proceedings of the ACM on Programming Languages. 2023;7. doi:10.1145/3591230' apa: 'Koval, N., Khalanskiy, D., & Alistarh, D.-A. (2023). CQS: A formally-verified framework for fair and abortable synchronization. Proceedings of the ACM on Programming Languages. Association for Computing Machinery . https://doi.org/10.1145/3591230' chicago: 'Koval, Nikita, Dmitry Khalanskiy, and Dan-Adrian Alistarh. “CQS: A Formally-Verified Framework for Fair and Abortable Synchronization.” Proceedings of the ACM on Programming Languages. Association for Computing Machinery , 2023. https://doi.org/10.1145/3591230.' ieee: 'N. Koval, D. Khalanskiy, and D.-A. Alistarh, “CQS: A formally-verified framework for fair and abortable synchronization,” Proceedings of the ACM on Programming Languages, vol. 7. Association for Computing Machinery , 2023.' ista: 'Koval N, Khalanskiy D, Alistarh D-A. 2023. CQS: A formally-verified framework for fair and abortable synchronization. Proceedings of the ACM on Programming Languages. 7, 116.' mla: 'Koval, Nikita, et al. “CQS: A Formally-Verified Framework for Fair and Abortable Synchronization.” Proceedings of the ACM on Programming Languages, vol. 7, 116, Association for Computing Machinery , 2023, doi:10.1145/3591230.' short: N. Koval, D. Khalanskiy, D.-A. Alistarh, Proceedings of the ACM on Programming Languages 7 (2023). date_created: 2023-07-02T22:00:43Z date_published: 2023-06-06T00:00:00Z date_updated: 2023-07-17T08:43:19Z day: '06' ddc: - '000' department: - _id: DaAl doi: 10.1145/3591230 file: - access_level: open_access checksum: 5dba6e73f0ed79adbdae14d165bc2f68 content_type: application/pdf creator: alisjak date_created: 2023-07-03T13:09:39Z date_updated: 2023-07-03T13:09:39Z file_id: '13187' file_name: 2023_ACMProgram.Lang._Koval.pdf file_size: 1266773 relation: main_file success: 1 file_date_updated: 2023-07-03T13:09:39Z has_accepted_license: '1' intvolume: ' 7' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Proceedings of the ACM on Programming Languages publication_identifier: eissn: - 2475-1421 publication_status: published publisher: 'Association for Computing Machinery ' quality_controlled: '1' scopus_import: '1' status: public title: 'CQS: A formally-verified framework for fair and abortable synchronization' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2023' ... --- _id: '13180' abstract: - lang: eng text: We study the density of everywhere locally soluble diagonal quadric surfaces, parameterised by rational points that lie on a split quadric surface article_processing_charge: No article_type: original author: - first_name: Timothy D full_name: Browning, Timothy D id: 35827D50-F248-11E8-B48F-1D18A9856A87 last_name: Browning orcid: 0000-0002-8314-0177 - first_name: Julian full_name: Lyczak, Julian id: 3572849A-F248-11E8-B48F-1D18A9856A87 last_name: Lyczak - first_name: Roman full_name: Sarapin, Roman last_name: Sarapin citation: ama: Browning TD, Lyczak J, Sarapin R. Local solubility for a family of quadrics over a split quadric surface. Involve. 2023;16(2):331-342. doi:10.2140/involve.2023.16.331 apa: Browning, T. D., Lyczak, J., & Sarapin, R. (2023). Local solubility for a family of quadrics over a split quadric surface. Involve. Mathematical Sciences Publishers. https://doi.org/10.2140/involve.2023.16.331 chicago: Browning, Timothy D, Julian Lyczak, and Roman Sarapin. “Local Solubility for a Family of Quadrics over a Split Quadric Surface.” Involve. Mathematical Sciences Publishers, 2023. https://doi.org/10.2140/involve.2023.16.331. ieee: T. D. Browning, J. Lyczak, and R. Sarapin, “Local solubility for a family of quadrics over a split quadric surface,” Involve, vol. 16, no. 2. Mathematical Sciences Publishers, pp. 331–342, 2023. ista: Browning TD, Lyczak J, Sarapin R. 2023. Local solubility for a family of quadrics over a split quadric surface. Involve. 16(2), 331–342. mla: Browning, Timothy D., et al. “Local Solubility for a Family of Quadrics over a Split Quadric Surface.” Involve, vol. 16, no. 2, Mathematical Sciences Publishers, 2023, pp. 331–42, doi:10.2140/involve.2023.16.331. short: T.D. Browning, J. Lyczak, R. Sarapin, Involve 16 (2023) 331–342. date_created: 2023-07-02T22:00:43Z date_published: 2023-05-26T00:00:00Z date_updated: 2023-07-17T08:39:19Z day: '26' department: - _id: TiBr doi: 10.2140/involve.2023.16.331 external_id: arxiv: - '2203.06881' intvolume: ' 16' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2203.06881 month: '05' oa: 1 oa_version: Preprint page: 331-342 publication: Involve publication_identifier: eissn: - 1944-4184 issn: - 1944-4176 publication_status: published publisher: Mathematical Sciences Publishers quality_controlled: '1' scopus_import: '1' status: public title: Local solubility for a family of quadrics over a split quadric surface type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2023' ... --- _id: '13162' article_processing_charge: No author: - first_name: Stefano full_name: Elefante, Stefano id: 490F40CE-F248-11E8-B48F-1D18A9856A87 last_name: Elefante - first_name: Stephan full_name: Stadlbauer, Stephan id: 4D0BC184-F248-11E8-B48F-1D18A9856A87 last_name: Stadlbauer - first_name: Michael F full_name: Alexander, Michael F id: 3A02A8FA-F248-11E8-B48F-1D18A9856A87 last_name: Alexander - first_name: Alois full_name: Schlögl, Alois id: 45BF87EE-F248-11E8-B48F-1D18A9856A87 last_name: Schlögl orcid: 0000-0002-5621-8100 citation: ama: 'Elefante S, Stadlbauer S, Alexander MF, Schlögl A. Cryo-EM software packages: A sys-admins point of view. In: ASHPC23 - Austrian-Slovenian HPC Meeting 2023. EuroCC; :42-42.' apa: 'Elefante, S., Stadlbauer, S., Alexander, M. F., & Schlögl, A. (n.d.). Cryo-EM software packages: A sys-admins point of view. In ASHPC23 - Austrian-Slovenian HPC Meeting 2023 (pp. 42–42). Maribor, Slovenia: EuroCC.' chicago: 'Elefante, Stefano, Stephan Stadlbauer, Michael F Alexander, and Alois Schlögl. “Cryo-EM Software Packages: A Sys-Admins Point of View.” In ASHPC23 - Austrian-Slovenian HPC Meeting 2023, 42–42. EuroCC, n.d.' ieee: 'S. Elefante, S. Stadlbauer, M. F. Alexander, and A. Schlögl, “Cryo-EM software packages: A sys-admins point of view,” in ASHPC23 - Austrian-Slovenian HPC Meeting 2023, Maribor, Slovenia, pp. 42–42.' ista: 'Elefante S, Stadlbauer S, Alexander MF, Schlögl A. Cryo-EM software packages: A sys-admins point of view. ASHPC23 - Austrian-Slovenian HPC Meeting 2023. ASHPC: Austrian-Slovenian HPC Meeting, 42–42.' mla: 'Elefante, Stefano, et al. “Cryo-EM Software Packages: A Sys-Admins Point of View.” ASHPC23 - Austrian-Slovenian HPC Meeting 2023, EuroCC, pp. 42–42.' short: S. Elefante, S. Stadlbauer, M.F. Alexander, A. Schlögl, in:, ASHPC23 - Austrian-Slovenian HPC Meeting 2023, EuroCC, n.d., pp. 42–42. conference: end_date: 2023-06-15 location: Maribor, Slovenia name: 'ASHPC: Austrian-Slovenian HPC Meeting' start_date: 2023-06-12 date_created: 2023-06-23T11:03:18Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-07-18T09:32:16Z day: '01' ddc: - '000' department: - _id: ScienComp file: - access_level: open_access checksum: 0ab6173cd5c5634ed773cd37ff012681 content_type: application/pdf creator: dernst date_created: 2023-07-18T09:28:30Z date_updated: 2023-07-18T09:28:30Z file_id: '13250' file_name: 2023_ASHPC_Elefante.pdf file_size: 380354 relation: main_file success: 1 file_date_updated: 2023-07-18T09:28:30Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 42-42 publication: ASHPC23 - Austrian-Slovenian HPC Meeting 2023 publication_status: accepted publisher: EuroCC quality_controlled: '1' status: public title: 'Cryo-EM software packages: A sys-admins point of view' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference_abstract user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13161' acknowledgement: Thanks to Jesse Hansen for his suggestions on improving the abstract. article_processing_charge: No author: - first_name: Alois full_name: Schlögl, Alois id: 45BF87EE-F248-11E8-B48F-1D18A9856A87 last_name: Schlögl orcid: 0000-0002-5621-8100 - first_name: Stefano full_name: Elefante, Stefano id: 490F40CE-F248-11E8-B48F-1D18A9856A87 last_name: Elefante - first_name: Victor-Valentin full_name: Hodirnau, Victor-Valentin id: 3661B498-F248-11E8-B48F-1D18A9856A87 last_name: Hodirnau citation: ama: 'Schlögl A, Elefante S, Hodirnau V-V. Running Windows-applications on a Linux HPC cluster using WINE. In: ASHPC23 - Austrian-Slovenian HPC Meeting 2023. EuroCC; :59-59.' apa: 'Schlögl, A., Elefante, S., & Hodirnau, V.-V. (n.d.). Running Windows-applications on a Linux HPC cluster using WINE. In ASHPC23 - Austrian-Slovenian HPC Meeting 2023 (pp. 59–59). Maribor, Slovenia: EuroCC.' chicago: Schlögl, Alois, Stefano Elefante, and Victor-Valentin Hodirnau. “Running Windows-Applications on a Linux HPC Cluster Using WINE.” In ASHPC23 - Austrian-Slovenian HPC Meeting 2023, 59–59. EuroCC, n.d. ieee: A. Schlögl, S. Elefante, and V.-V. Hodirnau, “Running Windows-applications on a Linux HPC cluster using WINE,” in ASHPC23 - Austrian-Slovenian HPC Meeting 2023, Maribor, Slovenia, pp. 59–59. ista: 'Schlögl A, Elefante S, Hodirnau V-V. Running Windows-applications on a Linux HPC cluster using WINE. ASHPC23 - Austrian-Slovenian HPC Meeting 2023. ASHPC: Austrian-Slovenian HPC Meeting, 59–59.' mla: Schlögl, Alois, et al. “Running Windows-Applications on a Linux HPC Cluster Using WINE.” ASHPC23 - Austrian-Slovenian HPC Meeting 2023, EuroCC, pp. 59–59. short: A. Schlögl, S. Elefante, V.-V. Hodirnau, in:, ASHPC23 - Austrian-Slovenian HPC Meeting 2023, EuroCC, n.d., pp. 59–59. conference: end_date: 2023-06-15 location: Maribor, Slovenia name: 'ASHPC: Austrian-Slovenian HPC Meeting' start_date: 2023-06-13 date_created: 2023-06-23T11:01:23Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-07-18T09:30:54Z day: '01' ddc: - '000' department: - _id: ScienComp - _id: EM-Fac file: - access_level: open_access checksum: ec8e4295d54171032cdd1b01423eb4a6 content_type: application/pdf creator: dernst date_created: 2023-07-18T09:18:55Z date_updated: 2023-07-18T09:18:55Z file_id: '13249' file_name: 2023_ASHPC_Schloegl.pdf file_size: 316959 relation: main_file success: 1 file_date_updated: 2023-07-18T09:18:55Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 59-59 publication: ASHPC23 - Austrian-Slovenian HPC Meeting 2023 publication_status: inpress publisher: EuroCC quality_controlled: '1' status: public title: Running Windows-applications on a Linux HPC cluster using WINE tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference_abstract user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13251' abstract: - lang: eng text: A rotating organic cation and a dynamically disordered soft inorganic cage are the hallmark features of organic-inorganic lead-halide perovskites. Understanding the interplay between these two subsystems is a challenging problem, but it is this coupling that is widely conjectured to be responsible for the unique behavior of photocarriers in these materials. In this work, we use the fact that the polarizability of the organic cation strongly depends on the ambient electrostatic environment to put the molecule forward as a sensitive probe of the local crystal fields inside the lattice cell. We measure the average polarizability of the C/N–H bond stretching mode by means of infrared spectroscopy, which allows us to deduce the character of the motion of the cation molecule, find the magnitude of the local crystal field, and place an estimate on the strength of the hydrogen bond between the hydrogen and halide atoms. Our results pave the way for understanding electric fields in lead-halide perovskites using infrared bond spectroscopy. acknowledgement: "We thank Bingqing Cheng and Hong-Zhou Ye for valuable discussions; Y.W.’s work at IST Austria was supported through ISTernship summer internship program funded by OeADGmbH; D.L. and Z.A. acknowledge support by IST Austria (ISTA); M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON).\r\nA.A.Z. and O.M.B. acknowledge support by KAUST." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Yujing full_name: Wei, Yujing id: 0c5ff007-2600-11ee-b896-98bd8d663294 last_name: Wei orcid: 0000-0001-8913-9719 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Dusan full_name: Lorenc, Dusan id: 40D8A3E6-F248-11E8-B48F-1D18A9856A87 last_name: Lorenc - first_name: Ayan A. full_name: Zhumekenov, Ayan A. last_name: Zhumekenov - first_name: Osman M. full_name: Bakr, Osman M. last_name: Bakr - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 citation: ama: Wei Y, Volosniev A, Lorenc D, et al. Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites. The Journal of Physical Chemistry Letters. 2023;14(27):6309-6314. doi:10.1021/acs.jpclett.3c01158 apa: Wei, Y., Volosniev, A., Lorenc, D., Zhumekenov, A. A., Bakr, O. M., Lemeshko, M., & Alpichshev, Z. (2023). Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites. The Journal of Physical Chemistry Letters. American Chemical Society. https://doi.org/10.1021/acs.jpclett.3c01158 chicago: Wei, Yujing, Artem Volosniev, Dusan Lorenc, Ayan A. Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Bond Polarizability as a Probe of Local Crystal Fields in Hybrid Lead-Halide Perovskites.” The Journal of Physical Chemistry Letters. American Chemical Society, 2023. https://doi.org/10.1021/acs.jpclett.3c01158. ieee: Y. Wei et al., “Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites,” The Journal of Physical Chemistry Letters, vol. 14, no. 27. American Chemical Society, pp. 6309–6314, 2023. ista: Wei Y, Volosniev A, Lorenc D, Zhumekenov AA, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites. The Journal of Physical Chemistry Letters. 14(27), 6309–6314. mla: Wei, Yujing, et al. “Bond Polarizability as a Probe of Local Crystal Fields in Hybrid Lead-Halide Perovskites.” The Journal of Physical Chemistry Letters, vol. 14, no. 27, American Chemical Society, 2023, pp. 6309–14, doi:10.1021/acs.jpclett.3c01158. short: Y. Wei, A. Volosniev, D. Lorenc, A.A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, The Journal of Physical Chemistry Letters 14 (2023) 6309–6314. date_created: 2023-07-18T11:13:17Z date_published: 2023-07-05T00:00:00Z date_updated: 2023-07-19T06:59:19Z day: '05' ddc: - '530' department: - _id: MiLe - _id: ZhAl doi: 10.1021/acs.jpclett.3c01158 ec_funded: 1 external_id: arxiv: - '2304.14198' isi: - '001022811500001' file: - access_level: open_access checksum: c0c040063f06a51b9c463adc504f1a23 content_type: application/pdf creator: dernst date_created: 2023-07-19T06:55:39Z date_updated: 2023-07-19T06:55:39Z file_id: '13253' file_name: 2023_JourPhysChemistry_Wei.pdf file_size: 2121252 relation: main_file success: 1 file_date_updated: 2023-07-19T06:55:39Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '27' keyword: - General Materials Science - Physical and Theoretical Chemistry language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 6309-6314 project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: The Journal of Physical Chemistry Letters publication_identifier: eissn: - 1948-7185 publication_status: published publisher: American Chemical Society quality_controlled: '1' status: public title: Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '13292' abstract: - lang: eng text: The operator precedence languages (OPLs) represent the largest known subclass of the context-free languages which enjoys all desirable closure and decidability properties. This includes the decidability of language inclusion, which is the ultimate verification problem. Operator precedence grammars, automata, and logics have been investigated and used, for example, to verify programs with arithmetic expressions and exceptions (both of which are deterministic pushdown but lie outside the scope of the visibly pushdown languages). In this paper, we complete the picture and give, for the first time, an algebraic characterization of the class of OPLs in the form of a syntactic congruence that has finitely many equivalence classes exactly for the operator precedence languages. This is a generalization of the celebrated Myhill-Nerode theorem for the regular languages to OPLs. As one of the consequences, we show that universality and language inclusion for nondeterministic operator precedence automata can be solved by an antichain algorithm. Antichain algorithms avoid determinization and complementation through an explicit subset construction, by leveraging a quasi-order on words, which allows the pruning of the search space for counterexample words without sacrificing completeness. Antichain algorithms can be implemented symbolically, and these implementations are today the best-performing algorithms in practice for the inclusion of finite automata. We give a generic construction of the quasi-order needed for antichain algorithms from a finite syntactic congruence. This yields the first antichain algorithm for OPLs, an algorithm that solves the ExpTime-hard language inclusion problem for OPLs in exponential time. acknowledgement: "This work was supported in part by the ERC-2020-AdG 101020093.\r\nWe thank Pierre Ganty for early discussions and the anonymous reviewers for their helpful comments.\r\n" alternative_title: - LIPIcs article_processing_charge: Yes author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Pavol full_name: Kebis, Pavol last_name: Kebis - first_name: Nicolas Adrien full_name: Mazzocchi, Nicolas Adrien id: b26baa86-3308-11ec-87b0-8990f34baa85 last_name: Mazzocchi - first_name: Naci E full_name: Sarac, Naci E id: 8C6B42F8-C8E6-11E9-A03A-F2DCE5697425 last_name: Sarac citation: ama: 'Henzinger TA, Kebis P, Mazzocchi NA, Sarac NE. Regular methods for operator precedence languages. In: 50th International Colloquium on Automata, Languages, and Programming. Vol 261. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2023:129:1--129:20. doi:10.4230/LIPIcs.ICALP.2023.129' apa: 'Henzinger, T. A., Kebis, P., Mazzocchi, N. A., & Sarac, N. E. (2023). Regular methods for operator precedence languages. In 50th International Colloquium on Automata, Languages, and Programming (Vol. 261, p. 129:1--129:20). Paderborn, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ICALP.2023.129' chicago: Henzinger, Thomas A, Pavol Kebis, Nicolas Adrien Mazzocchi, and Naci E Sarac. “Regular Methods for Operator Precedence Languages.” In 50th International Colloquium on Automata, Languages, and Programming, 261:129:1--129:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. https://doi.org/10.4230/LIPIcs.ICALP.2023.129. ieee: T. A. Henzinger, P. Kebis, N. A. Mazzocchi, and N. E. Sarac, “Regular methods for operator precedence languages,” in 50th International Colloquium on Automata, Languages, and Programming, Paderborn, Germany, 2023, vol. 261, p. 129:1--129:20. ista: 'Henzinger TA, Kebis P, Mazzocchi NA, Sarac NE. 2023. Regular methods for operator precedence languages. 50th International Colloquium on Automata, Languages, and Programming. ICALP: International Colloquium on Automata, Languages, and Programming, LIPIcs, vol. 261, 129:1--129:20.' mla: Henzinger, Thomas A., et al. “Regular Methods for Operator Precedence Languages.” 50th International Colloquium on Automata, Languages, and Programming, vol. 261, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, p. 129:1--129:20, doi:10.4230/LIPIcs.ICALP.2023.129. short: T.A. Henzinger, P. Kebis, N.A. Mazzocchi, N.E. Sarac, in:, 50th International Colloquium on Automata, Languages, and Programming, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, p. 129:1--129:20. conference: end_date: 2023-07-14 location: Paderborn, Germany name: 'ICALP: International Colloquium on Automata, Languages, and Programming' start_date: 2023-07-10 date_created: 2023-07-24T15:11:41Z date_published: 2023-07-05T00:00:00Z date_updated: 2023-07-31T08:38:38Z day: '05' ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.4230/LIPIcs.ICALP.2023.129 ec_funded: 1 external_id: arxiv: - '2305.03447' file: - access_level: open_access checksum: 5d4c8932ef3450615a53b9bb15d92eb2 content_type: application/pdf creator: esarac date_created: 2023-07-24T15:11:05Z date_updated: 2023-07-24T15:11:05Z file_id: '13293' file_name: icalp23.pdf file_size: 859379 relation: main_file success: 1 file_date_updated: 2023-07-24T15:11:05Z has_accepted_license: '1' intvolume: ' 261' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 129:1--129:20 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 50th International Colloquium on Automata, Languages, and Programming publication_identifier: eissn: - 1868-8969 isbn: - '9783959772785' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' status: public title: Regular methods for operator precedence languages tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 261 year: '2023' ... --- _id: '13277' abstract: - lang: eng text: Recent experimental advances have inspired the development of theoretical tools to describe the non-equilibrium dynamics of quantum systems. Among them an exact representation of quantum spin systems in terms of classical stochastic processes has been proposed. Here we provide first steps towards the extension of this stochastic approach to bosonic systems by considering the one-dimensional quantum quartic oscillator. We show how to exactly parameterize the time evolution of this prototypical model via the dynamics of a set of classical variables. We interpret these variables as stochastic processes, which allows us to propose a novel way to numerically simulate the time evolution of the system. We benchmark our findings by considering analytically solvable limits and providing alternative derivations of known results. acknowledgement: 'S. De Nicola acknowledges funding from the Institute of Science and Technology Austria (ISTA), and from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 754411. S. De Nicola also acknowledges funding from the EPSRC Center for Doctoral Training in Cross-Disciplinary Approaches to NonEquilibrium Systems (CANES) under Grant EP/L015854/1. ' article_number: '029' article_processing_charge: No article_type: original author: - first_name: Gennaro full_name: Tucci, Gennaro last_name: Tucci - first_name: Stefano full_name: De Nicola, Stefano id: 42832B76-F248-11E8-B48F-1D18A9856A87 last_name: De Nicola orcid: 0000-0002-4842-6671 - first_name: Sascha full_name: Wald, Sascha last_name: Wald - first_name: Andrea full_name: Gambassi, Andrea last_name: Gambassi citation: ama: Tucci G, De Nicola S, Wald S, Gambassi A. Stochastic representation of the quantum quartic oscillator. SciPost Physics Core. 2023;6(2). doi:10.21468/scipostphyscore.6.2.029 apa: Tucci, G., De Nicola, S., Wald, S., & Gambassi, A. (2023). Stochastic representation of the quantum quartic oscillator. SciPost Physics Core. SciPost Foundation. https://doi.org/10.21468/scipostphyscore.6.2.029 chicago: Tucci, Gennaro, Stefano De Nicola, Sascha Wald, and Andrea Gambassi. “Stochastic Representation of the Quantum Quartic Oscillator.” SciPost Physics Core. SciPost Foundation, 2023. https://doi.org/10.21468/scipostphyscore.6.2.029. ieee: G. Tucci, S. De Nicola, S. Wald, and A. Gambassi, “Stochastic representation of the quantum quartic oscillator,” SciPost Physics Core, vol. 6, no. 2. SciPost Foundation, 2023. ista: Tucci G, De Nicola S, Wald S, Gambassi A. 2023. Stochastic representation of the quantum quartic oscillator. SciPost Physics Core. 6(2), 029. mla: Tucci, Gennaro, et al. “Stochastic Representation of the Quantum Quartic Oscillator.” SciPost Physics Core, vol. 6, no. 2, 029, SciPost Foundation, 2023, doi:10.21468/scipostphyscore.6.2.029. short: G. Tucci, S. De Nicola, S. Wald, A. Gambassi, SciPost Physics Core 6 (2023). date_created: 2023-07-24T10:47:46Z date_published: 2023-04-14T00:00:00Z date_updated: 2023-07-31T09:03:28Z day: '14' ddc: - '530' department: - _id: MaSe doi: 10.21468/scipostphyscore.6.2.029 ec_funded: 1 external_id: arxiv: - '2211.01923' file: - access_level: open_access checksum: b472bc82108747eda5d52adf9e2ac7f3 content_type: application/pdf creator: dernst date_created: 2023-07-31T09:02:27Z date_updated: 2023-07-31T09:02:27Z file_id: '13329' file_name: 2023_SciPostPhysCore_Tucci.pdf file_size: 523236 relation: main_file success: 1 file_date_updated: 2023-07-31T09:02:27Z has_accepted_license: '1' intvolume: ' 6' issue: '2' keyword: - Statistical and Nonlinear Physics - Atomic and Molecular Physics - and Optics - Nuclear and High Energy Physics - Condensed Matter Physics language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: SciPost Physics Core publication_identifier: issn: - 2666-9366 publication_status: published publisher: SciPost Foundation quality_controlled: '1' status: public title: Stochastic representation of the quantum quartic oscillator tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2023' ... --- _id: '13276' abstract: - lang: eng text: We introduce a generic and accessible implementation of an exact diagonalization method for studying few-fermion models. Our aim is to provide a testbed for the newcomers to the field as well as a stepping stone for trying out novel optimizations and approximations. This userguide consists of a description of the algorithm, and several examples in varying orders of sophistication. In particular, we exemplify our routine using an effective-interaction approach that fixes the low-energy physics. We benchmark this approach against the existing data, and show that it is able to deliver state-of-the-art numerical results at a significantly reduced computational cost. acknowledgement: "We acknowledge fruitful discussions with Hans-Werner Hammer and thank Gerhard Zürn and\r\nPietro Massignan for sending us their data. We thank Fabian Brauneis for beta-testing the\r\nprovided code-package, and comments on the manuscript.\r\nL.R. is supported by FP7/ERC Consolidator Grant QSIMCORR, No.\r\n771891, and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under\r\nGermany’s Excellence Strategy –EXC–2111–390814868. A.G.V. acknowledges support\r\nby European Union’s Horizon 2020 research and innovation programme under the Marie\r\nSkłodowska-Curie Grant Agreement No. 754411." article_number: '12' article_processing_charge: No article_type: original author: - first_name: Lukas full_name: Rammelmüller, Lukas last_name: Rammelmüller - first_name: David full_name: Huber, David last_name: Huber - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Rammelmüller L, Huber D, Volosniev A. A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D. SciPost Physics Codebases. 2023. doi:10.21468/scipostphyscodeb.12 apa: Rammelmüller, L., Huber, D., & Volosniev, A. (2023). A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D. SciPost Physics Codebases. SciPost Foundation. https://doi.org/10.21468/scipostphyscodeb.12 chicago: Rammelmüller, Lukas, David Huber, and Artem Volosniev. “A Modular Implementation of an Effective Interaction Approach for Harmonically Trapped Fermions in 1D.” SciPost Physics Codebases. SciPost Foundation, 2023. https://doi.org/10.21468/scipostphyscodeb.12. ieee: L. Rammelmüller, D. Huber, and A. Volosniev, “A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D,” SciPost Physics Codebases. SciPost Foundation, 2023. ista: Rammelmüller L, Huber D, Volosniev A. 2023. A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D. SciPost Physics Codebases., 12. mla: Rammelmüller, Lukas, et al. “A Modular Implementation of an Effective Interaction Approach for Harmonically Trapped Fermions in 1D.” SciPost Physics Codebases, 12, SciPost Foundation, 2023, doi:10.21468/scipostphyscodeb.12. short: L. Rammelmüller, D. Huber, A. Volosniev, SciPost Physics Codebases (2023). date_created: 2023-07-24T10:47:15Z date_published: 2023-04-19T00:00:00Z date_updated: 2023-07-31T09:16:02Z day: '19' ddc: - '530' department: - _id: MiLe doi: 10.21468/scipostphyscodeb.12 ec_funded: 1 external_id: arxiv: - '2202.04603' file: - access_level: open_access checksum: f583a70fe915d2208c803f5afb426daa content_type: application/pdf creator: dernst date_created: 2023-07-31T09:09:23Z date_updated: 2023-07-31T09:09:23Z file_id: '13330' file_name: 2023_SciPostPhysCodebase_Rammelmueller.pdf file_size: 551418 relation: main_file success: 1 file_date_updated: 2023-07-31T09:09:23Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: SciPost Physics Codebases publication_identifier: issn: - 2949-804X publication_status: published publisher: SciPost Foundation quality_controlled: '1' related_material: record: - id: '13275' relation: research_data status: public status: public title: A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13275' abstract: - lang: eng text: We introduce a generic and accessible implementation of an exact diagonalization method for studying few-fermion models. Our aim is to provide a testbed for the newcomers to the field as well as a stepping stone for trying out novel optimizations and approximations. This userguide consists of a description of the algorithm, and several examples in varying orders of sophistication. In particular, we exemplify our routine using an effective-interaction approach that fixes the low-energy physics. We benchmark this approach against the existing data, and show that it is able to deliver state-of-the-art numerical results at a significantly reduced computational cost. article_processing_charge: No author: - first_name: Lukas full_name: Rammelmüller, Lukas last_name: Rammelmüller - first_name: David full_name: Huber, David last_name: Huber - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Rammelmüller L, Huber D, Volosniev A. Codebase release 1.0 for FermiFCI. 2023. doi:10.21468/scipostphyscodeb.12-r1.0 apa: Rammelmüller, L., Huber, D., & Volosniev, A. (2023). Codebase release 1.0 for FermiFCI. SciPost Foundation. https://doi.org/10.21468/scipostphyscodeb.12-r1.0 chicago: Rammelmüller, Lukas, David Huber, and Artem Volosniev. “Codebase Release 1.0 for FermiFCI.” SciPost Foundation, 2023. https://doi.org/10.21468/scipostphyscodeb.12-r1.0. ieee: L. Rammelmüller, D. Huber, and A. Volosniev, “Codebase release 1.0 for FermiFCI.” SciPost Foundation, 2023. ista: Rammelmüller L, Huber D, Volosniev A. 2023. Codebase release 1.0 for FermiFCI, SciPost Foundation, 10.21468/scipostphyscodeb.12-r1.0. mla: Rammelmüller, Lukas, et al. Codebase Release 1.0 for FermiFCI. SciPost Foundation, 2023, doi:10.21468/scipostphyscodeb.12-r1.0. short: L. Rammelmüller, D. Huber, A. Volosniev, (2023). date_created: 2023-07-24T10:46:23Z date_published: 2023-04-19T00:00:00Z date_updated: 2023-07-31T09:16:02Z day: '19' ddc: - '530' department: - _id: MiLe doi: 10.21468/scipostphyscodeb.12-r1.0 ec_funded: 1 main_file_link: - open_access: '1' url: https://doi.org/10.21468/SciPostPhysCodeb.12-r1.0 month: '04' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publisher: SciPost Foundation related_material: record: - id: '13276' relation: used_in_publication status: public status: public title: Codebase release 1.0 for FermiFCI type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13262' abstract: - lang: eng text: 'Determining the degree of inherent parallelism in classical sequential algorithms and leveraging it for fast parallel execution is a key topic in parallel computing, and detailed analyses are known for a wide range of classical algorithms. In this paper, we perform the first such analysis for the fundamental Union-Find problem, in which we are given a graph as a sequence of edges, and must maintain its connectivity structure under edge additions. We prove that classic sequential algorithms for this problem are well-parallelizable under reasonable assumptions, addressing a conjecture by [Blelloch, 2017]. More precisely, we show via a new potential argument that, under uniform random edge ordering, parallel union-find operations are unlikely to interfere: T concurrent threads processing the graph in parallel will encounter memory contention O(T2 · log |V| · log |E|) times in expectation, where |E| and |V| are the number of edges and nodes in the graph, respectively. We leverage this result to design a new parallel Union-Find algorithm that is both internally deterministic, i.e., its results are guaranteed to match those of a sequential execution, but also work-efficient and scalable, as long as the number of threads T is O(|E|1 over 3 - ε), for an arbitrarily small constant ε > 0, which holds for most large real-world graphs. We present lower bounds which show that our analysis is close to optimal, and experimental results suggesting that the performance cost of internal determinism is limited.' article_processing_charge: Yes (in subscription journal) author: - first_name: Alexander full_name: Fedorov, Alexander id: 2e711909-896a-11ed-bdf8-eb0f5a2984c6 last_name: Fedorov - first_name: Diba full_name: Hashemi, Diba id: ed9595ea-2f8f-11ee-ba95-d2b546540783 last_name: Hashemi - first_name: Giorgi full_name: Nadiradze, Giorgi id: 3279A00C-F248-11E8-B48F-1D18A9856A87 last_name: Nadiradze - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Fedorov A, Hashemi D, Nadiradze G, Alistarh D-A. Provably-efficient and internally-deterministic parallel Union-Find. In: Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures. Association for Computing Machinery; 2023:261-271. doi:10.1145/3558481.3591082' apa: 'Fedorov, A., Hashemi, D., Nadiradze, G., & Alistarh, D.-A. (2023). Provably-efficient and internally-deterministic parallel Union-Find. In Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures (pp. 261–271). Orlando, FL, United States: Association for Computing Machinery. https://doi.org/10.1145/3558481.3591082' chicago: Fedorov, Alexander, Diba Hashemi, Giorgi Nadiradze, and Dan-Adrian Alistarh. “Provably-Efficient and Internally-Deterministic Parallel Union-Find.” In Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures, 261–71. Association for Computing Machinery, 2023. https://doi.org/10.1145/3558481.3591082. ieee: A. Fedorov, D. Hashemi, G. Nadiradze, and D.-A. Alistarh, “Provably-efficient and internally-deterministic parallel Union-Find,” in Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures, Orlando, FL, United States, 2023, pp. 261–271. ista: 'Fedorov A, Hashemi D, Nadiradze G, Alistarh D-A. 2023. Provably-efficient and internally-deterministic parallel Union-Find. Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures. SPAA: Symposium on Parallelism in Algorithms and Architectures, 261–271.' mla: Fedorov, Alexander, et al. “Provably-Efficient and Internally-Deterministic Parallel Union-Find.” Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures, Association for Computing Machinery, 2023, pp. 261–71, doi:10.1145/3558481.3591082. short: A. Fedorov, D. Hashemi, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures, Association for Computing Machinery, 2023, pp. 261–271. conference: end_date: 2023-06-19 location: Orlando, FL, United States name: 'SPAA: Symposium on Parallelism in Algorithms and Architectures' start_date: 2023-06-17 date_created: 2023-07-23T22:01:12Z date_published: 2023-06-17T00:00:00Z date_updated: 2023-07-31T10:54:32Z day: '17' ddc: - '000' department: - _id: DaAl - _id: GradSch doi: 10.1145/3558481.3591082 external_id: arxiv: - '2304.09331' file: - access_level: open_access checksum: 72e312aabf0c5248c99b5cd3a88e4c88 content_type: application/pdf creator: dernst date_created: 2023-07-31T10:53:08Z date_updated: 2023-07-31T10:53:08Z file_id: '13334' file_name: 2023_SPAA_Fedorov.pdf file_size: 2087937 relation: main_file success: 1 file_date_updated: 2023-07-31T10:53:08Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 261-271 publication: Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures publication_identifier: isbn: - '9781450395458' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Provably-efficient and internally-deterministic parallel Union-Find tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '11479' abstract: - lang: eng text: Understanding population divergence that eventually leads to speciation is essential for evolutionary biology. High species diversity in the sea was regarded as a paradox when strict allopatry was considered necessary for most speciation events because geographical barriers seemed largely absent in the sea, and many marine species have high dispersal capacities. Combining genome-wide data with demographic modelling to infer the demographic history of divergence has introduced new ways to address this classical issue. These models assume an ancestral population that splits into two subpopulations diverging according to different scenarios that allow tests for periods of gene flow. Models can also test for heterogeneities in population sizes and migration rates along the genome to account, respectively, for background selection and selection against introgressed ancestry. To investigate how barriers to gene flow arise in the sea, we compiled studies modelling the demographic history of divergence in marine organisms and extracted preferred demographic scenarios together with estimates of demographic parameters. These studies show that geographical barriers to gene flow do exist in the sea but that divergence can also occur without strict isolation. Heterogeneity of gene flow was detected in most population pairs suggesting the predominance of semipermeable barriers during divergence. We found a weak positive relationship between the fraction of the genome experiencing reduced gene flow and levels of genome-wide differentiation. Furthermore, we found that the upper bound of the ‘grey zone of speciation’ for our dataset extended beyond that found before, implying that gene flow between diverging taxa is possible at higher levels of divergence than previously thought. Finally, we list recommendations for further strengthening the use of demographic modelling in speciation research. These include a more balanced representation of taxa, more consistent and comprehensive modelling, clear reporting of results and simulation studies to rule out nonbiological explanations for general results. acknowledgement: 'We greatly thank all the corresponding authors of the studies that were included in our synthesis for the sharing of additional data: Thomas Broquet, Dmitry Filatov, Quentin Rougemont, Paolo Momigliano, Pierre-Alexandre Gagnaire, Carlos Prada, Ahmed Souissi, Michael Møller Hansen, Sylvie Lapègue, Joseph Di Battista, Michael Hellberg and Carlos Prada. RKB and ADJ were supported by the European Research Council. MR was supported by the Swedish Research Council Vetenskapsrådet (grant number 2021-05243; to MR) and Formas (grant number 2019-00882; to KJ and MR), and by additional grants from the European Research Council (to RKB) and Vetenskapsrådet (to KJ) through the Centre for Marine Evolutionary Biology (https://www.gu.se/en/cemeb-marine-evolutionary-biology).' article_processing_charge: No article_type: original author: - first_name: Aurélien full_name: De Jode, Aurélien last_name: De Jode - first_name: Alan full_name: Le Moan, Alan last_name: Le Moan - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 citation: ama: De Jode A, Le Moan A, Johannesson K, et al. Ten years of demographic modelling of divergence and speciation in the sea. Evolutionary Applications. 2023;16(2):542-559. doi:10.1111/eva.13428 apa: De Jode, A., Le Moan, A., Johannesson, K., Faria, R., Stankowski, S., Westram, A. M., … Fraisse, C. (2023). Ten years of demographic modelling of divergence and speciation in the sea. Evolutionary Applications. Wiley. https://doi.org/10.1111/eva.13428 chicago: De Jode, Aurélien, Alan Le Moan, Kerstin Johannesson, Rui Faria, Sean Stankowski, Anja M Westram, Roger K. Butlin, Marina Rafajlović, and Christelle Fraisse. “Ten Years of Demographic Modelling of Divergence and Speciation in the Sea.” Evolutionary Applications. Wiley, 2023. https://doi.org/10.1111/eva.13428. ieee: A. De Jode et al., “Ten years of demographic modelling of divergence and speciation in the sea,” Evolutionary Applications, vol. 16, no. 2. Wiley, pp. 542–559, 2023. ista: De Jode A, Le Moan A, Johannesson K, Faria R, Stankowski S, Westram AM, Butlin RK, Rafajlović M, Fraisse C. 2023. Ten years of demographic modelling of divergence and speciation in the sea. Evolutionary Applications. 16(2), 542–559. mla: De Jode, Aurélien, et al. “Ten Years of Demographic Modelling of Divergence and Speciation in the Sea.” Evolutionary Applications, vol. 16, no. 2, Wiley, 2023, pp. 542–59, doi:10.1111/eva.13428. short: A. De Jode, A. Le Moan, K. Johannesson, R. Faria, S. Stankowski, A.M. Westram, R.K. Butlin, M. Rafajlović, C. Fraisse, Evolutionary Applications 16 (2023) 542–559. date_created: 2022-07-03T22:01:33Z date_published: 2023-02-01T00:00:00Z date_updated: 2023-08-01T12:25:44Z day: '01' ddc: - '576' department: - _id: NiBa - _id: BeVi doi: 10.1111/eva.13428 external_id: isi: - '000815663700001' file: - access_level: open_access checksum: d4d6fa9ddf36643af994a6a757919afb content_type: application/pdf creator: dernst date_created: 2023-02-27T07:10:17Z date_updated: 2023-02-27T07:10:17Z file_id: '12685' file_name: 2023_EvolutionaryApplications_DeJode.pdf file_size: 2269822 relation: main_file success: 1 file_date_updated: 2023-02-27T07:10:17Z has_accepted_license: '1' intvolume: ' 16' isi: 1 issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 542-559 publication: Evolutionary Applications publication_identifier: eissn: - 1752-4571 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Ten years of demographic modelling of divergence and speciation in the sea tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 16 year: '2023' ... --- _id: '12329' abstract: - lang: eng text: In this article, we develop two independent and new approaches to model epidemic spread in a network. Contrary to the most studied models, those developed here allow for contacts with different probabilities of transmitting the disease (transmissibilities). We then examine each of these models using some mean field type approximations. The first model looks at the late-stage effects of an epidemic outbreak and allows for the computation of the probability that a given vertex was infected. This computation is based on a mean field approximation and only depends on the number of contacts and their transmissibilities. This approach shares many similarities with percolation models in networks. The second model we develop is a dynamic model which we analyze using a mean field approximation which highly reduces the dimensionality of the system. In particular, the original system which individually analyses each vertex of the network is reduced to one with as many equations as different transmissibilities. Perhaps the greatest contribution of this article is the observation that, in both these models, the existence and size of an epidemic outbreak are linked to the properties of a matrix which we call the R-matrix. This is a generalization of the basic reproduction number which more precisely characterizes the main routes of infection. acknowledgement: Gonçalo Oliveira is supported by the NOMIS Foundation, Fundação Serrapilheira 1812-27395, by CNPq grants 428959/2018-0 and 307475/2018-2, and by FAPERJ through the grant Jovem Cientista do Nosso Estado E-26/202.793/2019. article_number: '468' article_processing_charge: No article_type: original author: - first_name: Arturo full_name: Gómez, Arturo last_name: Gómez - first_name: Goncalo full_name: Oliveira, Goncalo id: 58abbde8-f455-11eb-a497-98c8fd71b905 last_name: Oliveira citation: ama: Gómez A, Oliveira G. New approaches to epidemic modeling on networks. Scientific Reports. 2023;13. doi:10.1038/s41598-022-19827-9 apa: Gómez, A., & Oliveira, G. (2023). New approaches to epidemic modeling on networks. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-022-19827-9 chicago: Gómez, Arturo, and Goncalo Oliveira. “New Approaches to Epidemic Modeling on Networks.” Scientific Reports. Springer Nature, 2023. https://doi.org/10.1038/s41598-022-19827-9. ieee: A. Gómez and G. Oliveira, “New approaches to epidemic modeling on networks,” Scientific Reports, vol. 13. Springer Nature, 2023. ista: Gómez A, Oliveira G. 2023. New approaches to epidemic modeling on networks. Scientific Reports. 13, 468. mla: Gómez, Arturo, and Goncalo Oliveira. “New Approaches to Epidemic Modeling on Networks.” Scientific Reports, vol. 13, 468, Springer Nature, 2023, doi:10.1038/s41598-022-19827-9. short: A. Gómez, G. Oliveira, Scientific Reports 13 (2023). date_created: 2023-01-22T23:00:55Z date_published: 2023-01-10T00:00:00Z date_updated: 2023-08-01T12:31:40Z day: '10' ddc: - '510' department: - _id: TaHa doi: 10.1038/s41598-022-19827-9 external_id: isi: - '001003345000051' file: - access_level: open_access checksum: a8b83739f4a951e83e0b2a778f03b327 content_type: application/pdf creator: dernst date_created: 2023-01-23T07:53:23Z date_updated: 2023-01-23T07:53:23Z file_id: '12336' file_name: 2023_ScientificReports_Gomez.pdf file_size: 2167792 relation: main_file success: 1 file_date_updated: 2023-01-23T07:53:23Z has_accepted_license: '1' intvolume: ' 13' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: Scientific Reports publication_identifier: eissn: - 2045-2322 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: New approaches to epidemic modeling on networks tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2023' ... --- _id: '9034' abstract: - lang: eng text: We determine an asymptotic formula for the number of integral points of bounded height on a blow-up of P3 outside certain planes using universal torsors. acknowledgement: This work was supported by the German Academic Exchange Service. Parts of this article were prepared at the Institut de Mathémathiques de Jussieu—Paris Rive Gauche. I wish to thank Antoine Chambert-Loir for his remarks and the institute for its hospitality, as well as the anonymous referee for several useful remarks and suggestions for improvements. article_processing_charge: No article_type: original author: - first_name: Florian Alexander full_name: Wilsch, Florian Alexander id: 560601DA-8D36-11E9-A136-7AC1E5697425 last_name: Wilsch orcid: 0000-0001-7302-8256 citation: ama: Wilsch FA. Integral points of bounded height on a log Fano threefold. International Mathematics Research Notices. 2023;2023(8):6780-6808. doi:10.1093/imrn/rnac048 apa: Wilsch, F. A. (2023). Integral points of bounded height on a log Fano threefold. International Mathematics Research Notices. Oxford Academic. https://doi.org/10.1093/imrn/rnac048 chicago: Wilsch, Florian Alexander. “Integral Points of Bounded Height on a Log Fano Threefold.” International Mathematics Research Notices. Oxford Academic, 2023. https://doi.org/10.1093/imrn/rnac048. ieee: F. A. Wilsch, “Integral points of bounded height on a log Fano threefold,” International Mathematics Research Notices, vol. 2023, no. 8. Oxford Academic, pp. 6780–6808, 2023. ista: Wilsch FA. 2023. Integral points of bounded height on a log Fano threefold. International Mathematics Research Notices. 2023(8), 6780–6808. mla: Wilsch, Florian Alexander. “Integral Points of Bounded Height on a Log Fano Threefold.” International Mathematics Research Notices, vol. 2023, no. 8, Oxford Academic, 2023, pp. 6780–808, doi:10.1093/imrn/rnac048. short: F.A. Wilsch, International Mathematics Research Notices 2023 (2023) 6780–6808. date_created: 2021-01-22T09:31:09Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-08-01T12:23:55Z day: '01' department: - _id: TiBr doi: 10.1093/imrn/rnac048 external_id: arxiv: - '1901.08503' isi: - '000773116000001' intvolume: ' 2023' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1901.08503 month: '04' oa: 1 oa_version: Preprint page: 6780-6808 publication: International Mathematics Research Notices publication_identifier: eissn: - 1687-0247 issn: - 1073-7928 publication_status: published publisher: Oxford Academic quality_controlled: '1' status: public title: Integral points of bounded height on a log Fano threefold type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2023 year: '2023' ... --- _id: '12469' abstract: - lang: eng text: 'Hosts can carry many viruses in their bodies, but not all of them cause disease. We studied ants as a social host to determine both their overall viral repertoire and the subset of actively infecting viruses across natural populations of three subfamilies: the Argentine ant (Linepithema humile, Dolichoderinae), the invasive garden ant (Lasius neglectus, Formicinae) and the red ant (Myrmica rubra, Myrmicinae). We used a dual sequencing strategy to reconstruct complete virus genomes by RNA-seq and to simultaneously determine the small interfering RNAs (siRNAs) by small RNA sequencing (sRNA-seq), which constitute the host antiviral RNAi immune response. This approach led to the discovery of 41 novel viruses in ants and revealed a host ant-specific RNAi response (21 vs. 22 nt siRNAs) in the different ant species. The efficiency of the RNAi response (sRNA/RNA read count ratio) depended on the virus and the respective ant species, but not its population. Overall, we found the highest virus abundance and diversity per population in Li. humile, followed by La. neglectus and M. rubra. Argentine ants also shared a high proportion of viruses between populations, whilst overlap was nearly absent in M. rubra. Only one of the 59 viruses was found to infect two of the ant species as hosts, revealing high host-specificity in active infections. In contrast, six viruses actively infected one ant species, but were found as contaminants only in the others. Disentangling spillover of disease-causing infection from non-infecting contamination across species is providing relevant information for disease ecology and ecosystem management.' acknowledgement: "We thank D.J. Obbard for sharing the details of the dual RNA-seq/sRNA-seq approach, S.\r\nMetzler and R. Ferrigato for the photographs (Figure 1), M. Konrad, B. Casillas-Perez, C.D.\r\nPull and X. Espadaler for help with ant collection, and the Social Immunity Team at IST\r\nAustria, in particular J. Robb, A. Franschitz, E. Naderlinger, E. Dawson and B. Casillas-Perez\r\nfor support and comments on the manuscript. The study was funded by the Austrian Science\r\nFund (FWF; M02076-B25 to MAF) and the Academy of Finland (343022 to LV). " article_number: '1119002' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Lumi full_name: Viljakainen, Lumi last_name: Viljakainen - first_name: Matthias full_name: Fürst, Matthias id: 393B1196-F248-11E8-B48F-1D18A9856A87 last_name: Fürst orcid: 0000-0002-3712-925X - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Jaana full_name: Jurvansuu, Jaana last_name: Jurvansuu - first_name: Jinook full_name: Oh, Jinook id: 403169A4-080F-11EA-9993-BF3F3DDC885E last_name: Oh orcid: 0000-0001-7425-2372 - first_name: Lassi full_name: Tolonen, Lassi last_name: Tolonen - first_name: Thomas full_name: Eder, Thomas last_name: Eder - first_name: Thomas full_name: Rattei, Thomas last_name: Rattei - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Viljakainen L, Fürst M, Grasse AV, et al. Antiviral immune response reveals host-specific virus infections in natural ant populations. Frontiers in Microbiology. 2023;14. doi:10.3389/fmicb.2023.1119002 apa: Viljakainen, L., Fürst, M., Grasse, A. V., Jurvansuu, J., Oh, J., Tolonen, L., … Cremer, S. (2023). Antiviral immune response reveals host-specific virus infections in natural ant populations. Frontiers in Microbiology. Frontiers. https://doi.org/10.3389/fmicb.2023.1119002 chicago: Viljakainen, Lumi, Matthias Fürst, Anna V Grasse, Jaana Jurvansuu, Jinook Oh, Lassi Tolonen, Thomas Eder, Thomas Rattei, and Sylvia Cremer. “Antiviral Immune Response Reveals Host-Specific Virus Infections in Natural Ant Populations.” Frontiers in Microbiology. Frontiers, 2023. https://doi.org/10.3389/fmicb.2023.1119002. ieee: L. Viljakainen et al., “Antiviral immune response reveals host-specific virus infections in natural ant populations,” Frontiers in Microbiology, vol. 14. Frontiers, 2023. ista: Viljakainen L, Fürst M, Grasse AV, Jurvansuu J, Oh J, Tolonen L, Eder T, Rattei T, Cremer S. 2023. Antiviral immune response reveals host-specific virus infections in natural ant populations. Frontiers in Microbiology. 14, 1119002. mla: Viljakainen, Lumi, et al. “Antiviral Immune Response Reveals Host-Specific Virus Infections in Natural Ant Populations.” Frontiers in Microbiology, vol. 14, 1119002, Frontiers, 2023, doi:10.3389/fmicb.2023.1119002. short: L. Viljakainen, M. Fürst, A.V. Grasse, J. Jurvansuu, J. Oh, L. Tolonen, T. Eder, T. Rattei, S. Cremer, Frontiers in Microbiology 14 (2023). date_created: 2023-01-31T08:13:40Z date_published: 2023-03-16T00:00:00Z date_updated: 2023-08-01T12:39:58Z day: '16' ddc: - '570' department: - _id: SyCr doi: 10.3389/fmicb.2023.1119002 external_id: isi: - '000961542100001' pmid: - 'PPR559293 ' file: - access_level: open_access checksum: cd52292963acce1111634d9fac08c699 content_type: application/pdf creator: dernst date_created: 2023-04-17T07:49:09Z date_updated: 2023-04-17T07:49:09Z file_id: '12843' file_name: 2023_FrontMicrobiology_Viljakainen.pdf file_size: 4866332 relation: main_file success: 1 file_date_updated: 2023-04-17T07:49:09Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25DF61D8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02076 name: Viral pathogens and social immunity in ants publication: Frontiers in Microbiology publication_identifier: eissn: - 1664-302X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: Antiviral immune response reveals host-specific virus infections in natural ant populations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '12287' abstract: - lang: eng text: We present criteria for establishing a triangulation of a manifold. Given a manifold M, a simplicial complex A, and a map H from the underlying space of A to M, our criteria are presented in local coordinate charts for M, and ensure that H is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on M. No Delaunay property of A is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use. acknowledgement: "This work has been funded by the European Research Council under the European Union’s ERC Grant Agreement number 339025 GUDHI (Algorithmic Foundations of Geometric Understanding in Higher Dimensions). Arijit Ghosh is supported by Ramanujan Fellowship (No. SB/S2/RJN-064/2015). Part of this work was done when Arijit Ghosh was a Researcher at Max-Planck-Institute for Informatics, Germany, supported by the IndoGerman Max Planck Center for Computer Science (IMPECS). Mathijs Wintraecken also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411 and the Austrian Science Fund (FWF): M-3073. A part of the results described in this paper were presented at SoCG 2018 and in [3]. \r\nOpen access funding provided by the Austrian Science Fund (FWF)." article_processing_charge: No article_type: original author: - first_name: Jean-Daniel full_name: Boissonnat, Jean-Daniel last_name: Boissonnat - first_name: Ramsay full_name: Dyer, Ramsay last_name: Dyer - first_name: Arijit full_name: Ghosh, Arijit last_name: Ghosh - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Boissonnat J-D, Dyer R, Ghosh A, Wintraecken M. Local criteria for triangulating general manifolds. Discrete & Computational Geometry. 2023;69:156-191. doi:10.1007/s00454-022-00431-7 apa: Boissonnat, J.-D., Dyer, R., Ghosh, A., & Wintraecken, M. (2023). Local criteria for triangulating general manifolds. Discrete & Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00431-7 chicago: Boissonnat, Jean-Daniel, Ramsay Dyer, Arijit Ghosh, and Mathijs Wintraecken. “Local Criteria for Triangulating General Manifolds.” Discrete & Computational Geometry. Springer Nature, 2023. https://doi.org/10.1007/s00454-022-00431-7. ieee: J.-D. Boissonnat, R. Dyer, A. Ghosh, and M. Wintraecken, “Local criteria for triangulating general manifolds,” Discrete & Computational Geometry, vol. 69. Springer Nature, pp. 156–191, 2023. ista: Boissonnat J-D, Dyer R, Ghosh A, Wintraecken M. 2023. Local criteria for triangulating general manifolds. Discrete & Computational Geometry. 69, 156–191. mla: Boissonnat, Jean-Daniel, et al. “Local Criteria for Triangulating General Manifolds.” Discrete & Computational Geometry, vol. 69, Springer Nature, 2023, pp. 156–91, doi:10.1007/s00454-022-00431-7. short: J.-D. Boissonnat, R. Dyer, A. Ghosh, M. Wintraecken, Discrete & Computational Geometry 69 (2023) 156–191. date_created: 2023-01-16T10:04:06Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-08-01T12:47:32Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s00454-022-00431-7 ec_funded: 1 external_id: isi: - '000862193600001' file: - access_level: open_access checksum: 46352e0ee71e460848f88685ca852681 content_type: application/pdf creator: dernst date_created: 2023-02-02T11:01:10Z date_updated: 2023-02-02T11:01:10Z file_id: '12488' file_name: 2023_DiscreteCompGeometry_Boissonnat.pdf file_size: 582850 relation: main_file success: 1 file_date_updated: 2023-02-02T11:01:10Z has_accepted_license: '1' intvolume: ' 69' isi: 1 keyword: - Computational Theory and Mathematics - Discrete Mathematics and Combinatorics - Geometry and Topology - Theoretical Computer Science language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 156-191 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: fc390959-9c52-11eb-aca3-afa58bd282b2 grant_number: M03073 name: Learning and triangulating manifolds via collapses publication: Discrete & Computational Geometry publication_identifier: eissn: - 1432-0444 issn: - 0179-5376 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Local criteria for triangulating general manifolds tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 69 year: '2023' ... --- _id: '12421' abstract: - lang: eng text: The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions. acknowledgement: 'We apologize for not being able to mention and cite additional excellent work that would have fit the scope of this review, due to space restraints. We thank Jesse Hansen for comments on the manuscript. We acknowledge support from the Austrian Science Fund (FWF): P33367 and the Institute of Science and Technology Austria.' article_processing_charge: No article_type: original author: - first_name: Florian full_name: Fäßler, Florian id: 404F5528-F248-11E8-B48F-1D18A9856A87 last_name: Fäßler orcid: 0000-0001-7149-769X - first_name: Manjunath full_name: Javoor, Manjunath id: 305ab18b-dc7d-11ea-9b2f-b58195228ea2 last_name: Javoor - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Fäßler F, Javoor M, Schur FK. Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochemical Society Transactions. 2023;51(1):87-99. doi:10.1042/bst20220221 apa: Fäßler, F., Javoor, M., & Schur, F. K. (2023). Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochemical Society Transactions. Portland Press. https://doi.org/10.1042/bst20220221 chicago: Fäßler, Florian, Manjunath Javoor, and Florian KM Schur. “Deciphering the Molecular Mechanisms of Actin Cytoskeleton Regulation in Cell Migration Using Cryo-EM.” Biochemical Society Transactions. Portland Press, 2023. https://doi.org/10.1042/bst20220221. ieee: F. Fäßler, M. Javoor, and F. K. Schur, “Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM,” Biochemical Society Transactions, vol. 51, no. 1. Portland Press, pp. 87–99, 2023. ista: Fäßler F, Javoor M, Schur FK. 2023. Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochemical Society Transactions. 51(1), 87–99. mla: Fäßler, Florian, et al. “Deciphering the Molecular Mechanisms of Actin Cytoskeleton Regulation in Cell Migration Using Cryo-EM.” Biochemical Society Transactions, vol. 51, no. 1, Portland Press, 2023, pp. 87–99, doi:10.1042/bst20220221. short: F. Fäßler, M. Javoor, F.K. Schur, Biochemical Society Transactions 51 (2023) 87–99. date_created: 2023-01-27T10:08:19Z date_published: 2023-02-01T00:00:00Z date_updated: 2023-08-01T12:55:32Z day: '01' ddc: - '570' department: - _id: FlSc doi: 10.1042/bst20220221 external_id: isi: - '000926043100001' file: - access_level: open_access checksum: 4e7069845e3dad22bb44fb71ec624c60 content_type: application/pdf creator: dernst date_created: 2023-03-16T07:58:16Z date_updated: 2023-03-16T07:58:16Z file_id: '12728' file_name: 2023_BioChemicalSocietyTransactions_Faessler.pdf file_size: 10045006 relation: main_file success: 1 file_date_updated: 2023-03-16T07:58:16Z has_accepted_license: '1' intvolume: ' 51' isi: 1 issue: '1' keyword: - Biochemistry language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 87-99 project: - _id: 9B954C5C-BA93-11EA-9121-9846C619BF3A grant_number: P33367 name: Structure and isoform diversity of the Arp2/3 complex publication: Biochemical Society Transactions publication_identifier: eissn: - 1470-8752 issn: - 0300-5127 publication_status: published publisher: Portland Press quality_controlled: '1' scopus_import: '1' status: public title: Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 51 year: '2023' ... --- _id: '12105' abstract: - lang: eng text: Data-driven dimensionality reduction methods such as proper orthogonal decomposition and dynamic mode decomposition have proven to be useful for exploring complex phenomena within fluid dynamics and beyond. A well-known challenge for these techniques is posed by the continuous symmetries, e.g. translations and rotations, of the system under consideration, as drifts in the data dominate the modal expansions without providing an insight into the dynamics of the problem. In the present study, we address this issue for fluid flows in rectangular channels by formulating a continuous symmetry reduction method that eliminates the translations in the streamwise and spanwise directions simultaneously. We demonstrate our method by computing the symmetry-reduced dynamic mode decomposition (SRDMD) of sliding windows of data obtained from the transitional plane-Couette and turbulent plane-Poiseuille flow simulations. In the former setting, SRDMD captures the dynamics in the vicinity of the invariant solutions with translation symmetries, i.e. travelling waves and relative periodic orbits, whereas in the latter, our calculations reveal episodes of turbulent time evolution that can be approximated by a low-dimensional linear expansion. acknowledgement: "E.M. acknowledges funding from the ISTplus fellowship programme. G.Y. and B.H. acknowledge\r\na grant from the Simons Foundation (662960, BH)." article_number: A10 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Elena full_name: Marensi, Elena id: 0BE7553A-1004-11EA-B805-18983DDC885E last_name: Marensi - first_name: Gökhan full_name: Yalniz, Gökhan id: 66E74FA2-D8BF-11E9-8249-8DE2E5697425 last_name: Yalniz orcid: 0000-0002-8490-9312 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 citation: ama: Marensi E, Yalniz G, Hof B, Budanur NB. Symmetry-reduced dynamic mode decomposition of near-wall turbulence. Journal of Fluid Mechanics. 2023;954. doi:10.1017/jfm.2022.1001 apa: Marensi, E., Yalniz, G., Hof, B., & Budanur, N. B. (2023). Symmetry-reduced dynamic mode decomposition of near-wall turbulence. Journal of Fluid Mechanics. Cambridge University Press. https://doi.org/10.1017/jfm.2022.1001 chicago: Marensi, Elena, Gökhan Yalniz, Björn Hof, and Nazmi B Budanur. “Symmetry-Reduced Dynamic Mode Decomposition of near-Wall Turbulence.” Journal of Fluid Mechanics. Cambridge University Press, 2023. https://doi.org/10.1017/jfm.2022.1001. ieee: E. Marensi, G. Yalniz, B. Hof, and N. B. Budanur, “Symmetry-reduced dynamic mode decomposition of near-wall turbulence,” Journal of Fluid Mechanics, vol. 954. Cambridge University Press, 2023. ista: Marensi E, Yalniz G, Hof B, Budanur NB. 2023. Symmetry-reduced dynamic mode decomposition of near-wall turbulence. Journal of Fluid Mechanics. 954, A10. mla: Marensi, Elena, et al. “Symmetry-Reduced Dynamic Mode Decomposition of near-Wall Turbulence.” Journal of Fluid Mechanics, vol. 954, A10, Cambridge University Press, 2023, doi:10.1017/jfm.2022.1001. short: E. Marensi, G. Yalniz, B. Hof, N.B. Budanur, Journal of Fluid Mechanics 954 (2023). date_created: 2023-01-08T23:00:53Z date_published: 2023-01-10T00:00:00Z date_updated: 2023-08-01T12:53:23Z day: '10' ddc: - '530' department: - _id: BjHo doi: 10.1017/jfm.2022.1001 external_id: arxiv: - '2101.07516' isi: - '000903336600001' file: - access_level: open_access checksum: 9224f987caefe5dd85a70814d3cce65c content_type: application/pdf creator: dernst date_created: 2023-02-02T12:34:54Z date_updated: 2023-02-02T12:34:54Z file_id: '12489' file_name: 2023_JourFluidMechanics_Marensi.pdf file_size: 1931647 relation: main_file success: 1 file_date_updated: 2023-02-02T12:34:54Z has_accepted_license: '1' intvolume: ' 954' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 238598C6-32DE-11EA-91FC-C7463DDC885E grant_number: '662960' name: 'Revisiting the Turbulence Problem Using Statistical Mechanics: Experimental Studies on Transitional and Turbulent Flows' publication: Journal of Fluid Mechanics publication_identifier: eissn: - 1469-7645 issn: - 0022-1120 publication_status: published publisher: Cambridge University Press quality_controlled: '1' scopus_import: '1' status: public title: Symmetry-reduced dynamic mode decomposition of near-wall turbulence tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 954 year: '2023' ... --- _id: '12514' abstract: - lang: eng text: The concept of a “speciation continuum” has gained popularity in recent decades. It emphasizes speciation as a continuous process that may be studied by comparing contemporary population pairs that show differing levels of divergence. In their recent perspective article in Evolution, Stankowski and Ravinet provided a valuable service by formally defining the speciation continuum as a continuum of reproductive isolation, based on opinions gathered from a survey of speciation researchers. While we agree that the speciation continuum has been a useful concept to advance the understanding of the speciation process, some intrinsic limitations exist. Here, we advocate for a multivariate extension, the speciation hypercube, first proposed by Dieckmann et al. in 2004, but rarely used since. We extend the idea of the speciation cube and suggest it has strong conceptual and practical advantages over a one-dimensional model. We illustrate how the speciation hypercube can be used to visualize and compare different speciation trajectories, providing new insights into the processes and mechanisms of speciation. A key strength of the speciation hypercube is that it provides a unifying framework for speciation research, as it allows questions from apparently disparate subfields to be addressed in a single conceptual model. acknowledgement: "The authors of this article were supported by LMU Munich (J.B.W.W.), a James S. McDonnell Foundation postdoctoral fellowship (A.K.H.). P.N. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No. 770826 EE-Dynamics).\r\nWe thank participants in the 2019 Gordon Conference on Speciation for the extensive conversation on this topic. Thanks to Dan Funk for providing permission to use data from Funk et al. 2006, and for comments on the manuscript." article_processing_charge: No article_type: original author: - first_name: Daniel I. full_name: Bolnick, Daniel I. last_name: Bolnick - first_name: Amanda K. full_name: Hund, Amanda K. last_name: Hund - first_name: Patrik full_name: Nosil, Patrik last_name: Nosil - first_name: Foen full_name: Peng, Foen last_name: Peng - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Swapna full_name: Subramanian, Swapna last_name: Subramanian - first_name: Jochen B.W. full_name: Wolf, Jochen B.W. last_name: Wolf - first_name: Roman full_name: Yukilevich, Roman last_name: Yukilevich citation: ama: 'Bolnick DI, Hund AK, Nosil P, et al. A multivariate view of the speciation continuum. Evolution: International journal of organic evolution. 2023;77(1):318-328. doi:10.1093/evolut/qpac004' apa: 'Bolnick, D. I., Hund, A. K., Nosil, P., Peng, F., Ravinet, M., Stankowski, S., … Yukilevich, R. (2023). A multivariate view of the speciation continuum. Evolution: International Journal of Organic Evolution. Oxford University Press. https://doi.org/10.1093/evolut/qpac004' chicago: 'Bolnick, Daniel I., Amanda K. Hund, Patrik Nosil, Foen Peng, Mark Ravinet, Sean Stankowski, Swapna Subramanian, Jochen B.W. Wolf, and Roman Yukilevich. “A Multivariate View of the Speciation Continuum.” Evolution: International Journal of Organic Evolution. Oxford University Press, 2023. https://doi.org/10.1093/evolut/qpac004.' ieee: 'D. I. Bolnick et al., “A multivariate view of the speciation continuum,” Evolution: International journal of organic evolution, vol. 77, no. 1. Oxford University Press, pp. 318–328, 2023.' ista: 'Bolnick DI, Hund AK, Nosil P, Peng F, Ravinet M, Stankowski S, Subramanian S, Wolf JBW, Yukilevich R. 2023. A multivariate view of the speciation continuum. Evolution: International journal of organic evolution. 77(1), 318–328.' mla: 'Bolnick, Daniel I., et al. “A Multivariate View of the Speciation Continuum.” Evolution: International Journal of Organic Evolution, vol. 77, no. 1, Oxford University Press, 2023, pp. 318–28, doi:10.1093/evolut/qpac004.' short: 'D.I. Bolnick, A.K. Hund, P. Nosil, F. Peng, M. Ravinet, S. Stankowski, S. Subramanian, J.B.W. Wolf, R. Yukilevich, Evolution: International Journal of Organic Evolution 77 (2023) 318–328.' date_created: 2023-02-05T23:00:59Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-08-01T12:58:30Z day: '01' department: - _id: NiBa doi: 10.1093/evolut/qpac004 external_id: isi: - '001021686300024' pmid: - '36622661' intvolume: ' 77' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/evolut/qpac004 month: '01' oa: 1 oa_version: Published Version page: 318-328 pmid: 1 publication: 'Evolution: International journal of organic evolution' publication_identifier: eissn: - 1558-5646 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: A multivariate view of the speciation continuum type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 77 year: '2023' ... --- _id: '12548' abstract: - lang: eng text: The limited exchange between human communities is a key factor in preventing the spread of COVID-19. This paper introduces a digital framework that combines an integration of real mobility data at the country scale with a series of modeling techniques and visual capabilities that highlight mobility patterns before and during the pandemic. The findings not only significantly exhibit mobility trends and different degrees of similarities at regional and local levels but also provide potential insight into the emergence of a pandemic on human behavior patterns and their likely socio-economic impacts. article_number: '00093' article_processing_charge: No author: - first_name: Mohammad full_name: Forghani, Mohammad last_name: Forghani - first_name: Christophe full_name: Claramunt, Christophe last_name: Claramunt - first_name: Farid full_name: Karimipour, Farid id: 2A2BCDC4-CF62-11E9-BE5E-3B1EE6697425 last_name: Karimipour orcid: 0000-0001-6746-4174 - first_name: Georg full_name: Heiler, Georg last_name: Heiler citation: ama: 'Forghani M, Claramunt C, Karimipour F, Heiler G. Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic. In: 2022 IEEE International Conference on Data Mining Workshops. Institute of Electrical and Electronics Engineers; 2023. doi:10.1109/icdmw58026.2022.00093' apa: 'Forghani, M., Claramunt, C., Karimipour, F., & Heiler, G. (2023). Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic. In 2022 IEEE International Conference on Data Mining Workshops. Orlando, FL, United States: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/icdmw58026.2022.00093' chicago: Forghani, Mohammad, Christophe Claramunt, Farid Karimipour, and Georg Heiler. “Visual Analytics of Mobility Network Changes Observed Using Mobile Phone Data during COVID-19 Pandemic.” In 2022 IEEE International Conference on Data Mining Workshops. Institute of Electrical and Electronics Engineers, 2023. https://doi.org/10.1109/icdmw58026.2022.00093. ieee: M. Forghani, C. Claramunt, F. Karimipour, and G. Heiler, “Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic,” in 2022 IEEE International Conference on Data Mining Workshops, Orlando, FL, United States, 2023. ista: 'Forghani M, Claramunt C, Karimipour F, Heiler G. 2023. Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic. 2022 IEEE International Conference on Data Mining Workshops. ICDMW: Conference on Data Mining Workshops, 00093.' mla: Forghani, Mohammad, et al. “Visual Analytics of Mobility Network Changes Observed Using Mobile Phone Data during COVID-19 Pandemic.” 2022 IEEE International Conference on Data Mining Workshops, 00093, Institute of Electrical and Electronics Engineers, 2023, doi:10.1109/icdmw58026.2022.00093. short: M. Forghani, C. Claramunt, F. Karimipour, G. Heiler, in:, 2022 IEEE International Conference on Data Mining Workshops, Institute of Electrical and Electronics Engineers, 2023. conference: end_date: 2022-12-01 location: Orlando, FL, United States name: 'ICDMW: Conference on Data Mining Workshops' start_date: 2022-11-28 date_created: 2023-02-14T07:56:21Z date_published: 2023-02-08T00:00:00Z date_updated: 2023-08-01T13:15:48Z day: '08' ddc: - '600' department: - _id: HeEd doi: 10.1109/icdmw58026.2022.00093 external_id: isi: - '000971492200145' file: - access_level: open_access checksum: c253bee25e6dfe484f96662daa119cb6 content_type: application/pdf creator: fkarimip date_created: 2023-02-14T07:58:26Z date_updated: 2023-02-14T07:58:26Z file_id: '12549' file_name: Visual Analysis_Mobility_COVID19 - SocDM2022.pdf file_size: 1183339 relation: main_file success: 1 file_date_updated: 2023-02-14T07:58:26Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Submitted Version publication: 2022 IEEE International Conference on Data Mining Workshops publication_identifier: eisbn: - '9798350346091' eissn: - 2375-9259 publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' status: public title: Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2023' ... --- _id: '12563' abstract: - lang: eng text: 'he approximate graph coloring problem, whose complexity is unresolved in most cases, concerns finding a c-coloring of a graph that is promised to be k-colorable, where c≥k. This problem naturally generalizes to promise graph homomorphism problems and further to promise constraint satisfaction problems. The complexity of these problems has recently been studied through an algebraic approach. In this paper, we introduce two new techniques to analyze the complexity of promise CSPs: one is based on topology and the other on adjunction. We apply these techniques, together with the previously introduced algebraic approach, to obtain new unconditional NP-hardness results for a significant class of approximate graph coloring and promise graph homomorphism problems.' acknowledgement: "Andrei Krokhin and Jakub Opršal were supported by the UK EPSRC grant EP/R034516/1. Jakub Opršal has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 101034413. Stanislav Živný was supported by a Royal Society University Research Fellowship. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532). The paper re\x1Eects only the authors’ views and not the views of the ERC or the European Commission. " article_processing_charge: No article_type: original author: - first_name: Andrei full_name: Krokhin, Andrei last_name: Krokhin - first_name: Jakub full_name: Opršal, Jakub id: ec596741-c539-11ec-b829-c79322a91242 last_name: Opršal orcid: 0000-0003-1245-3456 - first_name: Marcin full_name: Wrochna, Marcin last_name: Wrochna - first_name: Stanislav full_name: Živný, Stanislav last_name: Živný citation: ama: Krokhin A, Opršal J, Wrochna M, Živný S. Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing. 2023;52(1):38-79. doi:10.1137/20m1378223 apa: Krokhin, A., Opršal, J., Wrochna, M., & Živný, S. (2023). Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing. Society for Industrial & Applied Mathematics. https://doi.org/10.1137/20m1378223 chicago: Krokhin, Andrei, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. “Topology and Adjunction in Promise Constraint Satisfaction.” SIAM Journal on Computing. Society for Industrial & Applied Mathematics, 2023. https://doi.org/10.1137/20m1378223. ieee: A. Krokhin, J. Opršal, M. Wrochna, and S. Živný, “Topology and adjunction in promise constraint satisfaction,” SIAM Journal on Computing, vol. 52, no. 1. Society for Industrial & Applied Mathematics, pp. 38–79, 2023. ista: Krokhin A, Opršal J, Wrochna M, Živný S. 2023. Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing. 52(1), 38–79. mla: Krokhin, Andrei, et al. “Topology and Adjunction in Promise Constraint Satisfaction.” SIAM Journal on Computing, vol. 52, no. 1, Society for Industrial & Applied Mathematics, 2023, pp. 38–79, doi:10.1137/20m1378223. short: A. Krokhin, J. Opršal, M. Wrochna, S. Živný, SIAM Journal on Computing 52 (2023) 38–79. date_created: 2023-02-16T07:03:52Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-08-01T13:11:30Z day: '01' department: - _id: UlWa doi: 10.1137/20m1378223 ec_funded: 1 external_id: arxiv: - '2003.11351' isi: - '000955000000001' intvolume: ' 52' isi: 1 issue: '1' keyword: - General Mathematics - General Computer Science language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2003.11351 month: '01' oa: 1 oa_version: Preprint page: 38-79 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: SIAM Journal on Computing publication_identifier: eissn: - 1095-7111 issn: - 0097-5397 publication_status: published publisher: Society for Industrial & Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: Topology and adjunction in promise constraint satisfaction type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 52 year: '2023' ... --- _id: '12545' abstract: - lang: eng text: We study active surface wetting using a minimal model of bacteria that takes into account the intrinsic motility diversity of living matter. A mixture of “fast” and “slow” self-propelled Brownian particles is considered in the presence of a wall. The evolution of the wetting layer thickness shows an overshoot before stationarity and its composition evolves in two stages, equilibrating after a slow elimination of excess particles. Nonmonotonic evolutions are shown to arise from delayed avalanches towards the dilute phase combined with the emergence of a transient particle front. acknowledgement: 'MR-V and RS are supported by Fondecyt Grant No. 1220536 and ANID – Millennium Science Initiative Program – NCN19 170D, Chile. PdC is supported by grant #2021/10139-2, Sao Paulo Research Foundation (FAPESP), Brazil.' article_number: '014608' article_processing_charge: No article_type: original author: - first_name: Mauricio Nicolas full_name: Rojas Vega, Mauricio Nicolas id: 441e7207-f91f-11ec-b67c-9e6fe3d8fd6d last_name: Rojas Vega - first_name: Pablo full_name: De Castro, Pablo last_name: De Castro - first_name: Rodrigo full_name: Soto, Rodrigo last_name: Soto citation: ama: Rojas Vega MN, De Castro P, Soto R. Wetting dynamics by mixtures of fast and slow self-propelled particles. Physical Review E. 2023;107(1). doi:10.1103/PhysRevE.107.014608 apa: Rojas Vega, M. N., De Castro, P., & Soto, R. (2023). Wetting dynamics by mixtures of fast and slow self-propelled particles. Physical Review E. American Physical Society. https://doi.org/10.1103/PhysRevE.107.014608 chicago: Rojas Vega, Mauricio Nicolas, Pablo De Castro, and Rodrigo Soto. “Wetting Dynamics by Mixtures of Fast and Slow Self-Propelled Particles.” Physical Review E. American Physical Society, 2023. https://doi.org/10.1103/PhysRevE.107.014608. ieee: M. N. Rojas Vega, P. De Castro, and R. Soto, “Wetting dynamics by mixtures of fast and slow self-propelled particles,” Physical Review E, vol. 107, no. 1. American Physical Society, 2023. ista: Rojas Vega MN, De Castro P, Soto R. 2023. Wetting dynamics by mixtures of fast and slow self-propelled particles. Physical Review E. 107(1), 014608. mla: Rojas Vega, Mauricio Nicolas, et al. “Wetting Dynamics by Mixtures of Fast and Slow Self-Propelled Particles.” Physical Review E, vol. 107, no. 1, 014608, American Physical Society, 2023, doi:10.1103/PhysRevE.107.014608. short: M.N. Rojas Vega, P. De Castro, R. Soto, Physical Review E 107 (2023). date_created: 2023-02-12T23:00:59Z date_published: 2023-01-24T00:00:00Z date_updated: 2023-08-01T13:09:45Z day: '24' department: - _id: GradSch doi: 10.1103/PhysRevE.107.014608 external_id: arxiv: - '2301.01856' isi: - '000963909800006' intvolume: ' 107' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2301.01856 month: '01' oa: 1 oa_version: Preprint publication: Physical Review E publication_identifier: eissn: - 2470-0053 issn: - 2470-0045 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Wetting dynamics by mixtures of fast and slow self-propelled particles type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12427' abstract: - lang: eng text: 'Let k be a number field and X a smooth, geometrically integral quasi-projective variety over k. For any linear algebraic group G over k and any G-torsor g : Z → X, we observe that if the étale-Brauer obstruction is the only one for strong approximation off a finite set of places S for all twists of Z by elements in H^1(k, G), then the étale-Brauer obstruction is the only one for strong approximation off a finite set of places S for X. As an application, we show that any homogeneous space of the form G/H with G a connected linear algebraic group over k satisfies strong approximation off the infinite places with étale-Brauer obstruction, under some compactness assumptions when k is totally real. We also prove more refined strong approximation results for homogeneous spaces of the form G/H with G semisimple simply connected and H finite, using the theory of torsors and descent.' article_processing_charge: No article_type: original author: - first_name: Francesca full_name: Balestrieri, Francesca id: 3ACCD756-F248-11E8-B48F-1D18A9856A87 last_name: Balestrieri citation: ama: Balestrieri F. Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups. Proceedings of the American Mathematical Society. 2023;151(3):907-914. doi:10.1090/proc/15239 apa: Balestrieri, F. (2023). Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/15239 chicago: Balestrieri, Francesca. “Some Remarks on Strong Approximation and Applications to Homogeneous Spaces of Linear Algebraic Groups.” Proceedings of the American Mathematical Society. American Mathematical Society, 2023. https://doi.org/10.1090/proc/15239. ieee: F. Balestrieri, “Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups,” Proceedings of the American Mathematical Society, vol. 151, no. 3. American Mathematical Society, pp. 907–914, 2023. ista: Balestrieri F. 2023. Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups. Proceedings of the American Mathematical Society. 151(3), 907–914. mla: Balestrieri, Francesca. “Some Remarks on Strong Approximation and Applications to Homogeneous Spaces of Linear Algebraic Groups.” Proceedings of the American Mathematical Society, vol. 151, no. 3, American Mathematical Society, 2023, pp. 907–14, doi:10.1090/proc/15239. short: F. Balestrieri, Proceedings of the American Mathematical Society 151 (2023) 907–914. date_created: 2023-01-29T23:00:58Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-08-01T13:03:32Z day: '01' department: - _id: TiBr doi: 10.1090/proc/15239 external_id: isi: - '000898440000001' intvolume: ' 151' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://hal.science/hal-03013498/ month: '01' oa: 1 oa_version: Preprint page: 907-914 publication: Proceedings of the American Mathematical Society publication_identifier: eissn: - 1088-6826 issn: - 0002-9939 publication_status: published publisher: American Mathematical Society quality_controlled: '1' scopus_import: '1' status: public title: Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 151 year: '2023' ... --- _id: '12567' abstract: - lang: eng text: Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations. acknowledgement: This work has been supported by funding of the German Research Foundation (Deutsche Forschungsgemeinschaft [DFG], CRC 166, Project B06 to M.H. and A.-L.S., FOR 3004 SYNABS P1 to M.H.) and by the Interdisciplinary Clinical Research Center (IZKF) Würzburg (Z-3/69 to M.M.P., N-229 to M.H. and A.-L.S.). A.M. is funded by the University of Leipzig Clinician Scientist Program. article_number: '2128' article_processing_charge: No article_type: original author: - first_name: Achmed full_name: Mrestani, Achmed last_name: Mrestani - first_name: Katharina full_name: Lichter, Katharina id: 39302e62-fcfc-11ec-8196-8b01447dbd3d last_name: Lichter - first_name: Anna Leena full_name: Sirén, Anna Leena last_name: Sirén - first_name: Manfred full_name: Heckmann, Manfred last_name: Heckmann - first_name: Mila M. full_name: Paul, Mila M. last_name: Paul - first_name: Martin full_name: Pauli, Martin last_name: Pauli citation: ama: Mrestani A, Lichter K, Sirén AL, Heckmann M, Paul MM, Pauli M. Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation. International Journal of Molecular Sciences. 2023;24(3). doi:10.3390/ijms24032128 apa: Mrestani, A., Lichter, K., Sirén, A. L., Heckmann, M., Paul, M. M., & Pauli, M. (2023). Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms24032128 chicago: Mrestani, Achmed, Katharina Lichter, Anna Leena Sirén, Manfred Heckmann, Mila M. Paul, and Martin Pauli. “Single-Molecule Localization Microscopy of Presynaptic Active Zones in Drosophila Melanogaster after Rapid Cryofixation.” International Journal of Molecular Sciences. MDPI, 2023. https://doi.org/10.3390/ijms24032128. ieee: A. Mrestani, K. Lichter, A. L. Sirén, M. Heckmann, M. M. Paul, and M. Pauli, “Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation,” International Journal of Molecular Sciences, vol. 24, no. 3. MDPI, 2023. ista: Mrestani A, Lichter K, Sirén AL, Heckmann M, Paul MM, Pauli M. 2023. Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation. International Journal of Molecular Sciences. 24(3), 2128. mla: Mrestani, Achmed, et al. “Single-Molecule Localization Microscopy of Presynaptic Active Zones in Drosophila Melanogaster after Rapid Cryofixation.” International Journal of Molecular Sciences, vol. 24, no. 3, 2128, MDPI, 2023, doi:10.3390/ijms24032128. short: A. Mrestani, K. Lichter, A.L. Sirén, M. Heckmann, M.M. Paul, M. Pauli, International Journal of Molecular Sciences 24 (2023). date_created: 2023-02-19T23:00:56Z date_published: 2023-01-21T00:00:00Z date_updated: 2023-08-01T13:16:36Z day: '21' ddc: - '570' department: - _id: PeJo doi: 10.3390/ijms24032128 external_id: isi: - '000930324700001' file: - access_level: open_access checksum: 69a35dcd3e0249f902ab881b06ee2e58 content_type: application/pdf creator: dernst date_created: 2023-02-20T07:09:27Z date_updated: 2023-02-20T07:09:27Z file_id: '12569' file_name: 2023_IJMS_Mrestani.pdf file_size: 2823025 relation: main_file success: 1 file_date_updated: 2023-02-20T07:09:27Z has_accepted_license: '1' intvolume: ' 24' isi: 1 issue: '3' language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: International Journal of Molecular Sciences publication_identifier: eissn: - 1422-0067 publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 24 year: '2023' ... --- _id: '12566' abstract: - lang: eng text: "Approximate agreement is one of the few variants of consensus that can be solved in a wait-free manner in asynchronous systems where processes communicate by reading and writing to shared memory. In this work, we consider a natural generalisation of approximate agreement on arbitrary undirected connected graphs. Each process is given a node of the graph as input and, if non-faulty, must output a node such that\r\n– all the outputs are within distance 1 of one another, and\r\n– each output value lies on a shortest path between two input values.\r\nFrom prior work, it is known that there is no wait-free algorithm among processes for this problem on any cycle of length , by reduction from 2-set agreement (Castañeda et al., 2018).\r\n\r\nIn this work, we investigate the solvability of this task on general graphs. We give a new, direct proof of the impossibility of approximate agreement on cycles of length , via a generalisation of Sperner's Lemma to convex polygons. We also extend the reduction from 2-set agreement to a larger class of graphs, showing that approximate agreement on these graphs is unsolvable. On the positive side, we present a wait-free algorithm for a different class of graphs, which properly contains the class of chordal graphs." acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 805223 ScaleML) and under the Marie Skłodowska-Curie grant agreement No. 840605 and from the Natural Sciences and Engineering Research Council of Canada grant RGPIN-2020-04178. Part of this work was done while Faith Ellen was visiting IST Austria. article_number: '113733' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Faith full_name: Ellen, Faith last_name: Ellen - first_name: Joel full_name: Rybicki, Joel id: 334EFD2E-F248-11E8-B48F-1D18A9856A87 last_name: Rybicki orcid: 0000-0002-6432-6646 citation: ama: Alistarh D-A, Ellen F, Rybicki J. Wait-free approximate agreement on graphs. Theoretical Computer Science. 2023;948(2). doi:10.1016/j.tcs.2023.113733 apa: Alistarh, D.-A., Ellen, F., & Rybicki, J. (2023). Wait-free approximate agreement on graphs. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/j.tcs.2023.113733 chicago: Alistarh, Dan-Adrian, Faith Ellen, and Joel Rybicki. “Wait-Free Approximate Agreement on Graphs.” Theoretical Computer Science. Elsevier, 2023. https://doi.org/10.1016/j.tcs.2023.113733. ieee: D.-A. Alistarh, F. Ellen, and J. Rybicki, “Wait-free approximate agreement on graphs,” Theoretical Computer Science, vol. 948, no. 2. Elsevier, 2023. ista: Alistarh D-A, Ellen F, Rybicki J. 2023. Wait-free approximate agreement on graphs. Theoretical Computer Science. 948(2), 113733. mla: Alistarh, Dan-Adrian, et al. “Wait-Free Approximate Agreement on Graphs.” Theoretical Computer Science, vol. 948, no. 2, 113733, Elsevier, 2023, doi:10.1016/j.tcs.2023.113733. short: D.-A. Alistarh, F. Ellen, J. Rybicki, Theoretical Computer Science 948 (2023). date_created: 2023-02-19T23:00:55Z date_published: 2023-02-28T00:00:00Z date_updated: 2023-08-01T13:17:20Z day: '28' ddc: - '000' department: - _id: DaAl doi: 10.1016/j.tcs.2023.113733 ec_funded: 1 external_id: isi: - '000934262700001' file: - access_level: open_access checksum: b27c5290f2f1500c403494364ee39c9f content_type: application/pdf creator: dernst date_created: 2023-02-20T07:30:20Z date_updated: 2023-02-20T07:30:20Z file_id: '12570' file_name: 2023_TheoreticalCompScience_Alistarh.pdf file_size: 602333 relation: main_file success: 1 file_date_updated: 2023-02-20T07:30:20Z has_accepted_license: '1' intvolume: ' 948' isi: 1 issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning - _id: 26A5D39A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '840605' name: Coordination in constrained and natural distributed systems publication: Theoretical Computer Science publication_identifier: issn: - 0304-3975 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Wait-free approximate agreement on graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 948 year: '2023' ... --- _id: '12681' abstract: - lang: eng text: The dissolution of minute concentration of polymers in wall-bounded flows is well-known for its unparalleled ability to reduce turbulent friction drag. Another phenomenon, elasto-inertial turbulence (EIT), has been far less studied even though elastic instabilities have already been observed in dilute polymer solutions before the discovery of polymer drag reduction. EIT is a chaotic state driven by polymer dynamics that is observed across many orders of magnitude in Reynolds number. It involves energy transfer from small elastic scales to large flow scales. The investigation of the mechanisms of EIT offers the possibility to better understand other complex phenomena such as elastic turbulence and maximum drag reduction. In this review, we survey recent research efforts that are advancing the understanding of the dynamics of EIT. We highlight the fundamental differences between EIT and Newtonian/inertial turbulence from the perspective of experiments, numerical simulations, instabilities, and coherent structures. Finally, we discuss the possible links between EIT and elastic turbulence and polymer drag reduction, as well as the remaining challenges in unraveling the self-sustaining mechanism of EIT. acknowledgement: Part of the material presented here is based upon work supported by the National Science Foundation CBET (Chemical, Bioengineering, Environmental and Transport Systems) award 1805636 (to Y.D.), the Binational Science Foundation award 2016145 (to Y.D. and Victor Steinberg), a FRIA (Fund for Research Training in Industry and Agriculture) grant of the Belgian F.R.S.-FNRS (National Fund for Scientific Research) (to V.E.T.), the Marie Curie FP7 Career Integration grant PCIG10-GA-2011-304073 (to V.E.T.), and the Fonds spéciaux pour la recherche grant C-13/19 of the University of Liege (to V.E.T.). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CECI) funded by the Belgian F.R.S.-FNRS, the Vermont Advanced Computing Center (VACC), the Partnership for Advanced Computing in Europe (PRACE), and the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (grant agreement 117545). article_processing_charge: No article_type: original author: - first_name: Yves full_name: Dubief, Yves last_name: Dubief - first_name: Vincent E. full_name: Terrapon, Vincent E. last_name: Terrapon - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Dubief Y, Terrapon VE, Hof B. Elasto-inertial turbulence. Annual Review of Fluid Mechanics. 2023;55(1):675-705. doi:10.1146/annurev-fluid-032822-025933 apa: Dubief, Y., Terrapon, V. E., & Hof, B. (2023). Elasto-inertial turbulence. Annual Review of Fluid Mechanics. Annual Reviews. https://doi.org/10.1146/annurev-fluid-032822-025933 chicago: Dubief, Yves, Vincent E. Terrapon, and Björn Hof. “Elasto-Inertial Turbulence.” Annual Review of Fluid Mechanics. Annual Reviews, 2023. https://doi.org/10.1146/annurev-fluid-032822-025933. ieee: Y. Dubief, V. E. Terrapon, and B. Hof, “Elasto-inertial turbulence,” Annual Review of Fluid Mechanics, vol. 55, no. 1. Annual Reviews, pp. 675–705, 2023. ista: Dubief Y, Terrapon VE, Hof B. 2023. Elasto-inertial turbulence. Annual Review of Fluid Mechanics. 55(1), 675–705. mla: Dubief, Yves, et al. “Elasto-Inertial Turbulence.” Annual Review of Fluid Mechanics, vol. 55, no. 1, Annual Reviews, 2023, pp. 675–705, doi:10.1146/annurev-fluid-032822-025933. short: Y. Dubief, V.E. Terrapon, B. Hof, Annual Review of Fluid Mechanics 55 (2023) 675–705. date_created: 2023-02-26T23:01:01Z date_published: 2023-01-19T00:00:00Z date_updated: 2023-08-01T13:19:47Z day: '19' ddc: - '530' department: - _id: BjHo doi: 10.1146/annurev-fluid-032822-025933 external_id: isi: - '000915418100026' file: - access_level: open_access checksum: 2666aa3af2a25252d35eb8681d3edff7 content_type: application/pdf creator: dernst date_created: 2023-02-27T09:23:02Z date_updated: 2023-02-27T09:23:02Z file_id: '12690' file_name: 2023_AnnReviewFluidMech_Dubief.pdf file_size: 4036706 relation: main_file success: 1 file_date_updated: 2023-02-27T09:23:02Z has_accepted_license: '1' intvolume: ' 55' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 675-705 publication: Annual Review of Fluid Mechanics publication_identifier: eissn: - 1545-4479 issn: - 0066-4189 publication_status: published publisher: Annual Reviews quality_controlled: '1' scopus_import: '1' status: public title: Elasto-inertial turbulence tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 55 year: '2023' ... --- _id: '12682' abstract: - lang: eng text: 'Since the seminal studies by Osborne Reynolds in the nineteenth century, pipe flow has served as a primary prototype for investigating the transition to turbulence in wall-bounded flows. Despite the apparent simplicity of this flow, various facets of this problem have occupied researchers for more than a century. Here we review insights from three distinct perspectives: (a) stability and susceptibility of laminar flow, (b) phase transition and spatiotemporal dynamics, and (c) dynamical systems analysis of the Navier—Stokes equations. We show how these perspectives have led to a profound understanding of the onset of turbulence in pipe flow. Outstanding open points, applications to flows of complex fluids, and similarities with other wall-bounded flows are discussed.' acknowledgement: 'The authors are very grateful to Laurette Tuckerman for her helpful comments. This work was supported by grants from the Simons Foundation (grant numbers 662985, D.B., and 662960, B.H.) and the Priority Programme “SPP 1881: Turbulent Superstructures” of the Deutsche Forschungsgemeinschaft (grant number AV120/3-2 to M.A.).' article_processing_charge: No article_type: original author: - first_name: Marc full_name: Avila, Marc last_name: Avila - first_name: Dwight full_name: Barkley, Dwight last_name: Barkley - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 citation: ama: Avila M, Barkley D, Hof B. Transition to turbulence in pipe flow. Annual Review of Fluid Mechanics. 2023;55:575-602. doi:10.1146/annurev-fluid-120720-025957 apa: Avila, M., Barkley, D., & Hof, B. (2023). Transition to turbulence in pipe flow. Annual Review of Fluid Mechanics. Annual Reviews. https://doi.org/10.1146/annurev-fluid-120720-025957 chicago: Avila, Marc, Dwight Barkley, and Björn Hof. “Transition to Turbulence in Pipe Flow.” Annual Review of Fluid Mechanics. Annual Reviews, 2023. https://doi.org/10.1146/annurev-fluid-120720-025957. ieee: M. Avila, D. Barkley, and B. Hof, “Transition to turbulence in pipe flow,” Annual Review of Fluid Mechanics, vol. 55. Annual Reviews, pp. 575–602, 2023. ista: Avila M, Barkley D, Hof B. 2023. Transition to turbulence in pipe flow. Annual Review of Fluid Mechanics. 55, 575–602. mla: Avila, Marc, et al. “Transition to Turbulence in Pipe Flow.” Annual Review of Fluid Mechanics, vol. 55, Annual Reviews, 2023, pp. 575–602, doi:10.1146/annurev-fluid-120720-025957. short: M. Avila, D. Barkley, B. Hof, Annual Review of Fluid Mechanics 55 (2023) 575–602. date_created: 2023-02-26T23:01:01Z date_published: 2023-01-19T00:00:00Z date_updated: 2023-08-01T13:20:30Z day: '19' ddc: - '530' department: - _id: BjHo doi: 10.1146/annurev-fluid-120720-025957 external_id: isi: - '000915418100023' file: - access_level: open_access checksum: f99ef30f76cabc9e5e1946b380c16db4 content_type: application/pdf creator: dernst date_created: 2023-02-27T09:35:52Z date_updated: 2023-02-27T09:35:52Z file_id: '12691' file_name: 2023_AnnReviewFluidMech_Avila.pdf file_size: 4769537 relation: main_file success: 1 file_date_updated: 2023-02-27T09:35:52Z has_accepted_license: '1' intvolume: ' 55' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 575-602 project: - _id: 238598C6-32DE-11EA-91FC-C7463DDC885E grant_number: '662960' name: 'Revisiting the Turbulence Problem Using Statistical Mechanics: Experimental Studies on Transitional and Turbulent Flows' publication: Annual Review of Fluid Mechanics publication_identifier: issn: - 0066-4189 publication_status: published publisher: Annual Reviews quality_controlled: '1' scopus_import: '1' status: public title: Transition to turbulence in pipe flow tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 55 year: '2023' ... --- _id: '12708' abstract: - lang: eng text: Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units’ translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter. acknowledgement: 'All authors are grateful to the Lorentz Center for providing a venue for stimulating scientific discussions and to sponsor a workshop on the topic of “Self-organisation under confinement” along with the 4TU Federation, the J. M. Burgers Center for Fluid Dynamics and the MESA+ Institute for Nanotechnology at the University of Twente. The authors are also grateful to Paolo Malgaretti, Federico Toschi, Twan Wilting and Jaap den Toonder for valuable feedback. N. A. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) under Contracts no. PTDC/FIS-MAC/28146/2017 (LISBOA-01-0145-FEDER-028146), UIDB/00618/2020, and UIDP/00618/2020. L. M. C. J. acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO) through a START-UP, Physics Projectruimte, and Vidi grant. I. C. was supported in part by a grant from by the Army Research Office (ARO W911NF-18-1-0032) and the Cornell Center for Materials Research (DMR-1719875). O. D. acknowledges funding by the Agence Nationale pour la Recherche under Grant No ANR-18-CE33-0006 MSR. M. D. acknowledges financial support from the European Research Council (Grant No. ERC-2019-ADV-H2020 884902 SoftML). W. M. D. acknowledges funding from a BBSRC New Investigator Grant (BB/R018383/1). S. G. was supported by DARPA Young Faculty Award # D19AP00046, and NSF IIS grant # 1955210. H. G. acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO) through Veni Grant No. 680-47-451. R. G. acknowledges support from the Max Planck School Matter to Life and the MaxSynBio Consortium, which are jointly funded by the Federal Ministry of Education and Research (BMBF) of Germany, and the Max Planck Society. L. I. acknowledges funding from the Horizon Europe ERC Consolidator Grant ACTIVE_ ADAPTIVE (Grant No. 101001514). G. H. K. gratefully acknowledges the NWO Talent Programme which is financed by the Dutch Research Council (project number VI.C.182.004). H. L. and N. V. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) under grant numbers VO 1824/8-1 and LO 418/22-1. R. M. acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG) under grant number ME 1535/13-1 and ME 1535/16-1. M. P. acknowledges funding from the Ramón y Cajal Program, grant no. RYC-2018-02534, and the Leverhulme Trust, grant no. RPG-2018-345. A. Š. acknowledges financial support from the European Research Council (Grant No. ERC-2018-STG-H2020 802960 NEPA). A. S. acknowledges funding from an ATTRACT Investigator Grant (No. A17/MS/11572821/MBRACE) from the Luxembourg National Research Fund. C. S. acknowledges funding from the French Agence Nationale pour la Recherche (ANR), grant ANR-14-CE090006 and ANR-12-BSV5001401, by the Fondation pour la Recherche Médicale (FRM), grant DEQ20120323737, and from the PIC3I of Institut Curie, France. I. T. acknowledges funding from grant IED2019-00058I/AEI/10.13039/501100011033. M. P. and I. T. also acknowledge funding from grant PID2019-104232B-I00/AEI/10.13039/501100011033 and from the H2020 MSCA ITN PHYMOT (Grant agreement No 95591). I. Z. acknowledges funding from Project PID2020-114839GB-I00 MINECO/AEI/FEDER, UE. A. M. acknowledges funding from the European Research Council, Starting Grant No. 678573 NanoPacks. G. V. acknowledges sponsorship for this work by the US Office of Naval Research Global (Award No. N62909-18-1-2170).' article_processing_charge: No article_type: original author: - first_name: Nuno A.M. full_name: Araújo, Nuno A.M. last_name: Araújo - first_name: Liesbeth M.C. full_name: Janssen, Liesbeth M.C. last_name: Janssen - first_name: Thomas full_name: Barois, Thomas last_name: Barois - first_name: Guido full_name: Boffetta, Guido last_name: Boffetta - first_name: Itai full_name: Cohen, Itai last_name: Cohen - first_name: Alessandro full_name: Corbetta, Alessandro last_name: Corbetta - first_name: Olivier full_name: Dauchot, Olivier last_name: Dauchot - first_name: Marjolein full_name: Dijkstra, Marjolein last_name: Dijkstra - first_name: William M. full_name: Durham, William M. last_name: Durham - first_name: Audrey full_name: Dussutour, Audrey last_name: Dussutour - first_name: Simon full_name: Garnier, Simon last_name: Garnier - first_name: Hanneke full_name: Gelderblom, Hanneke last_name: Gelderblom - first_name: Ramin full_name: Golestanian, Ramin last_name: Golestanian - first_name: Lucio full_name: Isa, Lucio last_name: Isa - first_name: Gijsje H. full_name: Koenderink, Gijsje H. last_name: Koenderink - first_name: Hartmut full_name: Löwen, Hartmut last_name: Löwen - first_name: Ralf full_name: Metzler, Ralf last_name: Metzler - first_name: Marco full_name: Polin, Marco last_name: Polin - first_name: C. Patrick full_name: Royall, C. Patrick last_name: Royall - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Anupam full_name: Sengupta, Anupam last_name: Sengupta - first_name: Cécile full_name: Sykes, Cécile last_name: Sykes - first_name: Vito full_name: Trianni, Vito last_name: Trianni - first_name: Idan full_name: Tuval, Idan last_name: Tuval - first_name: Nicolas full_name: Vogel, Nicolas last_name: Vogel - first_name: Julia M. full_name: Yeomans, Julia M. last_name: Yeomans - first_name: Iker full_name: Zuriguel, Iker last_name: Zuriguel - first_name: Alvaro full_name: Marin, Alvaro last_name: Marin - first_name: Giorgio full_name: Volpe, Giorgio last_name: Volpe citation: ama: Araújo NAM, Janssen LMC, Barois T, et al. Steering self-organisation through confinement. Soft Matter. 2023;19:1695-1704. doi:10.1039/d2sm01562e apa: Araújo, N. A. M., Janssen, L. M. C., Barois, T., Boffetta, G., Cohen, I., Corbetta, A., … Volpe, G. (2023). Steering self-organisation through confinement. Soft Matter. Royal Society of Chemistry. https://doi.org/10.1039/d2sm01562e chicago: Araújo, Nuno A.M., Liesbeth M.C. Janssen, Thomas Barois, Guido Boffetta, Itai Cohen, Alessandro Corbetta, Olivier Dauchot, et al. “Steering Self-Organisation through Confinement.” Soft Matter. Royal Society of Chemistry, 2023. https://doi.org/10.1039/d2sm01562e. ieee: N. A. M. Araújo et al., “Steering self-organisation through confinement,” Soft Matter, vol. 19. Royal Society of Chemistry, pp. 1695–1704, 2023. ista: Araújo NAM, Janssen LMC, Barois T, Boffetta G, Cohen I, Corbetta A, Dauchot O, Dijkstra M, Durham WM, Dussutour A, Garnier S, Gelderblom H, Golestanian R, Isa L, Koenderink GH, Löwen H, Metzler R, Polin M, Royall CP, Šarić A, Sengupta A, Sykes C, Trianni V, Tuval I, Vogel N, Yeomans JM, Zuriguel I, Marin A, Volpe G. 2023. Steering self-organisation through confinement. Soft Matter. 19, 1695–1704. mla: Araújo, Nuno A. M., et al. “Steering Self-Organisation through Confinement.” Soft Matter, vol. 19, Royal Society of Chemistry, 2023, pp. 1695–704, doi:10.1039/d2sm01562e. short: N.A.M. Araújo, L.M.C. Janssen, T. Barois, G. Boffetta, I. Cohen, A. Corbetta, O. Dauchot, M. Dijkstra, W.M. Durham, A. Dussutour, S. Garnier, H. Gelderblom, R. Golestanian, L. Isa, G.H. Koenderink, H. Löwen, R. Metzler, M. Polin, C.P. Royall, A. Šarić, A. Sengupta, C. Sykes, V. Trianni, I. Tuval, N. Vogel, J.M. Yeomans, I. Zuriguel, A. Marin, G. Volpe, Soft Matter 19 (2023) 1695–1704. date_created: 2023-03-05T23:01:06Z date_published: 2023-02-06T00:00:00Z date_updated: 2023-08-01T13:28:39Z day: '06' ddc: - '540' department: - _id: AnSa doi: 10.1039/d2sm01562e ec_funded: 1 external_id: arxiv: - '2204.10059' isi: - '000940388100001' file: - access_level: open_access checksum: af95aa18b9b01e32fb8f13477c0e2687 content_type: application/pdf creator: cchlebak date_created: 2023-03-07T09:19:41Z date_updated: 2023-03-07T09:19:41Z file_id: '12711' file_name: 2023_SoftMatter_Araujo.pdf file_size: 3581939 relation: main_file success: 1 file_date_updated: 2023-03-07T09:19:41Z has_accepted_license: '1' intvolume: ' 19' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 1695-1704 project: - _id: eba2549b-77a9-11ec-83b8-a81e493eae4e call_identifier: H2020 grant_number: '802960' name: 'Non-Equilibrium Protein Assembly: from Building Blocks to Biological Machines' publication: Soft Matter publication_identifier: eissn: - 1744-6848 issn: - 1744-683X publication_status: published publisher: Royal Society of Chemistry quality_controlled: '1' scopus_import: '1' status: public title: Steering self-organisation through confinement tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2023' ... --- _id: '12702' abstract: - lang: eng text: Hydrocarbon mixtures are extremely abundant in the Universe, and diamond formation from them can play a crucial role in shaping the interior structure and evolution of planets. With first-principles accuracy, we first estimate the melting line of diamond, and then reveal the nature of chemical bonding in hydrocarbons at extreme conditions. We finally establish the pressure-temperature phase boundary where it is thermodynamically possible for diamond to form from hydrocarbon mixtures with different atomic fractions of carbon. Notably, here we show a depletion zone at pressures above 200 GPa and temperatures below 3000 K-3500 K where diamond formation is thermodynamically favorable regardless of the carbon atomic fraction, due to a phase separation mechanism. The cooler condition of the interior of Neptune compared to Uranus means that the former is much more likely to contain the depletion zone. Our findings can help explain the dichotomy of the two ice giants manifested by the low luminosity of Uranus, and lead to a better understanding of (exo-)planetary formation and evolution. acknowledgement: BC thanks Daan Frenkel for stimulating discussions. We thank Aleks Reinhardt, Daan Frenkel, Marius Millot, Federica Coppari, Rhys Bunting, and Chris J. Pickard for critically reading the manuscript and providing useful suggestions. BC acknowledges resources provided by the Cambridge Tier-2 system operated by the University of Cambridge Research Computing Service funded by EPSRC Tier-2 capital grant EP/P020259/1. SH acknowledges support from LDRD 19-ERD-031 and computing support from the Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. MB acknowledges support by the European Horizon 2020 program within the Marie Skłodowska-Curie actions (xICE grant number 894725), funding from the NOMIS foundation and computational resources at the North-German Supercomputing Alliance (HLRN) facilities. article_number: '1104' article_processing_charge: No article_type: original author: - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 - first_name: Sebastien full_name: Hamel, Sebastien last_name: Hamel - first_name: Mandy full_name: Bethkenhagen, Mandy id: 201939f4-803f-11ed-ab7e-d8da4bd1517f last_name: Bethkenhagen orcid: 0000-0002-1838-2129 citation: ama: Cheng B, Hamel S, Bethkenhagen M. Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nature Communications. 2023;14. doi:10.1038/s41467-023-36841-1 apa: Cheng, B., Hamel, S., & Bethkenhagen, M. (2023). Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-36841-1 chicago: Cheng, Bingqing, Sebastien Hamel, and Mandy Bethkenhagen. “Thermodynamics of Diamond Formation from Hydrocarbon Mixtures in Planets.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-36841-1. ieee: B. Cheng, S. Hamel, and M. Bethkenhagen, “Thermodynamics of diamond formation from hydrocarbon mixtures in planets,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Cheng B, Hamel S, Bethkenhagen M. 2023. Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nature Communications. 14, 1104. mla: Cheng, Bingqing, et al. “Thermodynamics of Diamond Formation from Hydrocarbon Mixtures in Planets.” Nature Communications, vol. 14, 1104, Springer Nature, 2023, doi:10.1038/s41467-023-36841-1. short: B. Cheng, S. Hamel, M. Bethkenhagen, Nature Communications 14 (2023). date_created: 2023-03-05T23:01:04Z date_published: 2023-02-27T00:00:00Z date_updated: 2023-08-01T13:36:11Z day: '27' ddc: - '540' department: - _id: BiCh doi: 10.1038/s41467-023-36841-1 external_id: isi: - '000939678300002' pmid: - '36843123' file: - access_level: open_access checksum: 5ff61ad21511950c15abb73b18613883 content_type: application/pdf creator: cchlebak date_created: 2023-03-07T10:58:00Z date_updated: 2023-03-07T10:58:00Z file_id: '12713' file_name: 2023_NatComm_Cheng.pdf file_size: 1946443 relation: main_file success: 1 file_date_updated: 2023-03-07T10:58:00Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 9B861AAC-BA93-11EA-9121-9846C619BF3A name: NOMIS Fellowship Program publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Thermodynamics of diamond formation from hydrocarbon mixtures in planets tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '12719' abstract: - lang: eng text: "Background\r\nEpigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to develop accurate epigenetic predictors of cAge and bAge, whilst improving our understanding of their epigenomic architecture.\r\n\r\nMethods\r\nFirst, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological age and all-cause mortality. Next, to create a cAge predictor, we use methylation data from 24,674 participants from the Generation Scotland study, the Lothian Birth Cohorts (LBC) of 1921 and 1936, and 8 other cohorts with publicly available data. In addition, we train a predictor of time to all-cause mortality as a proxy for bAge using the Generation Scotland cohort (1214 observed deaths). For this purpose, we use epigenetic surrogates (EpiScores) for 109 plasma proteins and the 8 component parts of GrimAge, one of the current best epigenetic predictors of survival. We test this bAge predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women’s Health Initiative study).\r\n\r\nResults\r\nThrough the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross-validation framework, we obtain cAge prediction with a median absolute error equal to 2.3 years. Our bAge predictor was found to slightly outperform GrimAge in terms of the strength of its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 × 10−52, and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 × 10−60). Finally, we introduce MethylBrowsR, an online tool to visualise epigenome-wide CpG-age associations.\r\n\r\nConclusions\r\nThe integration of multiple large datasets, EpiScores, non-linear DNAm effects, and new approaches to feature selection has facilitated improvements to the blood-based epigenetic prediction of biological and chronological age." acknowledgement: We are grateful to all the families who took part, the general practitioners, and the Scottish School of Primary Care for their help in recruiting them and the whole GS team that includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, healthcare assistants, and nurses. article_number: '12' article_processing_charge: No article_type: original author: - first_name: Elena full_name: Bernabeu, Elena last_name: Bernabeu - first_name: Daniel L. full_name: Mccartney, Daniel L. last_name: Mccartney - first_name: Danni A. full_name: Gadd, Danni A. last_name: Gadd - first_name: Robert F. full_name: Hillary, Robert F. last_name: Hillary - first_name: Ake T. full_name: Lu, Ake T. last_name: Lu - first_name: Lee full_name: Murphy, Lee last_name: Murphy - first_name: Nicola full_name: Wrobel, Nicola last_name: Wrobel - first_name: Archie full_name: Campbell, Archie last_name: Campbell - first_name: Sarah E. full_name: Harris, Sarah E. last_name: Harris - first_name: David full_name: Liewald, David last_name: Liewald - first_name: Caroline full_name: Hayward, Caroline last_name: Hayward - first_name: Cathie full_name: Sudlow, Cathie last_name: Sudlow - first_name: Simon R. full_name: Cox, Simon R. last_name: Cox - first_name: Kathryn L. full_name: Evans, Kathryn L. last_name: Evans - first_name: Steve full_name: Horvath, Steve last_name: Horvath - first_name: Andrew M. full_name: Mcintosh, Andrew M. last_name: Mcintosh - first_name: Matthew Richard full_name: Robinson, Matthew Richard id: E5D42276-F5DA-11E9-8E24-6303E6697425 last_name: Robinson orcid: 0000-0001-8982-8813 - first_name: Catalina A. full_name: Vallejos, Catalina A. last_name: Vallejos - first_name: Riccardo E. full_name: Marioni, Riccardo E. last_name: Marioni citation: ama: Bernabeu E, Mccartney DL, Gadd DA, et al. Refining epigenetic prediction of chronological and biological age. Genome Medicine. 2023;15. doi:10.1186/s13073-023-01161-y apa: Bernabeu, E., Mccartney, D. L., Gadd, D. A., Hillary, R. F., Lu, A. T., Murphy, L., … Marioni, R. E. (2023). Refining epigenetic prediction of chronological and biological age. Genome Medicine. Springer Nature. https://doi.org/10.1186/s13073-023-01161-y chicago: Bernabeu, Elena, Daniel L. Mccartney, Danni A. Gadd, Robert F. Hillary, Ake T. Lu, Lee Murphy, Nicola Wrobel, et al. “Refining Epigenetic Prediction of Chronological and Biological Age.” Genome Medicine. Springer Nature, 2023. https://doi.org/10.1186/s13073-023-01161-y. ieee: E. Bernabeu et al., “Refining epigenetic prediction of chronological and biological age,” Genome Medicine, vol. 15. Springer Nature, 2023. ista: Bernabeu E, Mccartney DL, Gadd DA, Hillary RF, Lu AT, Murphy L, Wrobel N, Campbell A, Harris SE, Liewald D, Hayward C, Sudlow C, Cox SR, Evans KL, Horvath S, Mcintosh AM, Robinson MR, Vallejos CA, Marioni RE. 2023. Refining epigenetic prediction of chronological and biological age. Genome Medicine. 15, 12. mla: Bernabeu, Elena, et al. “Refining Epigenetic Prediction of Chronological and Biological Age.” Genome Medicine, vol. 15, 12, Springer Nature, 2023, doi:10.1186/s13073-023-01161-y. short: E. Bernabeu, D.L. Mccartney, D.A. Gadd, R.F. Hillary, A.T. Lu, L. Murphy, N. Wrobel, A. Campbell, S.E. Harris, D. Liewald, C. Hayward, C. Sudlow, S.R. Cox, K.L. Evans, S. Horvath, A.M. Mcintosh, M.R. Robinson, C.A. Vallejos, R.E. Marioni, Genome Medicine 15 (2023). date_created: 2023-03-12T23:01:02Z date_published: 2023-02-28T00:00:00Z date_updated: 2023-08-01T13:38:12Z day: '28' ddc: - '570' department: - _id: MaRo doi: 10.1186/s13073-023-01161-y external_id: isi: - '000940286600001' file: - access_level: open_access checksum: 833b837910c4db42fb5f0f34125f77a7 content_type: application/pdf creator: cchlebak date_created: 2023-03-14T10:29:47Z date_updated: 2023-03-14T10:29:47Z file_id: '12722' file_name: 2023_GenomeMed_Bernabeu.pdf file_size: 4275987 relation: main_file success: 1 file_date_updated: 2023-03-14T10:29:47Z has_accepted_license: '1' intvolume: ' 15' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Genome Medicine publication_identifier: eissn: - 1756-994X publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Refining epigenetic prediction of chronological and biological age tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 15 year: '2023' ... --- _id: '12704' abstract: - lang: eng text: Adversarial training (i.e., training on adversarially perturbed input data) is a well-studied method for making neural networks robust to potential adversarial attacks during inference. However, the improved robustness does not come for free but rather is accompanied by a decrease in overall model accuracy and performance. Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off but inflict a net loss when measured in holistic robot performance. This work revisits the robustness-accuracy trade-off in robot learning by systematically analyzing if recent advances in robust training methods and theory in conjunction with adversarial robot learning, are capable of making adversarial training suitable for real-world robot applications. We evaluate three different robot learning tasks ranging from autonomous driving in a high-fidelity environment amenable to sim-to-real deployment to mobile robot navigation and gesture recognition. Our results demonstrate that, while these techniques make incremental improvements on the trade-off on a relative scale, the negative impact on the nominal accuracy caused by adversarial training still outweighs the improved robustness by an order of magnitude. We conclude that although progress is happening, further advances in robust learning methods are necessary before they can benefit robot learning tasks in practice. acknowledgement: "We thank Christoph Lampert for inspiring this work. The\r\nviews and conclusions contained in this document are those of\r\nthe authors and should not be interpreted as representing the\r\nofficial policies, either expressed or implied, of the United States\r\nAir Force or the U.S. Government. The U.S. Government is\r\nauthorized to reproduce and distribute reprints for Government\r\npurposes notwithstanding any copyright notation herein." article_processing_charge: No article_type: original author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Alexander full_name: Amini, Alexander last_name: Amini - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Lechner M, Amini A, Rus D, Henzinger TA. Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. 2023;8(3):1595-1602. doi:10.1109/LRA.2023.3240930 apa: Lechner, M., Amini, A., Rus, D., & Henzinger, T. A. (2023). Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/LRA.2023.3240930 chicago: Lechner, Mathias, Alexander Amini, Daniela Rus, and Thomas A Henzinger. “Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning.” IEEE Robotics and Automation Letters. Institute of Electrical and Electronics Engineers, 2023. https://doi.org/10.1109/LRA.2023.3240930. ieee: M. Lechner, A. Amini, D. Rus, and T. A. Henzinger, “Revisiting the adversarial robustness-accuracy tradeoff in robot learning,” IEEE Robotics and Automation Letters, vol. 8, no. 3. Institute of Electrical and Electronics Engineers, pp. 1595–1602, 2023. ista: Lechner M, Amini A, Rus D, Henzinger TA. 2023. Revisiting the adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics and Automation Letters. 8(3), 1595–1602. mla: Lechner, Mathias, et al. “Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning.” IEEE Robotics and Automation Letters, vol. 8, no. 3, Institute of Electrical and Electronics Engineers, 2023, pp. 1595–602, doi:10.1109/LRA.2023.3240930. short: M. Lechner, A. Amini, D. Rus, T.A. Henzinger, IEEE Robotics and Automation Letters 8 (2023) 1595–1602. date_created: 2023-03-05T23:01:04Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-01T13:36:50Z day: '01' ddc: - '000' department: - _id: ToHe doi: 10.1109/LRA.2023.3240930 external_id: arxiv: - '2204.07373' isi: - '000936534100012' file: - access_level: open_access checksum: 5a75dcd326ea66685de2b1aaec259e85 content_type: application/pdf creator: cchlebak date_created: 2023-03-07T12:22:23Z date_updated: 2023-03-07T12:22:23Z file_id: '12714' file_name: 2023_IEEERobAutLetters_Lechner.pdf file_size: 944052 relation: main_file success: 1 file_date_updated: 2023-03-07T12:22:23Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 1595-1602 publication: IEEE Robotics and Automation Letters publication_identifier: eissn: - 2377-3766 publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' related_material: record: - id: '11366' relation: earlier_version status: public scopus_import: '1' status: public title: Revisiting the adversarial robustness-accuracy tradeoff in robot learning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2023' ... --- _id: '12723' abstract: - lang: eng text: 'Lead halide perovskites enjoy a number of remarkable optoelectronic properties. To explain their origin, it is necessary to study how electromagnetic fields interact with these systems. We address this problem here by studying two classical quantities: Faraday rotation and the complex refractive index in a paradigmatic perovskite CH3NH3PbBr3 in a broad wavelength range. We find that the minimal coupling of electromagnetic fields to the k⋅p Hamiltonian is insufficient to describe the observed data even on the qualitative level. To amend this, we demonstrate that there exists a relevant atomic-level coupling between electromagnetic fields and the spin degree of freedom. This spin-electric coupling allows for quantitative description of a number of previous as well as present experimental data. In particular, we use it here to show that the Faraday effect in lead halide perovskites is dominated by the Zeeman splitting of the energy levels and has a substantial beyond-Becquerel contribution. Finally, we present general symmetry-based phenomenological arguments that in the low-energy limit our effective model includes all basis coupling terms to the electromagnetic field in the linear order.' article_number: '106901' article_processing_charge: No article_type: original author: - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Abhishek full_name: Shiva Kumar, Abhishek id: 5e9a6931-eb97-11eb-a6c2-e96f7058d77a last_name: Shiva Kumar - first_name: Dusan full_name: Lorenc, Dusan id: 40D8A3E6-F248-11E8-B48F-1D18A9856A87 last_name: Lorenc - first_name: Younes full_name: Ashourishokri, Younes id: e32c111f-f6e0-11ea-865d-eb955baea334 last_name: Ashourishokri - first_name: Ayan A. full_name: Zhumekenov, Ayan A. last_name: Zhumekenov - first_name: Osman M. full_name: Bakr, Osman M. last_name: Bakr - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 citation: ama: Volosniev A, Shiva Kumar A, Lorenc D, et al. Spin-electric coupling in lead halide perovskites. Physical Review Letters. 2023;130(10). doi:10.1103/physrevlett.130.106901 apa: Volosniev, A., Shiva Kumar, A., Lorenc, D., Ashourishokri, Y., Zhumekenov, A. A., Bakr, O. M., … Alpichshev, Z. (2023). Spin-electric coupling in lead halide perovskites. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.130.106901 chicago: Volosniev, Artem, Abhishek Shiva Kumar, Dusan Lorenc, Younes Ashourishokri, Ayan A. Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Spin-Electric Coupling in Lead Halide Perovskites.” Physical Review Letters. American Physical Society, 2023. https://doi.org/10.1103/physrevlett.130.106901. ieee: A. Volosniev et al., “Spin-electric coupling in lead halide perovskites,” Physical Review Letters, vol. 130, no. 10. American Physical Society, 2023. ista: Volosniev A, Shiva Kumar A, Lorenc D, Ashourishokri Y, Zhumekenov AA, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Spin-electric coupling in lead halide perovskites. Physical Review Letters. 130(10), 106901. mla: Volosniev, Artem, et al. “Spin-Electric Coupling in Lead Halide Perovskites.” Physical Review Letters, vol. 130, no. 10, 106901, American Physical Society, 2023, doi:10.1103/physrevlett.130.106901. short: A. Volosniev, A. Shiva Kumar, D. Lorenc, Y. Ashourishokri, A.A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, Physical Review Letters 130 (2023). date_created: 2023-03-14T13:11:59Z date_published: 2023-03-10T00:00:00Z date_updated: 2023-08-01T13:39:04Z day: '10' department: - _id: GradSch - _id: ZhAl - _id: MiLe doi: 10.1103/physrevlett.130.106901 external_id: arxiv: - '2203.09443' isi: - '000982435900002' intvolume: ' 130' isi: 1 issue: '10' keyword: - General Physics and Astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2203.09443 month: '03' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Spin-electric coupling in lead halide perovskites type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 130 year: '2023' ... --- _id: '12724' abstract: - lang: eng text: 'We use general symmetry-based arguments to construct an effective model suitable for studying optical properties of lead halide perovskites. To build the model, we identify an atomic-level interaction between electromagnetic fields and the spin degree of freedom that should be added to a minimally coupled k⋅p Hamiltonian. As a first application, we study two basic optical characteristics of the material: the Verdet constant and the refractive index. Beyond these linear characteristics of the material, the model is suitable for calculating nonlinear effects such as the third-order optical susceptibility. Analysis of this quantity shows that the geometrical properties of the spin-electric term imply isotropic optical response of the system, and that optical anisotropy of lead halide perovskites is a manifestation of hopping of charge carriers. To illustrate this, we discuss third-harmonic generation.' article_number: '125201' article_processing_charge: No article_type: original author: - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Abhishek full_name: Shiva Kumar, Abhishek id: 5e9a6931-eb97-11eb-a6c2-e96f7058d77a last_name: Shiva Kumar - first_name: Dusan full_name: Lorenc, Dusan id: 40D8A3E6-F248-11E8-B48F-1D18A9856A87 last_name: Lorenc - first_name: Younes full_name: Ashourishokri, Younes id: e32c111f-f6e0-11ea-865d-eb955baea334 last_name: Ashourishokri - first_name: Ayan full_name: Zhumekenov, Ayan last_name: Zhumekenov - first_name: Osman M. full_name: Bakr, Osman M. last_name: Bakr - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 citation: ama: Volosniev A, Shiva Kumar A, Lorenc D, et al. Effective model for studying optical properties of lead halide perovskites. Physical Review B. 2023;107(12). doi:10.1103/physrevb.107.125201 apa: Volosniev, A., Shiva Kumar, A., Lorenc, D., Ashourishokri, Y., Zhumekenov, A., Bakr, O. M., … Alpichshev, Z. (2023). Effective model for studying optical properties of lead halide perovskites. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.107.125201 chicago: Volosniev, Artem, Abhishek Shiva Kumar, Dusan Lorenc, Younes Ashourishokri, Ayan Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Effective Model for Studying Optical Properties of Lead Halide Perovskites.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/physrevb.107.125201. ieee: A. Volosniev et al., “Effective model for studying optical properties of lead halide perovskites,” Physical Review B, vol. 107, no. 12. American Physical Society, 2023. ista: Volosniev A, Shiva Kumar A, Lorenc D, Ashourishokri Y, Zhumekenov A, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Effective model for studying optical properties of lead halide perovskites. Physical Review B. 107(12), 125201. mla: Volosniev, Artem, et al. “Effective Model for Studying Optical Properties of Lead Halide Perovskites.” Physical Review B, vol. 107, no. 12, 125201, American Physical Society, 2023, doi:10.1103/physrevb.107.125201. short: A. Volosniev, A. Shiva Kumar, D. Lorenc, Y. Ashourishokri, A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, Physical Review B 107 (2023). date_created: 2023-03-14T13:13:05Z date_published: 2023-03-15T00:00:00Z date_updated: 2023-08-01T13:39:47Z day: '15' department: - _id: GradSch - _id: ZhAl - _id: MiLe doi: 10.1103/physrevb.107.125201 external_id: arxiv: - '2204.04022' isi: - '000972602200006' intvolume: ' 107' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2204.04022 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Effective model for studying optical properties of lead halide perovskites type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12759' abstract: - lang: eng text: Stereological methods for estimating the 3D particle size and density from 2D projections are essential to many research fields. These methods are, however, prone to errors arising from undetected particle profiles due to sectioning and limited resolution, known as ‘lost caps’. A potential solution developed by Keiding, Jensen, and Ranek in 1972, which we refer to as the Keiding model, accounts for lost caps by quantifying the smallest detectable profile in terms of its limiting ‘cap angle’ (ϕ), a size-independent measure of a particle’s distance from the section surface. However, this simple solution has not been widely adopted nor tested. Rather, model-independent design-based stereological methods, which do not explicitly account for lost caps, have come to the fore. Here, we provide the first experimental validation of the Keiding model by comparing the size and density of particles estimated from 2D projections with direct measurement from 3D EM reconstructions of the same tissue. We applied the Keiding model to estimate the size and density of somata, nuclei and vesicles in the cerebellum of mice and rats, where high packing density can be problematic for design-based methods. Our analysis reveals a Gaussian distribution for ϕ rather than a single value. Nevertheless, curve fits of the Keiding model to the 2D diameter distribution accurately estimate the mean ϕ and 3D diameter distribution. While systematic testing using simulations revealed an upper limit to determining ϕ, our analysis shows that estimated ϕ can be used to determine the 3D particle density from the 2D density under a wide range of conditions, and this method is potentially more accurate than minimum-size-based lost-cap corrections and disector methods. Our results show the Keiding model provides an efficient means of accurately estimating the size and density of particles from 2D projections even under conditions of a high density. acknowledged_ssus: - _id: EM-Fac acknowledgement: "We thank the IST Austria Electron Microscopy Facility for technical support, and Diccon Coyle, Andrea Lőrincz and Zoltan Nusser for their helpful comments and discussions.\r\nFunding for JSR and RAS was from the Wellcome Trust (203048; 224499; https://\r\nwellcome.org/). RAS is in receipt of a Wellcome Trust Principal Research Fellowship (224499).\r\nFunding for CBM and PJ was from Fond zur Förderung der Wissenschaftlichen Forschung (V\r\n739-B27 Elise-Richter Programme to CBM, Z 312-B27 Wittgenstein Award to PJ; \r\nhttps://www.fwf.ac.at). PJ received funding from the European Research Council (ERC; https://erc.europa.eu) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 692692). NH was supported by a European\r\nResearch Council Advanced Grant (ERC-AG787157)." article_number: e0277148 article_processing_charge: No article_type: original author: - first_name: Jason Seth full_name: Rothman, Jason Seth last_name: Rothman - first_name: Carolina full_name: Borges Merjane, Carolina id: 4305C450-F248-11E8-B48F-1D18A9856A87 last_name: Borges Merjane orcid: 0000-0003-0005-401X - first_name: Noemi full_name: Holderith, Noemi last_name: Holderith - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: R. full_name: Angus Silver, R. last_name: Angus Silver citation: ama: Rothman JS, Borges Merjane C, Holderith N, Jonas PM, Angus Silver R. Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy. PLoS ONE. 2023;18(3 March). doi:10.1371/journal.pone.0277148 apa: Rothman, J. S., Borges Merjane, C., Holderith, N., Jonas, P. M., & Angus Silver, R. (2023). Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy. PLoS ONE. Public Library of Science. https://doi.org/10.1371/journal.pone.0277148 chicago: Rothman, Jason Seth, Carolina Borges Merjane, Noemi Holderith, Peter M Jonas, and R. Angus Silver. “Validation of a Stereological Method for Estimating Particle Size and Density from 2D Projections with High Accuracy.” PLoS ONE. Public Library of Science, 2023. https://doi.org/10.1371/journal.pone.0277148. ieee: J. S. Rothman, C. Borges Merjane, N. Holderith, P. M. Jonas, and R. Angus Silver, “Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy,” PLoS ONE, vol. 18, no. 3 March. Public Library of Science, 2023. ista: Rothman JS, Borges Merjane C, Holderith N, Jonas PM, Angus Silver R. 2023. Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy. PLoS ONE. 18(3 March), e0277148. mla: Rothman, Jason Seth, et al. “Validation of a Stereological Method for Estimating Particle Size and Density from 2D Projections with High Accuracy.” PLoS ONE, vol. 18, no. 3 March, e0277148, Public Library of Science, 2023, doi:10.1371/journal.pone.0277148. short: J.S. Rothman, C. Borges Merjane, N. Holderith, P.M. Jonas, R. Angus Silver, PLoS ONE 18 (2023). date_created: 2023-03-26T22:01:07Z date_published: 2023-03-17T00:00:00Z date_updated: 2023-08-01T13:46:39Z day: '17' ddc: - '570' department: - _id: PeJo doi: 10.1371/journal.pone.0277148 ec_funded: 1 external_id: isi: - '001024737400001' file: - access_level: open_access checksum: 2380331ec27cc87808826fc64419ac1c content_type: application/pdf creator: dernst date_created: 2023-03-27T06:51:09Z date_updated: 2023-03-27T06:51:09Z file_id: '12770' file_name: 2023_PLoSOne_Rothman.pdf file_size: 7290413 relation: main_file success: 1 file_date_updated: 2023-03-27T06:51:09Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: 3 March language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 2696E7FE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: V00739 name: Structural plasticity at mossy fiber-CA3 synapses publication: PLoS ONE publication_identifier: eissn: - 1932-6203 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Validation of a stereological method for estimating particle size and density from 2D projections with high accuracy tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2023' ... --- _id: '12756' abstract: - lang: eng text: ESCRT-III family proteins form composite polymers that deform and cut membrane tubes in the context of a wide range of cell biological processes across the tree of life. In reconstituted systems, sequential changes in the composition of ESCRT-III polymers induced by the AAA–adenosine triphosphatase Vps4 have been shown to remodel membranes. However, it is not known how composite ESCRT-III polymers are organized and remodeled in space and time in a cellular context. Taking advantage of the relative simplicity of the ESCRT-III–dependent division system in Sulfolobus acidocaldarius, one of the closest experimentally tractable prokaryotic relatives of eukaryotes, we use super-resolution microscopy, electron microscopy, and computational modeling to show how CdvB/CdvB1/CdvB2 proteins form a precisely patterned composite ESCRT-III division ring, which undergoes stepwise Vps4-dependent disassembly and contracts to cut cells into two. These observations lead us to suggest sequential changes in a patterned composite polymer as a general mechanism of ESCRT-III–dependent membrane remodeling. acknowledgement: "We thank Y. Liu and V. Hale for help with electron cryotomography; the Medical Research Council (MRC) LMB Electron Microscopy Facility for access, training, and support; and T. Darling and J. Grimmett at the MRC LMB for help with computing infrastructure. We also thank the Flow Cytometry Facility and the MRC LMB for training and support.\r\n F.H. and G.T.-R. were supported by a grant from the Wellcome Trust (203276/Z/16/Z). A.C. was supported by an EMBO long-term fellowship: ALTF_1041-2021. J.T. was supported by a grant from the VW Foundation (94933). A.A.P. was supported by the Wellcome Trust (203276/Z/16/Z) and the HFSP (LT001027/2019). B.B. received support from the MRC LMB, the Wellcome Trust (203276/Z/16/Z), the VW Foundation (94933), the Life Sciences–Moore-Simons Foundation (735929LPI), and a Gordon and Betty Moore Foundation’s Symbiosis in Aquatic Systems Initiative (9346). A.Š. and X.J. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 802960). L.H.-K. acknowledges support from Biotechnology and Biological Sciences Research Council LIDo Programme. T.N. and J.L. were supported by the MRC (U105184326) and the Wellcome Trust (203276/Z/16/Z)." article_number: eade5224 article_processing_charge: No article_type: original author: - first_name: Fredrik full_name: Hurtig, Fredrik last_name: Hurtig - first_name: Thomas C.Q. full_name: Burgers, Thomas C.Q. last_name: Burgers - first_name: Alice full_name: Cezanne, Alice last_name: Cezanne - first_name: Xiuyun full_name: Jiang, Xiuyun last_name: Jiang - first_name: Frank N. full_name: Mol, Frank N. last_name: Mol - first_name: Jovan full_name: Traparić, Jovan last_name: Traparić - first_name: Andre Arashiro full_name: Pulschen, Andre Arashiro last_name: Pulschen - first_name: Tim full_name: Nierhaus, Tim last_name: Nierhaus - first_name: Gabriel full_name: Tarrason-Risa, Gabriel last_name: Tarrason-Risa - first_name: Lena full_name: Harker-Kirschneck, Lena last_name: Harker-Kirschneck - first_name: Jan full_name: Löwe, Jan last_name: Löwe - first_name: Anđela full_name: Šarić, Anđela id: bf63d406-f056-11eb-b41d-f263a6566d8b last_name: Šarić orcid: 0000-0002-7854-2139 - first_name: Rifka full_name: Vlijm, Rifka last_name: Vlijm - first_name: Buzz full_name: Baum, Buzz last_name: Baum citation: ama: Hurtig F, Burgers TCQ, Cezanne A, et al. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Science Advances. 2023;9(11). doi:10.1126/sciadv.ade5224 apa: Hurtig, F., Burgers, T. C. Q., Cezanne, A., Jiang, X., Mol, F. N., Traparić, J., … Baum, B. (2023). The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.ade5224 chicago: Hurtig, Fredrik, Thomas C.Q. Burgers, Alice Cezanne, Xiuyun Jiang, Frank N. Mol, Jovan Traparić, Andre Arashiro Pulschen, et al. “The Patterned Assembly and Stepwise Vps4-Mediated Disassembly of Composite ESCRT-III Polymers Drives Archaeal Cell Division.” Science Advances. American Association for the Advancement of Science, 2023. https://doi.org/10.1126/sciadv.ade5224. ieee: F. Hurtig et al., “The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division,” Science Advances, vol. 9, no. 11. American Association for the Advancement of Science, 2023. ista: Hurtig F, Burgers TCQ, Cezanne A, Jiang X, Mol FN, Traparić J, Pulschen AA, Nierhaus T, Tarrason-Risa G, Harker-Kirschneck L, Löwe J, Šarić A, Vlijm R, Baum B. 2023. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. Science Advances. 9(11), eade5224. mla: Hurtig, Fredrik, et al. “The Patterned Assembly and Stepwise Vps4-Mediated Disassembly of Composite ESCRT-III Polymers Drives Archaeal Cell Division.” Science Advances, vol. 9, no. 11, eade5224, American Association for the Advancement of Science, 2023, doi:10.1126/sciadv.ade5224. short: F. Hurtig, T.C.Q. Burgers, A. Cezanne, X. Jiang, F.N. Mol, J. Traparić, A.A. Pulschen, T. Nierhaus, G. Tarrason-Risa, L. Harker-Kirschneck, J. Löwe, A. Šarić, R. Vlijm, B. Baum, Science Advances 9 (2023). date_created: 2023-03-26T22:01:06Z date_published: 2023-03-17T00:00:00Z date_updated: 2023-08-01T13:45:54Z day: '17' ddc: - '570' department: - _id: AnSa doi: 10.1126/sciadv.ade5224 ec_funded: 1 external_id: isi: - '000968083500010' file: - access_level: open_access checksum: 6d7dbe9ed86a116c8a002d62971202c5 content_type: application/pdf creator: dernst date_created: 2023-03-27T06:24:49Z date_updated: 2023-03-27T06:24:49Z file_id: '12768' file_name: 2023_ScienceAdvances_Hurtig.pdf file_size: 1826471 relation: main_file success: 1 file_date_updated: 2023-03-27T06:24:49Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '11' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: eba2549b-77a9-11ec-83b8-a81e493eae4e call_identifier: H2020 grant_number: '802960' name: 'Non-Equilibrium Protein Assembly: from Building Blocks to Biological Machines' publication: Science Advances publication_identifier: eissn: - 2375-2548 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2023' ...