--- _id: '12287' abstract: - lang: eng text: We present criteria for establishing a triangulation of a manifold. Given a manifold M, a simplicial complex A, and a map H from the underlying space of A to M, our criteria are presented in local coordinate charts for M, and ensure that H is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on M. No Delaunay property of A is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use. acknowledgement: "This work has been funded by the European Research Council under the European Union’s ERC Grant Agreement number 339025 GUDHI (Algorithmic Foundations of Geometric Understanding in Higher Dimensions). Arijit Ghosh is supported by Ramanujan Fellowship (No. SB/S2/RJN-064/2015). Part of this work was done when Arijit Ghosh was a Researcher at Max-Planck-Institute for Informatics, Germany, supported by the IndoGerman Max Planck Center for Computer Science (IMPECS). Mathijs Wintraecken also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754411 and the Austrian Science Fund (FWF): M-3073. A part of the results described in this paper were presented at SoCG 2018 and in [3]. \r\nOpen access funding provided by the Austrian Science Fund (FWF)." article_processing_charge: No article_type: original author: - first_name: Jean-Daniel full_name: Boissonnat, Jean-Daniel last_name: Boissonnat - first_name: Ramsay full_name: Dyer, Ramsay last_name: Dyer - first_name: Arijit full_name: Ghosh, Arijit last_name: Ghosh - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Boissonnat J-D, Dyer R, Ghosh A, Wintraecken M. Local criteria for triangulating general manifolds. Discrete & Computational Geometry. 2023;69:156-191. doi:10.1007/s00454-022-00431-7 apa: Boissonnat, J.-D., Dyer, R., Ghosh, A., & Wintraecken, M. (2023). Local criteria for triangulating general manifolds. Discrete & Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-022-00431-7 chicago: Boissonnat, Jean-Daniel, Ramsay Dyer, Arijit Ghosh, and Mathijs Wintraecken. “Local Criteria for Triangulating General Manifolds.” Discrete & Computational Geometry. Springer Nature, 2023. https://doi.org/10.1007/s00454-022-00431-7. ieee: J.-D. Boissonnat, R. Dyer, A. Ghosh, and M. Wintraecken, “Local criteria for triangulating general manifolds,” Discrete & Computational Geometry, vol. 69. Springer Nature, pp. 156–191, 2023. ista: Boissonnat J-D, Dyer R, Ghosh A, Wintraecken M. 2023. Local criteria for triangulating general manifolds. Discrete & Computational Geometry. 69, 156–191. mla: Boissonnat, Jean-Daniel, et al. “Local Criteria for Triangulating General Manifolds.” Discrete & Computational Geometry, vol. 69, Springer Nature, 2023, pp. 156–91, doi:10.1007/s00454-022-00431-7. short: J.-D. Boissonnat, R. Dyer, A. Ghosh, M. Wintraecken, Discrete & Computational Geometry 69 (2023) 156–191. date_created: 2023-01-16T10:04:06Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-08-01T12:47:32Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s00454-022-00431-7 ec_funded: 1 external_id: isi: - '000862193600001' file: - access_level: open_access checksum: 46352e0ee71e460848f88685ca852681 content_type: application/pdf creator: dernst date_created: 2023-02-02T11:01:10Z date_updated: 2023-02-02T11:01:10Z file_id: '12488' file_name: 2023_DiscreteCompGeometry_Boissonnat.pdf file_size: 582850 relation: main_file success: 1 file_date_updated: 2023-02-02T11:01:10Z has_accepted_license: '1' intvolume: ' 69' isi: 1 keyword: - Computational Theory and Mathematics - Discrete Mathematics and Combinatorics - Geometry and Topology - Theoretical Computer Science language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 156-191 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: fc390959-9c52-11eb-aca3-afa58bd282b2 grant_number: M03073 name: Learning and triangulating manifolds via collapses publication: Discrete & Computational Geometry publication_identifier: eissn: - 1432-0444 issn: - 0179-5376 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Local criteria for triangulating general manifolds tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 69 year: '2023' ... --- _id: '12421' abstract: - lang: eng text: The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions. acknowledgement: 'We apologize for not being able to mention and cite additional excellent work that would have fit the scope of this review, due to space restraints. We thank Jesse Hansen for comments on the manuscript. We acknowledge support from the Austrian Science Fund (FWF): P33367 and the Institute of Science and Technology Austria.' article_processing_charge: No article_type: original author: - first_name: Florian full_name: Fäßler, Florian id: 404F5528-F248-11E8-B48F-1D18A9856A87 last_name: Fäßler orcid: 0000-0001-7149-769X - first_name: Manjunath full_name: Javoor, Manjunath id: 305ab18b-dc7d-11ea-9b2f-b58195228ea2 last_name: Javoor - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Fäßler F, Javoor M, Schur FK. Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochemical Society Transactions. 2023;51(1):87-99. doi:10.1042/bst20220221 apa: Fäßler, F., Javoor, M., & Schur, F. K. (2023). Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochemical Society Transactions. Portland Press. https://doi.org/10.1042/bst20220221 chicago: Fäßler, Florian, Manjunath Javoor, and Florian KM Schur. “Deciphering the Molecular Mechanisms of Actin Cytoskeleton Regulation in Cell Migration Using Cryo-EM.” Biochemical Society Transactions. Portland Press, 2023. https://doi.org/10.1042/bst20220221. ieee: F. Fäßler, M. Javoor, and F. K. Schur, “Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM,” Biochemical Society Transactions, vol. 51, no. 1. Portland Press, pp. 87–99, 2023. ista: Fäßler F, Javoor M, Schur FK. 2023. Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochemical Society Transactions. 51(1), 87–99. mla: Fäßler, Florian, et al. “Deciphering the Molecular Mechanisms of Actin Cytoskeleton Regulation in Cell Migration Using Cryo-EM.” Biochemical Society Transactions, vol. 51, no. 1, Portland Press, 2023, pp. 87–99, doi:10.1042/bst20220221. short: F. Fäßler, M. Javoor, F.K. Schur, Biochemical Society Transactions 51 (2023) 87–99. date_created: 2023-01-27T10:08:19Z date_published: 2023-02-01T00:00:00Z date_updated: 2023-08-01T12:55:32Z day: '01' ddc: - '570' department: - _id: FlSc doi: 10.1042/bst20220221 external_id: isi: - '000926043100001' file: - access_level: open_access checksum: 4e7069845e3dad22bb44fb71ec624c60 content_type: application/pdf creator: dernst date_created: 2023-03-16T07:58:16Z date_updated: 2023-03-16T07:58:16Z file_id: '12728' file_name: 2023_BioChemicalSocietyTransactions_Faessler.pdf file_size: 10045006 relation: main_file success: 1 file_date_updated: 2023-03-16T07:58:16Z has_accepted_license: '1' intvolume: ' 51' isi: 1 issue: '1' keyword: - Biochemistry language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 87-99 project: - _id: 9B954C5C-BA93-11EA-9121-9846C619BF3A grant_number: P33367 name: Structure and isoform diversity of the Arp2/3 complex publication: Biochemical Society Transactions publication_identifier: eissn: - 1470-8752 issn: - 0300-5127 publication_status: published publisher: Portland Press quality_controlled: '1' scopus_import: '1' status: public title: Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 51 year: '2023' ... --- _id: '12105' abstract: - lang: eng text: Data-driven dimensionality reduction methods such as proper orthogonal decomposition and dynamic mode decomposition have proven to be useful for exploring complex phenomena within fluid dynamics and beyond. A well-known challenge for these techniques is posed by the continuous symmetries, e.g. translations and rotations, of the system under consideration, as drifts in the data dominate the modal expansions without providing an insight into the dynamics of the problem. In the present study, we address this issue for fluid flows in rectangular channels by formulating a continuous symmetry reduction method that eliminates the translations in the streamwise and spanwise directions simultaneously. We demonstrate our method by computing the symmetry-reduced dynamic mode decomposition (SRDMD) of sliding windows of data obtained from the transitional plane-Couette and turbulent plane-Poiseuille flow simulations. In the former setting, SRDMD captures the dynamics in the vicinity of the invariant solutions with translation symmetries, i.e. travelling waves and relative periodic orbits, whereas in the latter, our calculations reveal episodes of turbulent time evolution that can be approximated by a low-dimensional linear expansion. acknowledgement: "E.M. acknowledges funding from the ISTplus fellowship programme. G.Y. and B.H. acknowledge\r\na grant from the Simons Foundation (662960, BH)." article_number: A10 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Elena full_name: Marensi, Elena id: 0BE7553A-1004-11EA-B805-18983DDC885E last_name: Marensi - first_name: Gökhan full_name: Yalniz, Gökhan id: 66E74FA2-D8BF-11E9-8249-8DE2E5697425 last_name: Yalniz orcid: 0000-0002-8490-9312 - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Nazmi B full_name: Budanur, Nazmi B id: 3EA1010E-F248-11E8-B48F-1D18A9856A87 last_name: Budanur orcid: 0000-0003-0423-5010 citation: ama: Marensi E, Yalniz G, Hof B, Budanur NB. Symmetry-reduced dynamic mode decomposition of near-wall turbulence. Journal of Fluid Mechanics. 2023;954. doi:10.1017/jfm.2022.1001 apa: Marensi, E., Yalniz, G., Hof, B., & Budanur, N. B. (2023). Symmetry-reduced dynamic mode decomposition of near-wall turbulence. Journal of Fluid Mechanics. Cambridge University Press. https://doi.org/10.1017/jfm.2022.1001 chicago: Marensi, Elena, Gökhan Yalniz, Björn Hof, and Nazmi B Budanur. “Symmetry-Reduced Dynamic Mode Decomposition of near-Wall Turbulence.” Journal of Fluid Mechanics. Cambridge University Press, 2023. https://doi.org/10.1017/jfm.2022.1001. ieee: E. Marensi, G. Yalniz, B. Hof, and N. B. Budanur, “Symmetry-reduced dynamic mode decomposition of near-wall turbulence,” Journal of Fluid Mechanics, vol. 954. Cambridge University Press, 2023. ista: Marensi E, Yalniz G, Hof B, Budanur NB. 2023. Symmetry-reduced dynamic mode decomposition of near-wall turbulence. Journal of Fluid Mechanics. 954, A10. mla: Marensi, Elena, et al. “Symmetry-Reduced Dynamic Mode Decomposition of near-Wall Turbulence.” Journal of Fluid Mechanics, vol. 954, A10, Cambridge University Press, 2023, doi:10.1017/jfm.2022.1001. short: E. Marensi, G. Yalniz, B. Hof, N.B. Budanur, Journal of Fluid Mechanics 954 (2023). date_created: 2023-01-08T23:00:53Z date_published: 2023-01-10T00:00:00Z date_updated: 2023-08-01T12:53:23Z day: '10' ddc: - '530' department: - _id: BjHo doi: 10.1017/jfm.2022.1001 external_id: arxiv: - '2101.07516' isi: - '000903336600001' file: - access_level: open_access checksum: 9224f987caefe5dd85a70814d3cce65c content_type: application/pdf creator: dernst date_created: 2023-02-02T12:34:54Z date_updated: 2023-02-02T12:34:54Z file_id: '12489' file_name: 2023_JourFluidMechanics_Marensi.pdf file_size: 1931647 relation: main_file success: 1 file_date_updated: 2023-02-02T12:34:54Z has_accepted_license: '1' intvolume: ' 954' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 238598C6-32DE-11EA-91FC-C7463DDC885E grant_number: '662960' name: 'Revisiting the Turbulence Problem Using Statistical Mechanics: Experimental Studies on Transitional and Turbulent Flows' publication: Journal of Fluid Mechanics publication_identifier: eissn: - 1469-7645 issn: - 0022-1120 publication_status: published publisher: Cambridge University Press quality_controlled: '1' scopus_import: '1' status: public title: Symmetry-reduced dynamic mode decomposition of near-wall turbulence tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 954 year: '2023' ... --- _id: '12514' abstract: - lang: eng text: The concept of a “speciation continuum” has gained popularity in recent decades. It emphasizes speciation as a continuous process that may be studied by comparing contemporary population pairs that show differing levels of divergence. In their recent perspective article in Evolution, Stankowski and Ravinet provided a valuable service by formally defining the speciation continuum as a continuum of reproductive isolation, based on opinions gathered from a survey of speciation researchers. While we agree that the speciation continuum has been a useful concept to advance the understanding of the speciation process, some intrinsic limitations exist. Here, we advocate for a multivariate extension, the speciation hypercube, first proposed by Dieckmann et al. in 2004, but rarely used since. We extend the idea of the speciation cube and suggest it has strong conceptual and practical advantages over a one-dimensional model. We illustrate how the speciation hypercube can be used to visualize and compare different speciation trajectories, providing new insights into the processes and mechanisms of speciation. A key strength of the speciation hypercube is that it provides a unifying framework for speciation research, as it allows questions from apparently disparate subfields to be addressed in a single conceptual model. acknowledgement: "The authors of this article were supported by LMU Munich (J.B.W.W.), a James S. McDonnell Foundation postdoctoral fellowship (A.K.H.). P.N. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No. 770826 EE-Dynamics).\r\nWe thank participants in the 2019 Gordon Conference on Speciation for the extensive conversation on this topic. Thanks to Dan Funk for providing permission to use data from Funk et al. 2006, and for comments on the manuscript." article_processing_charge: No article_type: original author: - first_name: Daniel I. full_name: Bolnick, Daniel I. last_name: Bolnick - first_name: Amanda K. full_name: Hund, Amanda K. last_name: Hund - first_name: Patrik full_name: Nosil, Patrik last_name: Nosil - first_name: Foen full_name: Peng, Foen last_name: Peng - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Swapna full_name: Subramanian, Swapna last_name: Subramanian - first_name: Jochen B.W. full_name: Wolf, Jochen B.W. last_name: Wolf - first_name: Roman full_name: Yukilevich, Roman last_name: Yukilevich citation: ama: 'Bolnick DI, Hund AK, Nosil P, et al. A multivariate view of the speciation continuum. Evolution: International journal of organic evolution. 2023;77(1):318-328. doi:10.1093/evolut/qpac004' apa: 'Bolnick, D. I., Hund, A. K., Nosil, P., Peng, F., Ravinet, M., Stankowski, S., … Yukilevich, R. (2023). A multivariate view of the speciation continuum. Evolution: International Journal of Organic Evolution. Oxford University Press. https://doi.org/10.1093/evolut/qpac004' chicago: 'Bolnick, Daniel I., Amanda K. Hund, Patrik Nosil, Foen Peng, Mark Ravinet, Sean Stankowski, Swapna Subramanian, Jochen B.W. Wolf, and Roman Yukilevich. “A Multivariate View of the Speciation Continuum.” Evolution: International Journal of Organic Evolution. Oxford University Press, 2023. https://doi.org/10.1093/evolut/qpac004.' ieee: 'D. I. Bolnick et al., “A multivariate view of the speciation continuum,” Evolution: International journal of organic evolution, vol. 77, no. 1. Oxford University Press, pp. 318–328, 2023.' ista: 'Bolnick DI, Hund AK, Nosil P, Peng F, Ravinet M, Stankowski S, Subramanian S, Wolf JBW, Yukilevich R. 2023. A multivariate view of the speciation continuum. Evolution: International journal of organic evolution. 77(1), 318–328.' mla: 'Bolnick, Daniel I., et al. “A Multivariate View of the Speciation Continuum.” Evolution: International Journal of Organic Evolution, vol. 77, no. 1, Oxford University Press, 2023, pp. 318–28, doi:10.1093/evolut/qpac004.' short: 'D.I. Bolnick, A.K. Hund, P. Nosil, F. Peng, M. Ravinet, S. Stankowski, S. Subramanian, J.B.W. Wolf, R. Yukilevich, Evolution: International Journal of Organic Evolution 77 (2023) 318–328.' date_created: 2023-02-05T23:00:59Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-08-01T12:58:30Z day: '01' department: - _id: NiBa doi: 10.1093/evolut/qpac004 external_id: isi: - '001021686300024' pmid: - '36622661' intvolume: ' 77' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/evolut/qpac004 month: '01' oa: 1 oa_version: Published Version page: 318-328 pmid: 1 publication: 'Evolution: International journal of organic evolution' publication_identifier: eissn: - 1558-5646 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: A multivariate view of the speciation continuum type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 77 year: '2023' ... --- _id: '12548' abstract: - lang: eng text: The limited exchange between human communities is a key factor in preventing the spread of COVID-19. This paper introduces a digital framework that combines an integration of real mobility data at the country scale with a series of modeling techniques and visual capabilities that highlight mobility patterns before and during the pandemic. The findings not only significantly exhibit mobility trends and different degrees of similarities at regional and local levels but also provide potential insight into the emergence of a pandemic on human behavior patterns and their likely socio-economic impacts. article_number: '00093' article_processing_charge: No author: - first_name: Mohammad full_name: Forghani, Mohammad last_name: Forghani - first_name: Christophe full_name: Claramunt, Christophe last_name: Claramunt - first_name: Farid full_name: Karimipour, Farid id: 2A2BCDC4-CF62-11E9-BE5E-3B1EE6697425 last_name: Karimipour orcid: 0000-0001-6746-4174 - first_name: Georg full_name: Heiler, Georg last_name: Heiler citation: ama: 'Forghani M, Claramunt C, Karimipour F, Heiler G. Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic. In: 2022 IEEE International Conference on Data Mining Workshops. Institute of Electrical and Electronics Engineers; 2023. doi:10.1109/icdmw58026.2022.00093' apa: 'Forghani, M., Claramunt, C., Karimipour, F., & Heiler, G. (2023). Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic. In 2022 IEEE International Conference on Data Mining Workshops. Orlando, FL, United States: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/icdmw58026.2022.00093' chicago: Forghani, Mohammad, Christophe Claramunt, Farid Karimipour, and Georg Heiler. “Visual Analytics of Mobility Network Changes Observed Using Mobile Phone Data during COVID-19 Pandemic.” In 2022 IEEE International Conference on Data Mining Workshops. Institute of Electrical and Electronics Engineers, 2023. https://doi.org/10.1109/icdmw58026.2022.00093. ieee: M. Forghani, C. Claramunt, F. Karimipour, and G. Heiler, “Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic,” in 2022 IEEE International Conference on Data Mining Workshops, Orlando, FL, United States, 2023. ista: 'Forghani M, Claramunt C, Karimipour F, Heiler G. 2023. Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic. 2022 IEEE International Conference on Data Mining Workshops. ICDMW: Conference on Data Mining Workshops, 00093.' mla: Forghani, Mohammad, et al. “Visual Analytics of Mobility Network Changes Observed Using Mobile Phone Data during COVID-19 Pandemic.” 2022 IEEE International Conference on Data Mining Workshops, 00093, Institute of Electrical and Electronics Engineers, 2023, doi:10.1109/icdmw58026.2022.00093. short: M. Forghani, C. Claramunt, F. Karimipour, G. Heiler, in:, 2022 IEEE International Conference on Data Mining Workshops, Institute of Electrical and Electronics Engineers, 2023. conference: end_date: 2022-12-01 location: Orlando, FL, United States name: 'ICDMW: Conference on Data Mining Workshops' start_date: 2022-11-28 date_created: 2023-02-14T07:56:21Z date_published: 2023-02-08T00:00:00Z date_updated: 2023-08-01T13:15:48Z day: '08' ddc: - '600' department: - _id: HeEd doi: 10.1109/icdmw58026.2022.00093 external_id: isi: - '000971492200145' file: - access_level: open_access checksum: c253bee25e6dfe484f96662daa119cb6 content_type: application/pdf creator: fkarimip date_created: 2023-02-14T07:58:26Z date_updated: 2023-02-14T07:58:26Z file_id: '12549' file_name: Visual Analysis_Mobility_COVID19 - SocDM2022.pdf file_size: 1183339 relation: main_file success: 1 file_date_updated: 2023-02-14T07:58:26Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Submitted Version publication: 2022 IEEE International Conference on Data Mining Workshops publication_identifier: eisbn: - '9798350346091' eissn: - 2375-9259 publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' status: public title: Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2023' ... --- _id: '12563' abstract: - lang: eng text: 'he approximate graph coloring problem, whose complexity is unresolved in most cases, concerns finding a c-coloring of a graph that is promised to be k-colorable, where c≥k. This problem naturally generalizes to promise graph homomorphism problems and further to promise constraint satisfaction problems. The complexity of these problems has recently been studied through an algebraic approach. In this paper, we introduce two new techniques to analyze the complexity of promise CSPs: one is based on topology and the other on adjunction. We apply these techniques, together with the previously introduced algebraic approach, to obtain new unconditional NP-hardness results for a significant class of approximate graph coloring and promise graph homomorphism problems.' acknowledgement: "Andrei Krokhin and Jakub Opršal were supported by the UK EPSRC grant EP/R034516/1. Jakub Opršal has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 101034413. Stanislav Živný was supported by a Royal Society University Research Fellowship. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532). The paper re\x1Eects only the authors’ views and not the views of the ERC or the European Commission. " article_processing_charge: No article_type: original author: - first_name: Andrei full_name: Krokhin, Andrei last_name: Krokhin - first_name: Jakub full_name: Opršal, Jakub id: ec596741-c539-11ec-b829-c79322a91242 last_name: Opršal orcid: 0000-0003-1245-3456 - first_name: Marcin full_name: Wrochna, Marcin last_name: Wrochna - first_name: Stanislav full_name: Živný, Stanislav last_name: Živný citation: ama: Krokhin A, Opršal J, Wrochna M, Živný S. Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing. 2023;52(1):38-79. doi:10.1137/20m1378223 apa: Krokhin, A., Opršal, J., Wrochna, M., & Živný, S. (2023). Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing. Society for Industrial & Applied Mathematics. https://doi.org/10.1137/20m1378223 chicago: Krokhin, Andrei, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. “Topology and Adjunction in Promise Constraint Satisfaction.” SIAM Journal on Computing. Society for Industrial & Applied Mathematics, 2023. https://doi.org/10.1137/20m1378223. ieee: A. Krokhin, J. Opršal, M. Wrochna, and S. Živný, “Topology and adjunction in promise constraint satisfaction,” SIAM Journal on Computing, vol. 52, no. 1. Society for Industrial & Applied Mathematics, pp. 38–79, 2023. ista: Krokhin A, Opršal J, Wrochna M, Živný S. 2023. Topology and adjunction in promise constraint satisfaction. SIAM Journal on Computing. 52(1), 38–79. mla: Krokhin, Andrei, et al. “Topology and Adjunction in Promise Constraint Satisfaction.” SIAM Journal on Computing, vol. 52, no. 1, Society for Industrial & Applied Mathematics, 2023, pp. 38–79, doi:10.1137/20m1378223. short: A. Krokhin, J. Opršal, M. Wrochna, S. Živný, SIAM Journal on Computing 52 (2023) 38–79. date_created: 2023-02-16T07:03:52Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-08-01T13:11:30Z day: '01' department: - _id: UlWa doi: 10.1137/20m1378223 ec_funded: 1 external_id: arxiv: - '2003.11351' isi: - '000955000000001' intvolume: ' 52' isi: 1 issue: '1' keyword: - General Mathematics - General Computer Science language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2003.11351 month: '01' oa: 1 oa_version: Preprint page: 38-79 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: SIAM Journal on Computing publication_identifier: eissn: - 1095-7111 issn: - 0097-5397 publication_status: published publisher: Society for Industrial & Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: Topology and adjunction in promise constraint satisfaction type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 52 year: '2023' ... --- _id: '12545' abstract: - lang: eng text: We study active surface wetting using a minimal model of bacteria that takes into account the intrinsic motility diversity of living matter. A mixture of “fast” and “slow” self-propelled Brownian particles is considered in the presence of a wall. The evolution of the wetting layer thickness shows an overshoot before stationarity and its composition evolves in two stages, equilibrating after a slow elimination of excess particles. Nonmonotonic evolutions are shown to arise from delayed avalanches towards the dilute phase combined with the emergence of a transient particle front. acknowledgement: 'MR-V and RS are supported by Fondecyt Grant No. 1220536 and ANID – Millennium Science Initiative Program – NCN19 170D, Chile. PdC is supported by grant #2021/10139-2, Sao Paulo Research Foundation (FAPESP), Brazil.' article_number: '014608' article_processing_charge: No article_type: original author: - first_name: Mauricio Nicolas full_name: Rojas Vega, Mauricio Nicolas id: 441e7207-f91f-11ec-b67c-9e6fe3d8fd6d last_name: Rojas Vega - first_name: Pablo full_name: De Castro, Pablo last_name: De Castro - first_name: Rodrigo full_name: Soto, Rodrigo last_name: Soto citation: ama: Rojas Vega MN, De Castro P, Soto R. Wetting dynamics by mixtures of fast and slow self-propelled particles. Physical Review E. 2023;107(1). doi:10.1103/PhysRevE.107.014608 apa: Rojas Vega, M. N., De Castro, P., & Soto, R. (2023). Wetting dynamics by mixtures of fast and slow self-propelled particles. Physical Review E. American Physical Society. https://doi.org/10.1103/PhysRevE.107.014608 chicago: Rojas Vega, Mauricio Nicolas, Pablo De Castro, and Rodrigo Soto. “Wetting Dynamics by Mixtures of Fast and Slow Self-Propelled Particles.” Physical Review E. American Physical Society, 2023. https://doi.org/10.1103/PhysRevE.107.014608. ieee: M. N. Rojas Vega, P. De Castro, and R. Soto, “Wetting dynamics by mixtures of fast and slow self-propelled particles,” Physical Review E, vol. 107, no. 1. American Physical Society, 2023. ista: Rojas Vega MN, De Castro P, Soto R. 2023. Wetting dynamics by mixtures of fast and slow self-propelled particles. Physical Review E. 107(1), 014608. mla: Rojas Vega, Mauricio Nicolas, et al. “Wetting Dynamics by Mixtures of Fast and Slow Self-Propelled Particles.” Physical Review E, vol. 107, no. 1, 014608, American Physical Society, 2023, doi:10.1103/PhysRevE.107.014608. short: M.N. Rojas Vega, P. De Castro, R. Soto, Physical Review E 107 (2023). date_created: 2023-02-12T23:00:59Z date_published: 2023-01-24T00:00:00Z date_updated: 2023-08-01T13:09:45Z day: '24' department: - _id: GradSch doi: 10.1103/PhysRevE.107.014608 external_id: arxiv: - '2301.01856' isi: - '000963909800006' intvolume: ' 107' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2301.01856 month: '01' oa: 1 oa_version: Preprint publication: Physical Review E publication_identifier: eissn: - 2470-0053 issn: - 2470-0045 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Wetting dynamics by mixtures of fast and slow self-propelled particles type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12427' abstract: - lang: eng text: 'Let k be a number field and X a smooth, geometrically integral quasi-projective variety over k. For any linear algebraic group G over k and any G-torsor g : Z → X, we observe that if the étale-Brauer obstruction is the only one for strong approximation off a finite set of places S for all twists of Z by elements in H^1(k, G), then the étale-Brauer obstruction is the only one for strong approximation off a finite set of places S for X. As an application, we show that any homogeneous space of the form G/H with G a connected linear algebraic group over k satisfies strong approximation off the infinite places with étale-Brauer obstruction, under some compactness assumptions when k is totally real. We also prove more refined strong approximation results for homogeneous spaces of the form G/H with G semisimple simply connected and H finite, using the theory of torsors and descent.' article_processing_charge: No article_type: original author: - first_name: Francesca full_name: Balestrieri, Francesca id: 3ACCD756-F248-11E8-B48F-1D18A9856A87 last_name: Balestrieri citation: ama: Balestrieri F. Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups. Proceedings of the American Mathematical Society. 2023;151(3):907-914. doi:10.1090/proc/15239 apa: Balestrieri, F. (2023). Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups. Proceedings of the American Mathematical Society. American Mathematical Society. https://doi.org/10.1090/proc/15239 chicago: Balestrieri, Francesca. “Some Remarks on Strong Approximation and Applications to Homogeneous Spaces of Linear Algebraic Groups.” Proceedings of the American Mathematical Society. American Mathematical Society, 2023. https://doi.org/10.1090/proc/15239. ieee: F. Balestrieri, “Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups,” Proceedings of the American Mathematical Society, vol. 151, no. 3. American Mathematical Society, pp. 907–914, 2023. ista: Balestrieri F. 2023. Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups. Proceedings of the American Mathematical Society. 151(3), 907–914. mla: Balestrieri, Francesca. “Some Remarks on Strong Approximation and Applications to Homogeneous Spaces of Linear Algebraic Groups.” Proceedings of the American Mathematical Society, vol. 151, no. 3, American Mathematical Society, 2023, pp. 907–14, doi:10.1090/proc/15239. short: F. Balestrieri, Proceedings of the American Mathematical Society 151 (2023) 907–914. date_created: 2023-01-29T23:00:58Z date_published: 2023-01-01T00:00:00Z date_updated: 2023-08-01T13:03:32Z day: '01' department: - _id: TiBr doi: 10.1090/proc/15239 external_id: isi: - '000898440000001' intvolume: ' 151' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://hal.science/hal-03013498/ month: '01' oa: 1 oa_version: Preprint page: 907-914 publication: Proceedings of the American Mathematical Society publication_identifier: eissn: - 1088-6826 issn: - 0002-9939 publication_status: published publisher: American Mathematical Society quality_controlled: '1' scopus_import: '1' status: public title: Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 151 year: '2023' ... --- _id: '12567' abstract: - lang: eng text: Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations. acknowledgement: This work has been supported by funding of the German Research Foundation (Deutsche Forschungsgemeinschaft [DFG], CRC 166, Project B06 to M.H. and A.-L.S., FOR 3004 SYNABS P1 to M.H.) and by the Interdisciplinary Clinical Research Center (IZKF) Würzburg (Z-3/69 to M.M.P., N-229 to M.H. and A.-L.S.). A.M. is funded by the University of Leipzig Clinician Scientist Program. article_number: '2128' article_processing_charge: No article_type: original author: - first_name: Achmed full_name: Mrestani, Achmed last_name: Mrestani - first_name: Katharina full_name: Lichter, Katharina id: 39302e62-fcfc-11ec-8196-8b01447dbd3d last_name: Lichter - first_name: Anna Leena full_name: Sirén, Anna Leena last_name: Sirén - first_name: Manfred full_name: Heckmann, Manfred last_name: Heckmann - first_name: Mila M. full_name: Paul, Mila M. last_name: Paul - first_name: Martin full_name: Pauli, Martin last_name: Pauli citation: ama: Mrestani A, Lichter K, Sirén AL, Heckmann M, Paul MM, Pauli M. Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation. International Journal of Molecular Sciences. 2023;24(3). doi:10.3390/ijms24032128 apa: Mrestani, A., Lichter, K., Sirén, A. L., Heckmann, M., Paul, M. M., & Pauli, M. (2023). Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms24032128 chicago: Mrestani, Achmed, Katharina Lichter, Anna Leena Sirén, Manfred Heckmann, Mila M. Paul, and Martin Pauli. “Single-Molecule Localization Microscopy of Presynaptic Active Zones in Drosophila Melanogaster after Rapid Cryofixation.” International Journal of Molecular Sciences. MDPI, 2023. https://doi.org/10.3390/ijms24032128. ieee: A. Mrestani, K. Lichter, A. L. Sirén, M. Heckmann, M. M. Paul, and M. Pauli, “Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation,” International Journal of Molecular Sciences, vol. 24, no. 3. MDPI, 2023. ista: Mrestani A, Lichter K, Sirén AL, Heckmann M, Paul MM, Pauli M. 2023. Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation. International Journal of Molecular Sciences. 24(3), 2128. mla: Mrestani, Achmed, et al. “Single-Molecule Localization Microscopy of Presynaptic Active Zones in Drosophila Melanogaster after Rapid Cryofixation.” International Journal of Molecular Sciences, vol. 24, no. 3, 2128, MDPI, 2023, doi:10.3390/ijms24032128. short: A. Mrestani, K. Lichter, A.L. Sirén, M. Heckmann, M.M. Paul, M. Pauli, International Journal of Molecular Sciences 24 (2023). date_created: 2023-02-19T23:00:56Z date_published: 2023-01-21T00:00:00Z date_updated: 2023-08-01T13:16:36Z day: '21' ddc: - '570' department: - _id: PeJo doi: 10.3390/ijms24032128 external_id: isi: - '000930324700001' file: - access_level: open_access checksum: 69a35dcd3e0249f902ab881b06ee2e58 content_type: application/pdf creator: dernst date_created: 2023-02-20T07:09:27Z date_updated: 2023-02-20T07:09:27Z file_id: '12569' file_name: 2023_IJMS_Mrestani.pdf file_size: 2823025 relation: main_file success: 1 file_date_updated: 2023-02-20T07:09:27Z has_accepted_license: '1' intvolume: ' 24' isi: 1 issue: '3' language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: International Journal of Molecular Sciences publication_identifier: eissn: - 1422-0067 publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 24 year: '2023' ... --- _id: '12566' abstract: - lang: eng text: "Approximate agreement is one of the few variants of consensus that can be solved in a wait-free manner in asynchronous systems where processes communicate by reading and writing to shared memory. In this work, we consider a natural generalisation of approximate agreement on arbitrary undirected connected graphs. Each process is given a node of the graph as input and, if non-faulty, must output a node such that\r\n– all the outputs are within distance 1 of one another, and\r\n– each output value lies on a shortest path between two input values.\r\nFrom prior work, it is known that there is no wait-free algorithm among processes for this problem on any cycle of length , by reduction from 2-set agreement (Castañeda et al., 2018).\r\n\r\nIn this work, we investigate the solvability of this task on general graphs. We give a new, direct proof of the impossibility of approximate agreement on cycles of length , via a generalisation of Sperner's Lemma to convex polygons. We also extend the reduction from 2-set agreement to a larger class of graphs, showing that approximate agreement on these graphs is unsolvable. On the positive side, we present a wait-free algorithm for a different class of graphs, which properly contains the class of chordal graphs." acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 805223 ScaleML) and under the Marie Skłodowska-Curie grant agreement No. 840605 and from the Natural Sciences and Engineering Research Council of Canada grant RGPIN-2020-04178. Part of this work was done while Faith Ellen was visiting IST Austria. article_number: '113733' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Faith full_name: Ellen, Faith last_name: Ellen - first_name: Joel full_name: Rybicki, Joel id: 334EFD2E-F248-11E8-B48F-1D18A9856A87 last_name: Rybicki orcid: 0000-0002-6432-6646 citation: ama: Alistarh D-A, Ellen F, Rybicki J. Wait-free approximate agreement on graphs. Theoretical Computer Science. 2023;948(2). doi:10.1016/j.tcs.2023.113733 apa: Alistarh, D.-A., Ellen, F., & Rybicki, J. (2023). Wait-free approximate agreement on graphs. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/j.tcs.2023.113733 chicago: Alistarh, Dan-Adrian, Faith Ellen, and Joel Rybicki. “Wait-Free Approximate Agreement on Graphs.” Theoretical Computer Science. Elsevier, 2023. https://doi.org/10.1016/j.tcs.2023.113733. ieee: D.-A. Alistarh, F. Ellen, and J. Rybicki, “Wait-free approximate agreement on graphs,” Theoretical Computer Science, vol. 948, no. 2. Elsevier, 2023. ista: Alistarh D-A, Ellen F, Rybicki J. 2023. Wait-free approximate agreement on graphs. Theoretical Computer Science. 948(2), 113733. mla: Alistarh, Dan-Adrian, et al. “Wait-Free Approximate Agreement on Graphs.” Theoretical Computer Science, vol. 948, no. 2, 113733, Elsevier, 2023, doi:10.1016/j.tcs.2023.113733. short: D.-A. Alistarh, F. Ellen, J. Rybicki, Theoretical Computer Science 948 (2023). date_created: 2023-02-19T23:00:55Z date_published: 2023-02-28T00:00:00Z date_updated: 2023-08-01T13:17:20Z day: '28' ddc: - '000' department: - _id: DaAl doi: 10.1016/j.tcs.2023.113733 ec_funded: 1 external_id: isi: - '000934262700001' file: - access_level: open_access checksum: b27c5290f2f1500c403494364ee39c9f content_type: application/pdf creator: dernst date_created: 2023-02-20T07:30:20Z date_updated: 2023-02-20T07:30:20Z file_id: '12570' file_name: 2023_TheoreticalCompScience_Alistarh.pdf file_size: 602333 relation: main_file success: 1 file_date_updated: 2023-02-20T07:30:20Z has_accepted_license: '1' intvolume: ' 948' isi: 1 issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning - _id: 26A5D39A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '840605' name: Coordination in constrained and natural distributed systems publication: Theoretical Computer Science publication_identifier: issn: - 0304-3975 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Wait-free approximate agreement on graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 948 year: '2023' ...