TY - JOUR AB - An N-superconcentrator is a directed, acyclic graph with N input nodes and N output nodes such that every subset of the inputs and every subset of the outputs of same cardinality can be connected by node-disjoint paths. It is known that linear-size and bounded-degree superconcentrators exist. We prove the existence of such superconcentrators with asymptotic density 25.3 (where the density is the number of edges divided by N). The previously best known densities were 28 [12] and 27.4136 [17]. AU - Kolmogorov, Vladimir AU - Rolinek, Michal ID - 18 IS - 10 JF - Ars Combinatoria SN - 0381-7032 TI - Superconcentrators of density 25.3 VL - 141 ER - TY - JOUR AB - We prove that any cyclic quadrilateral can be inscribed in any closed convex C1-curve. The smoothness condition is not required if the quadrilateral is a rectangle. AU - Akopyan, Arseniy AU - Avvakumov, Sergey ID - 6355 JF - Forum of Mathematics, Sigma SN - 2050-5094 TI - Any cyclic quadrilateral can be inscribed in any closed convex smooth curve VL - 6 ER - TY - CONF AB - Bitcoin has become the most successful cryptocurrency ever deployed, and its most distinctive feature is that it is decentralized. Its underlying protocol (Nakamoto consensus) achieves this by using proof of work, which has the drawback that it causes the consumption of vast amounts of energy to maintain the ledger. Moreover, Bitcoin mining dynamics have become less distributed over time. Towards addressing these issues, we propose SpaceMint, a cryptocurrency based on proofs of space instead of proofs of work. Miners in SpaceMint dedicate disk space rather than computation. We argue that SpaceMint’s design solves or alleviates several of Bitcoin’s issues: most notably, its large energy consumption. SpaceMint also rewards smaller miners fairly according to their contribution to the network, thus incentivizing more distributed participation. This paper adapts proof of space to enable its use in cryptocurrency, studies the attacks that can arise against a Bitcoin-like blockchain that uses proof of space, and proposes a new blockchain format and transaction types to address these attacks. Our prototype shows that initializing 1 TB for mining takes about a day (a one-off setup cost), and miners spend on average just a fraction of a second per block mined. Finally, we provide a game-theoretic analysis modeling SpaceMint as an extensive game (the canonical game-theoretic notion for games that take place over time) and show that this stylized game satisfies a strong equilibrium notion, thereby arguing for SpaceMint ’s stability and consensus. AU - Park, Sunoo AU - Kwon, Albert AU - Fuchsbauer, Georg AU - Gazi, Peter AU - Alwen, Joel F AU - Pietrzak, Krzysztof Z ID - 6941 SN - 0302-9743 T2 - 22nd International Conference on Financial Cryptography and Data Security TI - SpaceMint: A cryptocurrency based on proofs of space VL - 10957 ER - TY - JOUR AB - T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b−/− CD8+ T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b−/− CD8+ T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b−/− CD8+ T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8+ T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue–resident T cell populations. AU - Moalli, Federica AU - Ficht, Xenia AU - Germann, Philipp AU - Vladymyrov, Mykhailo AU - Stolp, Bettina AU - de Vries, Ingrid AU - Lyck, Ruth AU - Balmer, Jasmin AU - Fiocchi, Amleto AU - Kreutzfeldt, Mario AU - Merkler, Doron AU - Iannacone, Matteo AU - Ariga, Akitaka AU - Stoffel, Michael H. AU - Sharpe, James AU - Bähler, Martin AU - Sixt, Michael K AU - Diz-Muñoz, Alba AU - Stein, Jens V. ID - 6497 IS - 7 JF - The Journal of Experimental Medicine SN - 0022-1007 TI - The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells VL - 2015 ER - TY - JOUR AB - Expansion microscopy is a recently introduced imaging technique that achieves super‐resolution through physically expanding the specimen by ~4×, after embedding into a swellable gel. The resolution attained is, correspondingly, approximately fourfold better than the diffraction limit, or ~70 nm. This is a major improvement over conventional microscopy, but still lags behind modern STED or STORM setups, whose resolution can reach 20–30 nm. We addressed this issue here by introducing an improved gel recipe that enables an expansion factor of ~10× in each dimension, which corresponds to an expansion of the sample volume by more than 1,000‐fold. Our protocol, which we termed X10 microscopy, achieves a resolution of 25–30 nm on conventional epifluorescence microscopes. X10 provides multi‐color images similar or even superior to those produced with more challenging methods, such as STED, STORM, and iterative expansion microscopy (iExM). X10 is therefore the cheapest and easiest option for high‐quality super‐resolution imaging currently available. X10 should be usable in any laboratory, irrespective of the machinery owned or of the technical knowledge. AU - Truckenbrodt, Sven M AU - Maidorn, Manuel AU - Crzan, Dagmar AU - Wildhagen, Hanna AU - Kabatas, Selda AU - Rizzoli, Silvio O ID - 6499 IS - 9 JF - EMBO reports SN - 1469-221X TI - X10 expansion microscopy enables 25‐nm resolution on conventional microscopes VL - 19 ER -