TY - JOUR AB - We present criteria for establishing a triangulation of a manifold. Given a manifold M, a simplicial complex A, and a map H from the underlying space of A to M, our criteria are presented in local coordinate charts for M, and ensure that H is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on M. No Delaunay property of A is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use. AU - Boissonnat, Jean-Daniel AU - Dyer, Ramsay AU - Ghosh, Arijit AU - Wintraecken, Mathijs ID - 12287 JF - Discrete & Computational Geometry KW - Computational Theory and Mathematics KW - Discrete Mathematics and Combinatorics KW - Geometry and Topology KW - Theoretical Computer Science SN - 0179-5376 TI - Local criteria for triangulating general manifolds VL - 69 ER - TY - JOUR AB - The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions. AU - Fäßler, Florian AU - Javoor, Manjunath AU - Schur, Florian KM ID - 12421 IS - 1 JF - Biochemical Society Transactions KW - Biochemistry SN - 0300-5127 TI - Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM VL - 51 ER - TY - JOUR AB - Data-driven dimensionality reduction methods such as proper orthogonal decomposition and dynamic mode decomposition have proven to be useful for exploring complex phenomena within fluid dynamics and beyond. A well-known challenge for these techniques is posed by the continuous symmetries, e.g. translations and rotations, of the system under consideration, as drifts in the data dominate the modal expansions without providing an insight into the dynamics of the problem. In the present study, we address this issue for fluid flows in rectangular channels by formulating a continuous symmetry reduction method that eliminates the translations in the streamwise and spanwise directions simultaneously. We demonstrate our method by computing the symmetry-reduced dynamic mode decomposition (SRDMD) of sliding windows of data obtained from the transitional plane-Couette and turbulent plane-Poiseuille flow simulations. In the former setting, SRDMD captures the dynamics in the vicinity of the invariant solutions with translation symmetries, i.e. travelling waves and relative periodic orbits, whereas in the latter, our calculations reveal episodes of turbulent time evolution that can be approximated by a low-dimensional linear expansion. AU - Marensi, Elena AU - Yalniz, Gökhan AU - Hof, Björn AU - Budanur, Nazmi B ID - 12105 JF - Journal of Fluid Mechanics SN - 0022-1120 TI - Symmetry-reduced dynamic mode decomposition of near-wall turbulence VL - 954 ER - TY - JOUR AB - The concept of a “speciation continuum” has gained popularity in recent decades. It emphasizes speciation as a continuous process that may be studied by comparing contemporary population pairs that show differing levels of divergence. In their recent perspective article in Evolution, Stankowski and Ravinet provided a valuable service by formally defining the speciation continuum as a continuum of reproductive isolation, based on opinions gathered from a survey of speciation researchers. While we agree that the speciation continuum has been a useful concept to advance the understanding of the speciation process, some intrinsic limitations exist. Here, we advocate for a multivariate extension, the speciation hypercube, first proposed by Dieckmann et al. in 2004, but rarely used since. We extend the idea of the speciation cube and suggest it has strong conceptual and practical advantages over a one-dimensional model. We illustrate how the speciation hypercube can be used to visualize and compare different speciation trajectories, providing new insights into the processes and mechanisms of speciation. A key strength of the speciation hypercube is that it provides a unifying framework for speciation research, as it allows questions from apparently disparate subfields to be addressed in a single conceptual model. AU - Bolnick, Daniel I. AU - Hund, Amanda K. AU - Nosil, Patrik AU - Peng, Foen AU - Ravinet, Mark AU - Stankowski, Sean AU - Subramanian, Swapna AU - Wolf, Jochen B.W. AU - Yukilevich, Roman ID - 12514 IS - 1 JF - Evolution: International journal of organic evolution TI - A multivariate view of the speciation continuum VL - 77 ER - TY - CONF AB - The limited exchange between human communities is a key factor in preventing the spread of COVID-19. This paper introduces a digital framework that combines an integration of real mobility data at the country scale with a series of modeling techniques and visual capabilities that highlight mobility patterns before and during the pandemic. The findings not only significantly exhibit mobility trends and different degrees of similarities at regional and local levels but also provide potential insight into the emergence of a pandemic on human behavior patterns and their likely socio-economic impacts. AU - Forghani, Mohammad AU - Claramunt, Christophe AU - Karimipour, Farid AU - Heiler, Georg ID - 12548 T2 - 2022 IEEE International Conference on Data Mining Workshops TI - Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic ER -