TY - JOUR AB - Plants can regenerate their bodies via de novo establishment of shoot apical meristems (SAMs) from pluripotent callus. Only a small fraction of callus cells is eventually specified into SAMs but the molecular mechanisms underlying fate specification remain obscure. The expression of WUSCHEL (WUS) is an early hallmark of SAM fate acquisition. Here, we show that a WUS paralog, WUSCHEL-RELATED HOMEOBOX 13 (WOX13), negatively regulates SAM formation from callus in Arabidopsis thaliana. WOX13 promotes non-meristematic cell fate via transcriptional repression of WUS and other SAM regulators and activation of cell wall modifiers. Our Quartz-Seq2–based single cell transcriptome revealed that WOX13 plays key roles in determining cellular identity of callus cell population. We propose that reciprocal inhibition between WUS and WOX13 mediates critical cell fate determination in pluripotent cell population, which has a major impact on regeneration efficiency. AU - Ogura, Nao AU - Sasagawa, Yohei AU - Ito, Tasuku AU - Tameshige, Toshiaki AU - Kawai, Satomi AU - Sano, Masaki AU - Doll, Yuki AU - Iwase, Akira AU - Kawamura, Ayako AU - Suzuki, Takamasa AU - Nikaido, Itoshi AU - Sugimoto, Keiko AU - Ikeuchi, Momoko ID - 13259 IS - 27 JF - Science Advances TI - WUSCHEL-RELATED HOMEOBOX 13 suppresses de novo shoot regeneration via cell fate control of pluripotent callus VL - 9 ER - TY - JOUR AB - Conflicts and natural disasters affect entire populations of the countries involved and, in addition to the thousands of lives destroyed, have a substantial negative impact on the scientific advances these countries provide. The unprovoked invasion of Ukraine by Russia, the devastating earthquake in Turkey and Syria, and the ongoing conflicts in the Middle East are just a few examples. Millions of people have been killed or displaced, their futures uncertain. These events have resulted in extensive infrastructure collapse, with loss of electricity, transportation, and access to services. Schools, universities, and research centers have been destroyed along with decades’ worth of data, samples, and findings. Scholars in disaster areas face short- and long-term problems in terms of what they can accomplish now for obtaining grants and for employment in the long run. In our interconnected world, conflicts and disasters are no longer a local problem but have wide-ranging impacts on the entire world, both now and in the future. Here, we focus on the current and ongoing impact of war on the scientific community within Ukraine and from this draw lessons that can be applied to all affected countries where scientists at risk are facing hardship. We present and classify examples of effective and feasible mechanisms used to support researchers in countries facing hardship and discuss how these can be implemented with help from the international scientific community and what more is desperately needed. Reaching out, providing accessible training opportunities, and developing collaborations should increase inclusion and connectivity, support scientific advancements within affected communities, and expedite postwar and disaster recovery. AU - Wolfsberger, Walter AU - Chhugani, Karishma AU - Shchubelka, Khrystyna AU - Frolova, Alina AU - Salyha, Yuriy AU - Zlenko, Oksana AU - Arych, Mykhailo AU - Dziuba, Dmytro AU - Parkhomenko, Andrii AU - Smolanka, Volodymyr AU - Gümüş, Zeynep H. AU - Sezgin, Efe AU - Diaz-Lameiro, Alondra AU - Toth, Viktor R. AU - Maci, Megi AU - Bortz, Eric AU - Kondrashov, Fyodor AU - Morton, Patricia M. AU - Łabaj, Paweł P. AU - Romero, Veronika AU - Hlávka, Jakub AU - Mangul, Serghei AU - Oleksyk, Taras K. ID - 13976 JF - GigaScience TI - Scientists without borders: Lessons from Ukraine VL - 12 ER - TY - JOUR AB - We construct families of log K3 surfaces and study the arithmetic of their members. We use this to produce explicit surfaces with an order 5 Brauer–Manin obstruction to the integral Hasse principle. AU - Lyczak, Julian ID - 13973 IS - 2 JF - Annales de l'Institut Fourier SN - 0373-0956 TI - Order 5 Brauer–Manin obstructions to the integral Hasse principle on log K3 surfaces VL - 73 ER - TY - JOUR AB - The Tverberg theorem is one of the cornerstones of discrete geometry. It states that, given a set X of at least (d+1)(r−1)+1 points in Rd, one can find a partition X=X1∪⋯∪Xr of X, such that the convex hulls of the Xi, i=1,…,r, all share a common point. In this paper, we prove a trengthening of this theorem that guarantees a partition which, in addition to the above, has the property that the boundaries of full-dimensional convex hulls have pairwise nonempty intersections. Possible generalizations and algorithmic aspects are also discussed. As a concrete application, we show that any n points in the plane in general position span ⌊n/3⌋ vertex-disjoint triangles that are pairwise crossing, meaning that their boundaries have pairwise nonempty intersections; this number is clearly best possible. A previous result of Álvarez-Rebollar et al. guarantees ⌊n/6⌋pairwise crossing triangles. Our result generalizes to a result about simplices in Rd, d≥2. AU - Fulek, Radoslav AU - Gärtner, Bernd AU - Kupavskii, Andrey AU - Valtr, Pavel AU - Wagner, Uli ID - 13974 JF - Discrete and Computational Geometry SN - 0179-5376 TI - The crossing Tverberg theorem ER - TY - JOUR AB - We consider the spectrum of random Laplacian matrices of the form Ln=An−Dn where An is a real symmetric random matrix and Dn is a diagonal matrix whose entries are equal to the corresponding row sums of An. If An is a Wigner matrix with entries in the domain of attraction of a Gaussian distribution, the empirical spectral measure of Ln is known to converge to the free convolution of a semicircle distribution and a standard real Gaussian distribution. We consider real symmetric random matrices An with independent entries (up to symmetry) whose row sums converge to a purely non-Gaussian infinitely divisible distribution, which fall into the class of Lévy–Khintchine random matrices first introduced by Jung [Trans Am Math Soc, 370, (2018)]. Our main result shows that the empirical spectral measure of Ln converges almost surely to a deterministic limit. A key step in the proof is to use the purely non-Gaussian nature of the row sums to build a random operator to which Ln converges in an appropriate sense. This operator leads to a recursive distributional equation uniquely describing the Stieltjes transform of the limiting empirical spectral measure. AU - Campbell, Andrew J AU - O’Rourke, Sean ID - 13975 JF - Journal of Theoretical Probability SN - 0894-9840 TI - Spectrum of Lévy–Khintchine random laplacian matrices ER - TY - JOUR AB - The magnetotropic susceptibility is the thermodynamic coefficient associated with the rotational anisotropy of the free energy in an external magnetic field and is closely related to the magnetic susceptibility. It emerges naturally in frequency-shift measurements of oscillating mechanical cantilevers, which are becoming an increasingly important tool in the quantitative study of the thermodynamics of modern condensed-matter systems. Here we discuss the basic properties of the magnetotropic susceptibility as they relate to the experimental aspects of frequency-shift measurements, as well as to the interpretation of those experiments in terms of the intrinsic properties of the system under study. AU - Shekhter, A. AU - Mcdonald, R. D. AU - Ramshaw, B. J. AU - Modic, Kimberly A ID - 13257 IS - 3 JF - Physical Review B SN - 2469-9950 TI - Magnetotropic susceptibility VL - 108 ER - TY - JOUR AB - This Special Collection is dedicated to the field of photocatalytic synthesis and contains a diverse selection of original research contributions. It includes studies on catalyst development, mechanistic investigations, method development and the use of enabling technologies, illustrating the many facets of state-of-the-art research in photocatalytic synthesis. Further, emerging topics are surveyed and discussed in three reviews and a concept article. AU - Næsborg, Line AU - Pieber, Bartholomäus AU - Wenger, Oliver S. ID - 13972 JF - ChemCatChem SN - 1867-3880 TI - Special Collection: Photocatalytic synthesis ER - TY - JOUR AB - The use of multimodal readout mechanisms next to label-free real-time monitoring of biomolecular interactions can provide valuable insight into surface-based reaction mechanisms. To this end, the combination of an electrolyte-gated field-effect transistor (EG-FET) with a fiber optic-coupled surface plasmon resonance (FO-SPR) probe serving as gate electrode has been investigated to deconvolute surface mass and charge density variations associated to surface reactions. However, applying an electrochemical potential on such gold-coated FO-SPR gate electrodes can induce gradual morphological changes of the thin gold film, leading to an irreversible blue-shift of the SPR wavelength and a substantial signal drift. We show that mild annealing leads to optical and electronic signal stabilization (20-fold lower signal drift than as-sputtered fiber optic gates) and improved overall analytical performance characteristics. The thermal treatment prevents morphological changes of the thin gold-film occurring during operation, hence providing reliable and stable data immediately upon gate voltage application. Thus, the readout output of both transducing principles, the optical FO-SPR and electronic EG-FET, stays constant throughout the whole sensing time-window and the long-term effect of thermal treatment is also improved, providing stable signals even after 1 year of storage. Annealing should therefore be considered a necessary modification for applying fiber optic gate electrodes in real-time multimodal investigations of surface reactions at the solid-liquid interface. AU - Hasler, Roger AU - Steger-Polt, Marie Helene AU - Reiner-Rozman, Ciril AU - Fossati, Stefan AU - Lee, Seungho AU - Aspermair, Patrik AU - Kleber, Christoph AU - Ibáñez, Maria AU - Dostalek, Jakub AU - Knoll, Wolfgang ID - 13968 JF - Frontiers in Physics TI - Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing VL - 11 ER - TY - JOUR AB - Long-time and large-data existence of weak solutions for initial- and boundary-value problems concerning three-dimensional flows of incompressible fluids is nowadays available not only for Navier–Stokes fluids but also for various fluid models where the relation between the Cauchy stress tensor and the symmetric part of the velocity gradient is nonlinear. The majority of such studies however concerns models where such a dependence is explicit (the stress is a function of the velocity gradient), which makes the class of studied models unduly restrictive. The same concerns boundary conditions, or more precisely the slipping mechanisms on the boundary, where the no-slip is still the most preferred condition considered in the literature. Our main objective is to develop a robust mathematical theory for unsteady internal flows of implicitly constituted incompressible fluids with implicit relations between the tangential projections of the velocity and the normal traction on the boundary. The theory covers numerous rheological models used in chemistry, biorheology, polymer and food industry as well as in geomechanics. It also includes, as special cases, nonlinear slip as well as stick–slip boundary conditions. Unlike earlier studies, the conditions characterizing admissible classes of constitutive equations are expressed by means of tools of elementary calculus. In addition, a fully constructive proof (approximation scheme) is incorporated. Finally, we focus on the question of uniqueness of such weak solutions. AU - Bulíček, Miroslav AU - Málek, Josef AU - Maringová, Erika ID - 14042 IS - 3 JF - Journal of Mathematical Fluid Mechanics SN - 1422-6928 TI - On unsteady internal flows of incompressible fluids characterized by implicit constitutive equations in the bulk and on the boundary VL - 25 ER - TY - JOUR AB - Tissue morphogenesis and patterning during development involve the segregation of cell types. Segregation is driven by differential tissue surface tensions generated by cell types through controlling cell-cell contact formation by regulating adhesion and actomyosin contractility-based cellular cortical tensions. We use vertebrate tissue cell types and zebrafish germ layer progenitors as in vitro models of 3-dimensional heterotypic segregation and developed a quantitative analysis of their dynamics based on 3D time-lapse microscopy. We show that general inhibition of actomyosin contractility by the Rho kinase inhibitor Y27632 delays segregation. Cell type-specific inhibition of non-muscle myosin2 activity by overexpression of myosin assembly inhibitor S100A4 reduces tissue surface tension, manifested in decreased compaction during aggregation and inverted geometry observed during segregation. The same is observed when we express a constitutively active Rho kinase isoform to ubiquitously keep actomyosin contractility high at cell-cell and cell-medium interfaces and thus overriding the interface-specific regulation of cortical tensions. Tissue surface tension regulation can become an effective tool in tissue engineering. AU - Méhes, Elod AU - Mones, Enys AU - Varga, Máté AU - Zsigmond, Áron AU - Biri-Kovács, Beáta AU - Nyitray, László AU - Barone, Vanessa AU - Krens, Gabriel AU - Heisenberg, Carl-Philipp J AU - Vicsek, Tamás ID - 14041 JF - Communications Biology TI - 3D cell segregation geometry and dynamics are governed by tissue surface tension regulation VL - 6 ER - TY - JOUR AB - Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them. AU - Leonard, Thomas A. AU - Loose, Martin AU - Martens, Sascha ID - 14039 IS - 15 JF - Developmental Cell SN - 1534-5807 TI - The membrane surface as a platform that organizes cellular and biochemical processes VL - 58 ER - TY - JOUR AB - Robust oxygenic photosynthesis requires a suite of accessory factors to ensure efficient assembly and repair of the oxygen-evolving photosystem two (PSII) complex. The highly conserved Ycf48 assembly factor binds to the newly synthesized D1 reaction center polypeptide and promotes the initial steps of PSII assembly, but its binding site is unclear. Here we use cryo-electron microscopy to determine the structure of a cyanobacterial PSII D1/D2 reaction center assembly complex with Ycf48 attached. Ycf48, a 7-bladed beta propeller, binds to the amino-acid residues of D1 that ultimately ligate the water-oxidising Mn4CaO5 cluster, thereby preventing the premature binding of Mn2+ and Ca2+ ions and protecting the site from damage. Interactions with D2 help explain how Ycf48 promotes assembly of the D1/D2 complex. Overall, our work provides valuable insights into the early stages of PSII assembly and the structural changes that create the binding site for the Mn4CaO5 cluster. AU - Zhao, Ziyu AU - Vercellino, Irene AU - Knoppová, Jana AU - Sobotka, Roman AU - Murray, James W. AU - Nixon, Peter J. AU - Sazanov, Leonid A AU - Komenda, Josef ID - 14040 JF - Nature Communications TI - The Ycf48 accessory factor occupies the site of the oxygen-evolving manganese cluster during photosystem II biogenesis VL - 14 ER - TY - CONF AB - A classic solution technique for Markov decision processes (MDP) and stochastic games (SG) is value iteration (VI). Due to its good practical performance, this approximative approach is typically preferred over exact techniques, even though no practical bounds on the imprecision of the result could be given until recently. As a consequence, even the most used model checkers could return arbitrarily wrong results. Over the past decade, different works derived stopping criteria, indicating when the precision reaches the desired level, for various settings, in particular MDP with reachability, total reward, and mean payoff, and SG with reachability.In this paper, we provide the first stopping criteria for VI on SG with total reward and mean payoff, yielding the first anytime algorithms in these settings. To this end, we provide the solution in two flavours: First through a reduction to the MDP case and second directly on SG. The former is simpler and automatically utilizes any advances on MDP. The latter allows for more local computations, heading towards better practical efficiency.Our solution unifies the previously mentioned approaches for MDP and SG and their underlying ideas. To achieve this, we isolate objective-specific subroutines as well as identify objective-independent concepts. These structural concepts, while surprisingly simple, form the very essence of the unified solution. AU - Kretinsky, Jan AU - Meggendorfer, Tobias AU - Weininger, Maximilian ID - 13967 SN - 1043-6871 T2 - 38th Annual ACM/IEEE Symposium on Logic in Computer Science TI - Stopping criteria for value iteration on stochastic games with quantitative objectives VL - 2023 ER - TY - JOUR AB - Many modes and mechanisms of epigenetic inheritance have been elucidated in eukaryotes. Most of them are relatively short-term, generally not exceeding one or a few organismal generations. However, emerging evidence indicates that one mechanism, cytosine DNA methylation, can mediate epigenetic inheritance over much longer timescales, which are mostly or completely inaccessible in the laboratory. Here we discuss the evidence for, and mechanisms and implications of, such long-term epigenetic inheritance. We argue that compelling evidence supports the long-term epigenetic inheritance of gene body methylation, at least in the model angiosperm Arabidopsis thaliana, and that variation in such methylation can therefore serve as an epigenetic basis for phenotypic variation in natural populations. AU - Hollwey, Elizabeth AU - Briffa, Amy AU - Howard, Martin AU - Zilberman, Daniel ID - 13965 IS - 8 JF - Current Opinion in Genetics and Development SN - 0959-437X TI - Concepts, mechanisms and implications of long-term epigenetic inheritance VL - 81 ER - TY - THES AB - Females and males across species are subject to divergent selective pressures arising from di↵erent reproductive interests and ecological niches. This often translates into a intricate array of sex-specific natural and sexual selection on traits that have a shared genetic basis between both sexes, causing a genetic sexual conflict. The resolution of this conflict mostly relies on the evolution of sex-specific expression of the shared genes, leading to phenotypic sexual dimorphism. Such sex-specific gene expression is thought to evolve via modifications of the genetic networks ultimately linked to sex-determining transcription factors. Although much empirical and theoretical evidence supports this standard picture of the molecular basis of sexual conflict resolution, there still are a few open questions regarding the complex array of selective forces driving phenotypic di↵erentiation between the sexes, as well as the molecular mechanisms underlying sexspecific adaptation. I address some of these open questions in my PhD thesis. First, how do patterns of phenotypic sexual dimorphism vary within populations, as a response to the temporal and spatial changes in sex-specific selective forces? To tackle this question, I analyze the patterns of sex-specific phenotypic variation along three life stages and across populations spanning the whole geographical range of Rumex hastatulus, a wind-pollinated angiosperm, in the first Chapter of the thesis. Second, how do gene expression patterns lead to phenotypic dimorphism, and what are the molecular mechanisms underlying the observed transcriptomic variation? I address this question by examining the sex- and tissue-specific expression variation in newly-generated datasets of sex-specific expression in heads and gonads of Drosophila melanogaster. I additionally used two complementary approaches for the study of the genetic basis of sex di↵erences in gene expression in the second and third Chapters of the thesis. Third, how does intersex correlation, thought to be one of the main aspects constraining the ability for the two sexes to decouple, interact with the evolution of sexual dimorphism? I develop models of sex-specific stabilizing selection, mutation and drift to formalize common intuition regarding the patterns of covariation between intersex correlation and sexual dimorphism in the fourth Chapter of the thesis. Alltogether, the work described in this PhD thesis provides useful insights into the links between genetic, transcriptomic and phenotypic layers of sex-specific variation, and contributes to our general understanding of the dynamics of sexual dimorphism evolution. AU - Puixeu Sala, Gemma ID - 14058 SN - 2663-337X TI - The molecular basis of sexual dimorphism: Experimental and theoretical characterization of phenotypic, transcriptomic and genetic patterns of sex-specific adaptation ER - TY - JOUR AB - The regulatory architecture of gene expression is known to differ substantially between sexes in Drosophila, but most studies performed so far used whole-body data and only single crosses, which may have limited their scope to detect patterns that are robust across tissues and biological replicates. Here, we use allele-specific gene expression of parental and reciprocal hybrid crosses between 6 Drosophila melanogaster inbred lines to quantify cis- and trans-regulatory variation in heads and gonads of both sexes separately across 3 replicate crosses. Our results suggest that female and male heads, as well as ovaries, have a similar regulatory architecture. On the other hand, testes display more and substantially different cis-regulatory effects, suggesting that sex differences in the regulatory architecture that have been previously observed may largely derive from testis-specific effects. We also examine the difference in cis-regulatory variation of genes across different levels of sex bias in gonads and heads. Consistent with the idea that intersex correlations constrain expression and can lead to sexual antagonism, we find more cis variation in unbiased and moderately biased genes in heads. In ovaries, reduced cis variation is observed for male-biased genes, suggesting that cis variants acting on these genes in males do not lead to changes in ovary expression. Finally, we examine the dominance patterns of gene expression and find that sex- and tissue-specific patterns of inheritance as well as trans-regulatory variation are highly variable across biological crosses, although these were performed in highly controlled experimental conditions. This highlights the importance of using various genetic backgrounds to infer generalizable patterns. AU - Puixeu Sala, Gemma AU - Macon, Ariana AU - Vicoso, Beatriz ID - 14077 IS - 8 JF - G3: Genes, Genomes, Genetics KW - Genetics (clinical) KW - Genetics KW - Molecular Biology SN - 2160-1836 TI - Sex-specific estimation of cis and trans regulation of gene expression in heads and gonads of Drosophila melanogaster VL - 13 ER - TY - JOUR AB - Most permissionless blockchains inherently suffer from throughput limitations. Layer-2 systems, such as side-chains or Rollups, have been proposed as a possible strategy to overcome this limitation. Layer-2 systems interact with the main-chain in two ways. First, users can move funds from/to the main-chain to/from the layer-2. Second, layer-2 systems periodically synchronize with the main-chain to keep some form of log of their activity on the main-chain - this log is key for security. Due to this interaction with the main-chain, which is necessary and recurrent, layer-2 systems impose some load on the main-chain. The impact of such load on the main-chain has been, so far, poorly understood. In addition to that, layer-2 approaches typically sacrifice decentralization and security in favor of higher throughput. This paper presents an experimental study that analyzes the current state of Ethereum layer-2 projects. Our goal is to assess the load they impose on Ethereum and to understand their scalability potential in the long-run. Our analysis shows that the impact of any given layer-2 on the main-chain is the result of both technical aspects (how state is logged on the main-chain) and user behavior (how often users decide to transfer funds between the layer-2 and the main-chain). Based on our observations, we infer that without efficient mechanisms that allow users to transfer funds in a secure and fast manner directly from one layer-2 project to another, current layer-2 systems will not be able to scale Ethereum effectively, regardless of their technical solutions. Furthermore, from our results, we conclude that the layer-2 systems that offer similar security guarantees as Ethereum have limited scalability potential, while approaches that offer better performance, sacrifice security and lead to an increase in centralization which runs against the end-goals of permissionless blockchains. AU - Neiheiser, Ray AU - Inacio, Gustavo AU - Rech, Luciana AU - Montez, Carlos AU - Matos, Miguel AU - Rodrigues, Luis ID - 13988 JF - IEEE Access KW - General Engineering KW - General Materials Science KW - General Computer Science KW - Electrical and Electronic Engineering SN - 2169-3536 TI - Practical limitations of Ethereum’s layer-2 VL - 11 ER - TY - DATA AB - Datasets of the publication "Sex-specific estimation of cis and trans regulation of gene expression in heads and gonads of Drosophila melanogaster". AU - Puixeu Sala, Gemma ID - 12933 TI - Data from: Sex-specific estimation of cis and trans regulation of gene expression in heads and gonads of Drosophila melanogaster ER - TY - JOUR AB - We establish effective counting results for lattice points in families of domains in real, complex and quaternionic hyperbolic spaces of any dimension. The domains we focus on are defined as product sets with respect to an Iwasawa decomposition. Several natural diophantine problems can be reduced to counting lattice points in such domains. These include equidistribution of the ratio of the length of the shortest solution (x,y) to the gcd equation bx−ay=1 relative to the length of (a,b), where (a,b) ranges over primitive vectors in a disc whose radius increases, the natural analog of this problem in imaginary quadratic number fields, as well as equidistribution of integral solutions to the diophantine equation defined by an integral Lorentz form in three or more variables. We establish an effective rate of convergence for these equidistribution problems, depending on the size of the spectral gap associated with a suitable lattice subgroup in the isometry group of the relevant hyperbolic space. The main result underlying our discussion amounts to establishing effective joint equidistribution for the horospherical component and the radial component in the Iwasawa decomposition of lattice elements. AU - Horesh, Tal AU - Nevo, Amos ID - 14245 IS - 2 JF - Pacific Journal of Mathematics SN - 0030-8730 TI - Horospherical coordinates of lattice points in hyperbolic spaces: Effective counting and equidistribution VL - 324 ER - TY - JOUR AB - The model of a ring threaded by the Aharonov-Bohm flux underlies our understanding of a coupling between gauge potentials and matter. The typical formulation of the model is based upon a single particle picture, and should be extended when interactions with other particles become relevant. Here, we illustrate such an extension for a particle in an Aharonov-Bohm ring subject to interactions with a weakly interacting Bose gas. We show that the ground state of the system can be described using the Bose-polaron concept—a particle dressed by interactions with a bosonic environment. We connect the energy spectrum to the effective mass of the polaron, and demonstrate how to change currents in the system by tuning boson-particle interactions. Our results suggest the Aharonov-Bohm ring as a platform for studying coherence and few- to many-body crossover of quasi-particles that arise from an impurity immersed in a medium. AU - Brauneis, Fabian AU - Ghazaryan, Areg AU - Hammer, Hans-Werner AU - Volosniev, Artem ID - 14246 JF - Communications Physics KW - General Physics and Astronomy SN - 2399-3650 TI - Emergence of a Bose polaron in a small ring threaded by the Aharonov-Bohm flux VL - 6 ER -