TY - CONF
AB - We present a new algorithm for enforcing incompressibility for Smoothed Particle Hydrodynamics (SPH) by preserving uniform density across the domain. We propose a hybrid method that uses a Poisson solve on a coarse grid to enforce a divergence free velocity ﬁeld, followed by a local density correction of the particles. This avoids typical grid artifacts and maintains the Lagrangian nature of SPH by directly transferring pressures onto particles. Our method can be easily integrated with existing SPH techniques such as the incompressible PCISPH method as well as weakly compressible SPH by adding an additional force term. We show that this hybrid method accelerates convergence towards uniform density and permits a signiﬁcantly larger time step compared to earlier approaches while producing similar results. We demonstrate our approach in a variety of scenarios with signiﬁcant pressure gradients such as splashing liquids.
AU - Raveendran, Karthik
AU - Wojtan, Christopher J
AU - Turk, Greg
ED - Spencer, Stephen
ID - 3298
TI - Hybrid smoothed particle hydrodynamics
ER -
TY - CONF
AB - We introduce propagation models, a formalism designed to support general and efficient data structures for the transient analysis of biochemical reaction networks. We give two use cases for propagation abstract data types: the uniformization method and numerical integration. We also sketch an implementation of a propagation abstract data type, which uses abstraction to approximate states.
AU - Henzinger, Thomas A
AU - Mateescu, Maria
ID - 3299
TI - Propagation models for computing biochemical reaction networks
ER -
TY - CONF
AB - The chemical master equation is a differential equation describing the time evolution of the probability distribution over the possible “states” of a biochemical system. The solution of this equation is of interest within the systems biology field ever since the importance of the molec- ular noise has been acknowledged. Unfortunately, most of the systems do not have analytical solutions, and numerical solutions suffer from the course of dimensionality and therefore need to be approximated. Here, we introduce the concept of tail approximation, which retrieves an approximation of the probabilities in the tail of a distribution from the total probability of the tail and its conditional expectation. This approximation method can then be used to numerically compute the solution of the chemical master equation on a subset of the state space, thus fighting the explosion of the state space, for which this problem is renowned.
AU - Henzinger, Thomas A
AU - Mateescu, Maria
ID - 3301
TI - Tail approximation for the chemical master equation
ER -
TY - CONF
AB - Cloud computing aims to give users virtually unlimited pay-per-use computing resources without the burden of managing the underlying infrastructure. We present a new job execution environment Flextic that exploits scal- able static scheduling techniques to provide the user with a flexible pricing model, such as a tradeoff between dif- ferent degrees of execution speed and execution price, and at the same time, reduce scheduling overhead for the cloud provider. We have evaluated a prototype of Flextic on Amazon EC2 and compared it against Hadoop. For various data parallel jobs from machine learning, im- age processing, and gene sequencing that we considered, Flextic has low scheduling overhead and reduces job du- ration by up to 15% compared to Hadoop, a dynamic cloud scheduler.
AU - Henzinger, Thomas A
AU - Singh, Anmol
AU - Singh, Vasu
AU - Wies, Thomas
AU - Zufferey, Damien
ID - 3302
TI - Static scheduling in clouds
ER -
TY - GEN
AB - We study the 3D reconstruction of plant roots from multiple 2D images. To meet the challenge caused by the delicate nature of thin branches, we make three innovations to cope with the sensitivity to image quality and calibration. First, we model the background as a harmonic function to improve the segmentation of the root in each 2D image. Second, we develop the concept of the regularized visual hull which reduces the effect of jittering and refraction by ensuring consistency with one 2D image. Third, we guarantee connectedness through adjustments to the 3D reconstruction that minimize global error. Our software is part of a biological phenotype/genotype study of agricultural root systems. It has been tested on more than 40 plant roots and results are promising in terms of reconstruction quality and efficiency.
AU - Zheng, Ying
AU - Gu, Steve
AU - Edelsbrunner, Herbert
AU - Tomasi, Carlo
AU - Benfey, Philip
ID - 3312
T2 - Proceedings of the IEEE International Conference on Computer Vision
TI - Detailed reconstruction of 3D plant root shape
ER -
TY - CONF
AB - Interpreting an image as a function on a compact sub- set of the Euclidean plane, we get its scale-space by diffu- sion, spreading the image over the entire plane. This gener- ates a 1-parameter family of functions alternatively defined as convolutions with a progressively wider Gaussian ker- nel. We prove that the corresponding 1-parameter family of persistence diagrams have norms that go rapidly to zero as time goes to infinity. This result rationalizes experimental observations about scale-space. We hope this will lead to targeted improvements of related computer vision methods.
AU - Chen, Chao
AU - Edelsbrunner, Herbert
ID - 3313
T2 - Proceedings of the IEEE International Conference on Computer Vision
TI - Diffusion runs low on persistence fast
ER -
TY - JOUR
AB - We consider two-player games played in real time on game structures with clocks where the objectives of players are described using parity conditions. The games are concurrent in that at each turn, both players independently propose a time delay and an action, and the action with the shorter delay is chosen. To prevent a player from winning by blocking time, we restrict each player to play strategies that ensure that the player cannot be responsible for causing a zeno run. First, we present an efficient reduction of these games to turn-based (i.e., not concurrent) finite-state (i.e., untimed) parity games. Our reduction improves the best known complexity for solving timed parity games. Moreover, the rich class of algorithms for classical parity games can now be applied to timed parity games. The states of the resulting game are based on clock regions of the original game, and the state space of the finite game is linear in the size of the region graph. Second, we consider two restricted classes of strategies for the player that represents the controller in a real-time synthesis problem, namely, limit-robust and bounded-robust winning strategies. Using a limit-robust winning strategy, the controller cannot choose an exact real-valued time delay but must allow for some nonzero jitter in each of its actions. If there is a given lower bound on the jitter, then the strategy is bounded-robust winning. We show that exact strategies are more powerful than limit-robust strategies, which are more powerful than bounded-robust winning strategies for any bound. For both kinds of robust strategies, we present efficient reductions to standard timed automaton games. These reductions provide algorithms for the synthesis of robust real-time controllers.
AU - Chatterjee, Krishnendu
AU - Henzinger, Thomas A
AU - Prabhu, Vinayak
ID - 3315
IS - 4
JF - Logical Methods in Computer Science
TI - Timed parity games: Complexity and robustness
VL - 7
ER -
TY - CONF
AB - In addition to being correct, a system should be robust, that is, it should behave reasonably even after receiving unexpected inputs. In this paper, we summarize two formal notions of robustness that we have introduced previously for reactive systems. One of the notions is based on assigning costs for failures on a user-provided notion of incorrect transitions in a specification. Here, we define a system to be robust if a finite number of incorrect inputs does not lead to an infinite number of incorrect outputs. We also give a more refined notion of robustness that aims to minimize the ratio of output failures to input failures. The second notion is aimed at liveness. In contrast to the previous notion, it has no concept of recovery from an error. Instead, it compares the ratio of the number of liveness constraints that the system violates to the number of liveness constraints that the environment violates.
AU - Bloem, Roderick
AU - Chatterjee, Krishnendu
AU - Greimel, Karin
AU - Henzinger, Thomas A
AU - Jobstmann, Barbara
ID - 3316
T2 - 6th IEEE International Symposium on Industrial and Embedded Systems
TI - Specification-centered robustness
ER -
TY - JOUR
AB - Parvalbumin is thought to act in a manner similar to EGTA, but how a slow Ca2+ buffer affects nanodomain-coupling regimes at GABAergic synapses is unclear. Direct measurements of parvalbumin concentration and paired recordings in rodent hippocampus and cerebellum revealed that parvalbumin affects synaptic dynamics only when expressed at high levels. Modeling suggests that, in high concentrations, parvalbumin may exert BAPTA-like effects, modulating nanodomain coupling via competition with local saturation of endogenous fixed buffers.
AU - Eggermann, Emmanuel
AU - Jonas, Peter M
ID - 3318
JF - Nature Neuroscience
TI - How the “slow” Ca(2+) buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses
VL - 15
ER -
TY - JOUR
AB - Powerful statistical models that can be learned efficiently from large amounts of data are currently revolutionizing computer vision. These models possess a rich internal structure reflecting task-specific relations and constraints. This monograph introduces the reader to the most popular classes of structured models in computer vision. Our focus is discrete undirected graphical models which we cover in detail together with a description of algorithms for both probabilistic inference and maximum a posteriori inference. We discuss separately recently successful techniques for prediction in general structured models. In the second part of this monograph we describe methods for parameter learning where we distinguish the classic maximum likelihood based methods from the more recent prediction-based parameter learning methods. We highlight developments to enhance current models and discuss kernelized models and latent variable models. To make the monograph more practical and to provide links to further study we provide examples of successful application of many methods in the computer vision literature.
AU - Nowozin, Sebastian
AU - Lampert, Christoph
ID - 3320
IS - 3-4
JF - Foundations and Trends in Computer Graphics and Vision
TI - Structured learning and prediction in computer vision
VL - 6
ER -
TY - CONF
AB - Automated termination provers often use the following schema to prove that a program terminates: construct a relational abstraction of the program's transition relation and then show that the relational abstraction is well-founded. The focus of current tools has been on developing sophisticated techniques for constructing the abstractions while relying on known decidable logics (such as linear arithmetic) to express them. We believe we can significantly increase the class of programs that are amenable to automated termination proofs by identifying more expressive decidable logics for reasoning about well-founded relations. We therefore present a new decision procedure for reasoning about multiset orderings, which are among the most powerful orderings used to prove termination. We show that, using our decision procedure, one can automatically prove termination of natural abstractions of programs.
AU - Piskac, Ruzica
AU - Wies, Thomas
ED - Jhala, Ranjit
ED - Schmidt, David
ID - 3324
TI - Decision procedures for automating termination proofs
VL - 6538
ER -
TY - CONF
AB - Weighted automata map input words to numerical values. Ap- plications of weighted automata include formal verification of quantitative properties, as well as text, speech, and image processing. A weighted au- tomaton is defined with respect to a semiring. For the tropical semiring, the weight of a run is the sum of the weights of the transitions taken along the run, and the value of a word is the minimal weight of an accepting run on it. In the 90’s, Krob studied the decidability of problems on rational series defined with respect to the tropical semiring. Rational series are strongly related to weighted automata, and Krob’s results apply to them. In par- ticular, it follows from Krob’s results that the universality problem (that is, deciding whether the values of all words are below some threshold) is decidable for weighted automata defined with respect to the tropical semir- ing with domain ∪ {∞}, and that the equality problem is undecidable when the domain is ∪ {∞}. In this paper we continue the study of the borders of decidability in weighted automata, describe alternative and direct proofs of the above results, and tighten them further. Unlike the proofs of Krob, which are algebraic in their nature, our proofs stay in the terrain of state machines, and the reduction is from the halting problem of a two-counter machine. This enables us to significantly simplify Krob’s reasoning, make the un- decidability result accessible to the automata-theoretic community, and strengthen it to apply already to a very simple class of automata: all the states are accepting, there are no initial nor final weights, and all the weights on the transitions are from the set {−1, 0, 1}. The fact we work directly with the automata enables us to tighten also the decidability re- sults and to show that the universality problem for weighted automata defined with respect to the tropical semiring with domain ∪ {∞}, and in fact even with domain ≥0 ∪ {∞}, is PSPACE-complete. Our results thus draw a sharper picture about the decidability of decision problems for weighted automata, in both the front of containment vs. universality and the front of the ∪ {∞} vs. the ∪ {∞} domains.
AU - Almagor, Shaull
AU - Boker, Udi
AU - Kupferman, Orna
ID - 3326
TI - What’s decidable about weighted automata
VL - 6996
ER -
TY - CONF
AB - We report on a generic uni- and bivariate algebraic kernel that is publicly available with CGAL 3.7. It comprises complete, correct, though efficient state-of-the-art implementations on polynomials, roots of polynomial systems, and the support to analyze algebraic curves defined by bivariate polynomials. The kernel design is generic, that is, various number types and substeps can be exchanged. It is accompanied with a ready-to-use interface to enable arrangements induced by algebraic curves, that have already been used as basis for various geometric applications, as arrangements on Dupin cyclides or the triangulation of algebraic surfaces. We present two novel applications: arrangements of rotated algebraic curves and Boolean set operations on polygons bounded by segments of algebraic curves. We also provide experiments showing that our general implementation is competitive and even often clearly outperforms existing implementations that are explicitly tailored for specific types of non-linear curves that are available in CGAL.
AU - Berberich, Eric
AU - Hemmer, Michael
AU - Kerber, Michael
ID - 3328
TI - A generic algebraic kernel for non linear geometric applications
ER -
TY - CONF
AB - We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance µ in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution shape P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. An alternative algorithm, based purely on rational arithmetic, answers the same deconstruction problem, up to an uncertainty parameter, and its running time depends on the parameter δ (in addition to the other input parameters: n, δ and the radius of the disk). If the input shape is found to be approximable, the rational-arithmetic algorithm also computes an approximate solution shape for the problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution shape P with at most one more vertex than a vertex-minimal one. Our study is motivated by applications from two different domains. However, since the offset operation has numerous uses, we anticipate that the reverse question that we study here will be still more broadly applicable. We present results obtained with our implementation of the rational-arithmetic algorithm.
AU - Berberich, Eric
AU - Halperin, Dan
AU - Kerber, Michael
AU - Pogalnikova, Roza
ID - 3329
T2 - Proceedings of the twenty-seventh annual symposium on Computational geometry
TI - Deconstructing approximate offsets
ER -
TY - CONF
AB - We consider the problem of approximating all real roots of a square-free polynomial f. Given isolating intervals, our algorithm refines each of them to a width at most 2-L, that is, each of the roots is approximated to L bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only requiring finite approximations of the polynomial coefficient and choosing a suitable working precision adaptively. In this way, we get a correct algorithm that is simple to implement and practically efficient. Our algorithm uses the quadratic interval refinement method; we adapt that method to be able to cope with inaccuracies when evaluating f, without sacrificing its quadratic convergence behavior. We prove a bound on the bit complexity of our algorithm in terms of degree, coefficient size and discriminant. Our bound improves previous work on integer polynomials by a factor of deg f and essentially matches best known theoretical bounds on root approximation which are obtained by very sophisticated algorithms.
AU - Kerber, Michael
AU - Sagraloff, Michael
ID - 3330
TI - Root refinement for real polynomials
ER -
TY - JOUR
AB - Given an algebraic hypersurface O in ℝd, how many simplices are necessary for a simplicial complex isotopic to O? We address this problem and the variant where all vertices of the complex must lie on O. We give asymptotically tight worst-case bounds for algebraic plane curves. Our results gradually improve known bounds in higher dimensions; however, the question for tight bounds remains unsolved for d ≥ 3.
AU - Kerber, Michael
AU - Sagraloff, Michael
ID - 3332
IS - 3
JF - Graphs and Combinatorics
TI - A note on the complexity of real algebraic hypersurfaces
VL - 27
ER -
TY - CHAP
AB - We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them. For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. These can be tuned to consist of specific morphological elements of the Cosmic Web, i.e. clusters, filaments, or sheets. To elucidate the relative prominence of the various Betti numbers in different stages of morphological evolution, we introduce the concept of alpha tracks. Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web. We also demonstrate that the scale-dependence of the Betti numbers yields a promising measure of cosmological parameters, with a potential to help in determining the nature of dark energy and to probe primordial non-Gaussianities. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field. Finally, we introduce the concept of persistent homology. It measures scale levels of the mass distribution and allows us to separate small from large scale features. Within the context of the hierarchical cosmic structure formation, persistence provides a natural formalism for a multiscale topology study of the Cosmic Web.
AU - Van De Weygaert, Rien
AU - Vegter, Gert
AU - Edelsbrunner, Herbert
AU - Jones, Bernard
AU - Pranav, Pratyush
AU - Park, Changbom
AU - Hellwing, Wojciech
AU - Eldering, Bob
AU - Kruithof, Nico
AU - Bos, Patrick
AU - Hidding, Johan
AU - Feldbrugge, Job
AU - Ten Have, Eline
AU - Van Engelen, Matti
AU - Caroli, Manuel
AU - Teillaud, Monique
ED - Gavrilova, Marina
ED - Tan, Kenneth
ED - Mostafavi, Mir
ID - 3335
T2 - Transactions on Computational Science XIV
TI - Alpha, Betti and the Megaparsec Universe: On the topology of the Cosmic Web
VL - 6970
ER -
TY - GEN
AB - We consider 2-player games played on a finite state space for an infinite number of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves inde- pendently and simultaneously; the current state and the two moves determine the successor state. We study concurrent games with ω-regular winning conditions specified as parity objectives. We consider the qualitative analysis problems: the computation of the almost-sure and limit-sure winning set of states, where player 1 can ensure to win with probability 1 and with probability arbitrarily close to 1, respec- tively. In general the almost-sure and limit-sure winning strategies require both infinite-memory as well as infinite-precision (to describe probabilities). We study the bounded-rationality problem for qualitative analysis of concurrent parity games, where the strategy set for player 1 is restricted to bounded-resource strategies. In terms of precision, strategies can be deterministic, uniform, finite-precision or infinite- precision; and in terms of memory, strategies can be memoryless, finite-memory or infinite-memory. We present a precise and complete characterization of the qualitative winning sets for all combinations of classes of strategies. In particular, we show that uniform memoryless strategies are as powerful as finite-precision infinite-memory strategies, and infinite-precision memoryless strategies are as power- ful as infinite-precision finite-memory strategies. We show that the winning sets can be computed in O(n2d+3) time, where n is the size of the game structure and 2d is the number of priorities (or colors), and our algorithms are symbolic. The membership problem of whether a state belongs to a winning set can be decided in NP ∩ coNP. While this complexity is the same as for the simpler class of turn-based parity games, where in each state only one of the two players has a choice of moves, our algorithms, that are obtained by characterization of the winning sets as μ-calculus formulas, are considerably more involved than those for turn-based games.
AU - Chatterjee, Krishnendu
ID - 3338
T2 - arXiv
TI - Bounded rationality in concurrent parity games
ER -
TY - GEN
AB - Turn-based stochastic games and its important subclass Markov decision processes (MDPs) provide models for systems with both probabilistic and nondeterministic behaviors. We consider turn-based stochastic games with two classical quantitative objectives: discounted-sum and long-run average objectives. The game models and the quantitative objectives are widely used in probabilistic verification, planning, optimal inventory control, network protocol and performance analysis. Games and MDPs that model realistic systems often have very large state spaces, and probabilistic abstraction techniques are necessary to handle the state-space explosion. The commonly used full-abstraction techniques do not yield space-savings for systems that have many states with similar value, but does not necessarily have similar transition structure. A semi-abstraction technique, namely Magnifying-lens abstractions (MLA), that clusters states based on value only, disregarding differences in their transition relation was proposed for qualitative objectives (reachability and safety objectives). In this paper we extend the MLA technique to solve stochastic games with discounted-sum and long-run average objectives. We present the MLA technique based abstraction-refinement algorithm for stochastic games and MDPs with discounted-sum objectives. For long-run average objectives, our solution works for all MDPs and a sub-class of stochastic games where every state has the same value.
AU - Chatterjee, Krishnendu
AU - De Alfaro, Luca
AU - Pritam, Roy
ID - 3339
T2 - arXiv
TI - Magnifying lens abstraction for stochastic games with discounted and long-run average objectives
ER -
TY - CONF
AB - We consider Markov decision processes (MDPs) with ω-regular specifications given as parity objectives. We consider the problem of computing the set of almost-sure winning states from where the objective can be ensured with probability 1. The algorithms for the computation of the almost-sure winning set for parity objectives iteratively use the solutions for the almost-sure winning set for Büchi objectives (a special case of parity objectives). Our contributions are as follows: First, we present the first subquadratic symbolic algorithm to compute the almost-sure winning set for MDPs with Büchi objectives; our algorithm takes O(nm) symbolic steps as compared to the previous known algorithm that takes O(n 2) symbolic steps, where n is the number of states and m is the number of edges of the MDP. In practice MDPs often have constant out-degree, and then our symbolic algorithm takes O(nn) symbolic steps, as compared to the previous known O(n 2) symbolic steps algorithm. Second, we present a new algorithm, namely win-lose algorithm, with the following two properties: (a) the algorithm iteratively computes subsets of the almost-sure winning set and its complement, as compared to all previous algorithms that discover the almost-sure winning set upon termination; and (b) requires O(nK) symbolic steps, where K is the maximal number of edges of strongly connected components (scc’s) of the MDP. The win-lose algorithm requires symbolic computation of scc’s. Third, we improve the algorithm for symbolic scc computation; the previous known algorithm takes linear symbolic steps, and our new algorithm improves the constants associated with the linear number of steps. In the worst case the previous known algorithm takes 5·n symbolic steps, whereas our new algorithm takes 4 ·n symbolic steps.
AU - Chatterjee, Krishnendu
AU - Henzinger, Monika
AU - Joglekar, Manas
AU - Nisarg, Shah
ED - Gopalakrishnan, Ganesh
ED - Qadeer, Shaz
ID - 3342
TI - Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives
VL - 6806
ER -