TY - JOUR AB - A rotating organic cation and a dynamically disordered soft inorganic cage are the hallmark features of organic-inorganic lead-halide perovskites. Understanding the interplay between these two subsystems is a challenging problem, but it is this coupling that is widely conjectured to be responsible for the unique behavior of photocarriers in these materials. In this work, we use the fact that the polarizability of the organic cation strongly depends on the ambient electrostatic environment to put the molecule forward as a sensitive probe of the local crystal fields inside the lattice cell. We measure the average polarizability of the C/N–H bond stretching mode by means of infrared spectroscopy, which allows us to deduce the character of the motion of the cation molecule, find the magnitude of the local crystal field, and place an estimate on the strength of the hydrogen bond between the hydrogen and halide atoms. Our results pave the way for understanding electric fields in lead-halide perovskites using infrared bond spectroscopy. AU - Wei, Yujing AU - Volosniev, Artem AU - Lorenc, Dusan AU - Zhumekenov, Ayan A. AU - Bakr, Osman M. AU - Lemeshko, Mikhail AU - Alpichshev, Zhanybek ID - 13251 IS - 27 JF - The Journal of Physical Chemistry Letters KW - General Materials Science KW - Physical and Theoretical Chemistry TI - Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites VL - 14 ER - TY - CONF AB - The operator precedence languages (OPLs) represent the largest known subclass of the context-free languages which enjoys all desirable closure and decidability properties. This includes the decidability of language inclusion, which is the ultimate verification problem. Operator precedence grammars, automata, and logics have been investigated and used, for example, to verify programs with arithmetic expressions and exceptions (both of which are deterministic pushdown but lie outside the scope of the visibly pushdown languages). In this paper, we complete the picture and give, for the first time, an algebraic characterization of the class of OPLs in the form of a syntactic congruence that has finitely many equivalence classes exactly for the operator precedence languages. This is a generalization of the celebrated Myhill-Nerode theorem for the regular languages to OPLs. As one of the consequences, we show that universality and language inclusion for nondeterministic operator precedence automata can be solved by an antichain algorithm. Antichain algorithms avoid determinization and complementation through an explicit subset construction, by leveraging a quasi-order on words, which allows the pruning of the search space for counterexample words without sacrificing completeness. Antichain algorithms can be implemented symbolically, and these implementations are today the best-performing algorithms in practice for the inclusion of finite automata. We give a generic construction of the quasi-order needed for antichain algorithms from a finite syntactic congruence. This yields the first antichain algorithm for OPLs, an algorithm that solves the ExpTime-hard language inclusion problem for OPLs in exponential time. AU - Henzinger, Thomas A AU - Kebis, Pavol AU - Mazzocchi, Nicolas Adrien AU - Sarac, Naci E ID - 13292 SN - 9783959772785 T2 - 50th International Colloquium on Automata, Languages, and Programming TI - Regular methods for operator precedence languages VL - 261 ER - TY - JOUR AB - Recent experimental advances have inspired the development of theoretical tools to describe the non-equilibrium dynamics of quantum systems. Among them an exact representation of quantum spin systems in terms of classical stochastic processes has been proposed. Here we provide first steps towards the extension of this stochastic approach to bosonic systems by considering the one-dimensional quantum quartic oscillator. We show how to exactly parameterize the time evolution of this prototypical model via the dynamics of a set of classical variables. We interpret these variables as stochastic processes, which allows us to propose a novel way to numerically simulate the time evolution of the system. We benchmark our findings by considering analytically solvable limits and providing alternative derivations of known results. AU - Tucci, Gennaro AU - De Nicola, Stefano AU - Wald, Sascha AU - Gambassi, Andrea ID - 13277 IS - 2 JF - SciPost Physics Core KW - Statistical and Nonlinear Physics KW - Atomic and Molecular Physics KW - and Optics KW - Nuclear and High Energy Physics KW - Condensed Matter Physics SN - 2666-9366 TI - Stochastic representation of the quantum quartic oscillator VL - 6 ER - TY - JOUR AB - We introduce a generic and accessible implementation of an exact diagonalization method for studying few-fermion models. Our aim is to provide a testbed for the newcomers to the field as well as a stepping stone for trying out novel optimizations and approximations. This userguide consists of a description of the algorithm, and several examples in varying orders of sophistication. In particular, we exemplify our routine using an effective-interaction approach that fixes the low-energy physics. We benchmark this approach against the existing data, and show that it is able to deliver state-of-the-art numerical results at a significantly reduced computational cost. AU - Rammelmüller, Lukas AU - Huber, David AU - Volosniev, Artem ID - 13276 JF - SciPost Physics Codebases SN - 2949-804X TI - A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D ER - TY - GEN AB - We introduce a generic and accessible implementation of an exact diagonalization method for studying few-fermion models. Our aim is to provide a testbed for the newcomers to the field as well as a stepping stone for trying out novel optimizations and approximations. This userguide consists of a description of the algorithm, and several examples in varying orders of sophistication. In particular, we exemplify our routine using an effective-interaction approach that fixes the low-energy physics. We benchmark this approach against the existing data, and show that it is able to deliver state-of-the-art numerical results at a significantly reduced computational cost. AU - Rammelmüller, Lukas AU - Huber, David AU - Volosniev, Artem ID - 13275 TI - Codebase release 1.0 for FermiFCI ER - TY - CONF AB - Determining the degree of inherent parallelism in classical sequential algorithms and leveraging it for fast parallel execution is a key topic in parallel computing, and detailed analyses are known for a wide range of classical algorithms. In this paper, we perform the first such analysis for the fundamental Union-Find problem, in which we are given a graph as a sequence of edges, and must maintain its connectivity structure under edge additions. We prove that classic sequential algorithms for this problem are well-parallelizable under reasonable assumptions, addressing a conjecture by [Blelloch, 2017]. More precisely, we show via a new potential argument that, under uniform random edge ordering, parallel union-find operations are unlikely to interfere: T concurrent threads processing the graph in parallel will encounter memory contention O(T2 · log |V| · log |E|) times in expectation, where |E| and |V| are the number of edges and nodes in the graph, respectively. We leverage this result to design a new parallel Union-Find algorithm that is both internally deterministic, i.e., its results are guaranteed to match those of a sequential execution, but also work-efficient and scalable, as long as the number of threads T is O(|E|1 over 3 - ε), for an arbitrarily small constant ε > 0, which holds for most large real-world graphs. We present lower bounds which show that our analysis is close to optimal, and experimental results suggesting that the performance cost of internal determinism is limited. AU - Fedorov, Alexander AU - Hashemi, Diba AU - Nadiradze, Giorgi AU - Alistarh, Dan-Adrian ID - 13262 SN - 9781450395458 T2 - Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures TI - Provably-efficient and internally-deterministic parallel Union-Find ER - TY - JOUR AB - Understanding population divergence that eventually leads to speciation is essential for evolutionary biology. High species diversity in the sea was regarded as a paradox when strict allopatry was considered necessary for most speciation events because geographical barriers seemed largely absent in the sea, and many marine species have high dispersal capacities. Combining genome-wide data with demographic modelling to infer the demographic history of divergence has introduced new ways to address this classical issue. These models assume an ancestral population that splits into two subpopulations diverging according to different scenarios that allow tests for periods of gene flow. Models can also test for heterogeneities in population sizes and migration rates along the genome to account, respectively, for background selection and selection against introgressed ancestry. To investigate how barriers to gene flow arise in the sea, we compiled studies modelling the demographic history of divergence in marine organisms and extracted preferred demographic scenarios together with estimates of demographic parameters. These studies show that geographical barriers to gene flow do exist in the sea but that divergence can also occur without strict isolation. Heterogeneity of gene flow was detected in most population pairs suggesting the predominance of semipermeable barriers during divergence. We found a weak positive relationship between the fraction of the genome experiencing reduced gene flow and levels of genome-wide differentiation. Furthermore, we found that the upper bound of the ‘grey zone of speciation’ for our dataset extended beyond that found before, implying that gene flow between diverging taxa is possible at higher levels of divergence than previously thought. Finally, we list recommendations for further strengthening the use of demographic modelling in speciation research. These include a more balanced representation of taxa, more consistent and comprehensive modelling, clear reporting of results and simulation studies to rule out nonbiological explanations for general results. AU - De Jode, Aurélien AU - Le Moan, Alan AU - Johannesson, Kerstin AU - Faria, Rui AU - Stankowski, Sean AU - Westram, Anja M AU - Butlin, Roger K. AU - Rafajlović, Marina AU - Fraisse, Christelle ID - 11479 IS - 2 JF - Evolutionary Applications TI - Ten years of demographic modelling of divergence and speciation in the sea VL - 16 ER - TY - JOUR AB - In this article, we develop two independent and new approaches to model epidemic spread in a network. Contrary to the most studied models, those developed here allow for contacts with different probabilities of transmitting the disease (transmissibilities). We then examine each of these models using some mean field type approximations. The first model looks at the late-stage effects of an epidemic outbreak and allows for the computation of the probability that a given vertex was infected. This computation is based on a mean field approximation and only depends on the number of contacts and their transmissibilities. This approach shares many similarities with percolation models in networks. The second model we develop is a dynamic model which we analyze using a mean field approximation which highly reduces the dimensionality of the system. In particular, the original system which individually analyses each vertex of the network is reduced to one with as many equations as different transmissibilities. Perhaps the greatest contribution of this article is the observation that, in both these models, the existence and size of an epidemic outbreak are linked to the properties of a matrix which we call the R-matrix. This is a generalization of the basic reproduction number which more precisely characterizes the main routes of infection. AU - Gómez, Arturo AU - Oliveira, Goncalo ID - 12329 JF - Scientific Reports TI - New approaches to epidemic modeling on networks VL - 13 ER - TY - JOUR AB - We determine an asymptotic formula for the number of integral points of bounded height on a blow-up of P3 outside certain planes using universal torsors. AU - Wilsch, Florian Alexander ID - 9034 IS - 8 JF - International Mathematics Research Notices SN - 1073-7928 TI - Integral points of bounded height on a log Fano threefold VL - 2023 ER - TY - JOUR AB - Hosts can carry many viruses in their bodies, but not all of them cause disease. We studied ants as a social host to determine both their overall viral repertoire and the subset of actively infecting viruses across natural populations of three subfamilies: the Argentine ant (Linepithema humile, Dolichoderinae), the invasive garden ant (Lasius neglectus, Formicinae) and the red ant (Myrmica rubra, Myrmicinae). We used a dual sequencing strategy to reconstruct complete virus genomes by RNA-seq and to simultaneously determine the small interfering RNAs (siRNAs) by small RNA sequencing (sRNA-seq), which constitute the host antiviral RNAi immune response. This approach led to the discovery of 41 novel viruses in ants and revealed a host ant-specific RNAi response (21 vs. 22 nt siRNAs) in the different ant species. The efficiency of the RNAi response (sRNA/RNA read count ratio) depended on the virus and the respective ant species, but not its population. Overall, we found the highest virus abundance and diversity per population in Li. humile, followed by La. neglectus and M. rubra. Argentine ants also shared a high proportion of viruses between populations, whilst overlap was nearly absent in M. rubra. Only one of the 59 viruses was found to infect two of the ant species as hosts, revealing high host-specificity in active infections. In contrast, six viruses actively infected one ant species, but were found as contaminants only in the others. Disentangling spillover of disease-causing infection from non-infecting contamination across species is providing relevant information for disease ecology and ecosystem management. AU - Viljakainen, Lumi AU - Fürst, Matthias AU - Grasse, Anna V AU - Jurvansuu, Jaana AU - Oh, Jinook AU - Tolonen, Lassi AU - Eder, Thomas AU - Rattei, Thomas AU - Cremer, Sylvia ID - 12469 JF - Frontiers in Microbiology TI - Antiviral immune response reveals host-specific virus infections in natural ant populations VL - 14 ER - TY - JOUR AB - We present criteria for establishing a triangulation of a manifold. Given a manifold M, a simplicial complex A, and a map H from the underlying space of A to M, our criteria are presented in local coordinate charts for M, and ensure that H is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on M. No Delaunay property of A is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use. AU - Boissonnat, Jean-Daniel AU - Dyer, Ramsay AU - Ghosh, Arijit AU - Wintraecken, Mathijs ID - 12287 JF - Discrete & Computational Geometry KW - Computational Theory and Mathematics KW - Discrete Mathematics and Combinatorics KW - Geometry and Topology KW - Theoretical Computer Science SN - 0179-5376 TI - Local criteria for triangulating general manifolds VL - 69 ER - TY - JOUR AB - The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions. AU - Fäßler, Florian AU - Javoor, Manjunath AU - Schur, Florian KM ID - 12421 IS - 1 JF - Biochemical Society Transactions KW - Biochemistry SN - 0300-5127 TI - Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM VL - 51 ER - TY - JOUR AB - Data-driven dimensionality reduction methods such as proper orthogonal decomposition and dynamic mode decomposition have proven to be useful for exploring complex phenomena within fluid dynamics and beyond. A well-known challenge for these techniques is posed by the continuous symmetries, e.g. translations and rotations, of the system under consideration, as drifts in the data dominate the modal expansions without providing an insight into the dynamics of the problem. In the present study, we address this issue for fluid flows in rectangular channels by formulating a continuous symmetry reduction method that eliminates the translations in the streamwise and spanwise directions simultaneously. We demonstrate our method by computing the symmetry-reduced dynamic mode decomposition (SRDMD) of sliding windows of data obtained from the transitional plane-Couette and turbulent plane-Poiseuille flow simulations. In the former setting, SRDMD captures the dynamics in the vicinity of the invariant solutions with translation symmetries, i.e. travelling waves and relative periodic orbits, whereas in the latter, our calculations reveal episodes of turbulent time evolution that can be approximated by a low-dimensional linear expansion. AU - Marensi, Elena AU - Yalniz, Gökhan AU - Hof, Björn AU - Budanur, Nazmi B ID - 12105 JF - Journal of Fluid Mechanics SN - 0022-1120 TI - Symmetry-reduced dynamic mode decomposition of near-wall turbulence VL - 954 ER - TY - JOUR AB - The concept of a “speciation continuum” has gained popularity in recent decades. It emphasizes speciation as a continuous process that may be studied by comparing contemporary population pairs that show differing levels of divergence. In their recent perspective article in Evolution, Stankowski and Ravinet provided a valuable service by formally defining the speciation continuum as a continuum of reproductive isolation, based on opinions gathered from a survey of speciation researchers. While we agree that the speciation continuum has been a useful concept to advance the understanding of the speciation process, some intrinsic limitations exist. Here, we advocate for a multivariate extension, the speciation hypercube, first proposed by Dieckmann et al. in 2004, but rarely used since. We extend the idea of the speciation cube and suggest it has strong conceptual and practical advantages over a one-dimensional model. We illustrate how the speciation hypercube can be used to visualize and compare different speciation trajectories, providing new insights into the processes and mechanisms of speciation. A key strength of the speciation hypercube is that it provides a unifying framework for speciation research, as it allows questions from apparently disparate subfields to be addressed in a single conceptual model. AU - Bolnick, Daniel I. AU - Hund, Amanda K. AU - Nosil, Patrik AU - Peng, Foen AU - Ravinet, Mark AU - Stankowski, Sean AU - Subramanian, Swapna AU - Wolf, Jochen B.W. AU - Yukilevich, Roman ID - 12514 IS - 1 JF - Evolution: International journal of organic evolution TI - A multivariate view of the speciation continuum VL - 77 ER - TY - CONF AB - The limited exchange between human communities is a key factor in preventing the spread of COVID-19. This paper introduces a digital framework that combines an integration of real mobility data at the country scale with a series of modeling techniques and visual capabilities that highlight mobility patterns before and during the pandemic. The findings not only significantly exhibit mobility trends and different degrees of similarities at regional and local levels but also provide potential insight into the emergence of a pandemic on human behavior patterns and their likely socio-economic impacts. AU - Forghani, Mohammad AU - Claramunt, Christophe AU - Karimipour, Farid AU - Heiler, Georg ID - 12548 T2 - 2022 IEEE International Conference on Data Mining Workshops TI - Visual analytics of mobility network changes observed using mobile phone data during COVID-19 pandemic ER - TY - JOUR AB - he approximate graph coloring problem, whose complexity is unresolved in most cases, concerns finding a c-coloring of a graph that is promised to be k-colorable, where c≥k. This problem naturally generalizes to promise graph homomorphism problems and further to promise constraint satisfaction problems. The complexity of these problems has recently been studied through an algebraic approach. In this paper, we introduce two new techniques to analyze the complexity of promise CSPs: one is based on topology and the other on adjunction. We apply these techniques, together with the previously introduced algebraic approach, to obtain new unconditional NP-hardness results for a significant class of approximate graph coloring and promise graph homomorphism problems. AU - Krokhin, Andrei AU - Opršal, Jakub AU - Wrochna, Marcin AU - Živný, Stanislav ID - 12563 IS - 1 JF - SIAM Journal on Computing KW - General Mathematics KW - General Computer Science SN - 0097-5397 TI - Topology and adjunction in promise constraint satisfaction VL - 52 ER - TY - JOUR AB - We study active surface wetting using a minimal model of bacteria that takes into account the intrinsic motility diversity of living matter. A mixture of “fast” and “slow” self-propelled Brownian particles is considered in the presence of a wall. The evolution of the wetting layer thickness shows an overshoot before stationarity and its composition evolves in two stages, equilibrating after a slow elimination of excess particles. Nonmonotonic evolutions are shown to arise from delayed avalanches towards the dilute phase combined with the emergence of a transient particle front. AU - Rojas Vega, Mauricio Nicolas AU - De Castro, Pablo AU - Soto, Rodrigo ID - 12545 IS - 1 JF - Physical Review E SN - 2470-0045 TI - Wetting dynamics by mixtures of fast and slow self-propelled particles VL - 107 ER - TY - JOUR AB - Let k be a number field and X a smooth, geometrically integral quasi-projective variety over k. For any linear algebraic group G over k and any G-torsor g : Z → X, we observe that if the étale-Brauer obstruction is the only one for strong approximation off a finite set of places S for all twists of Z by elements in H^1(k, G), then the étale-Brauer obstruction is the only one for strong approximation off a finite set of places S for X. As an application, we show that any homogeneous space of the form G/H with G a connected linear algebraic group over k satisfies strong approximation off the infinite places with étale-Brauer obstruction, under some compactness assumptions when k is totally real. We also prove more refined strong approximation results for homogeneous spaces of the form G/H with G semisimple simply connected and H finite, using the theory of torsors and descent. AU - Balestrieri, Francesca ID - 12427 IS - 3 JF - Proceedings of the American Mathematical Society SN - 0002-9939 TI - Some remarks on strong approximation and applications to homogeneous spaces of linear algebraic groups VL - 151 ER - TY - JOUR AB - Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations. AU - Mrestani, Achmed AU - Lichter, Katharina AU - Sirén, Anna Leena AU - Heckmann, Manfred AU - Paul, Mila M. AU - Pauli, Martin ID - 12567 IS - 3 JF - International Journal of Molecular Sciences TI - Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation VL - 24 ER - TY - JOUR AB - Approximate agreement is one of the few variants of consensus that can be solved in a wait-free manner in asynchronous systems where processes communicate by reading and writing to shared memory. In this work, we consider a natural generalisation of approximate agreement on arbitrary undirected connected graphs. Each process is given a node of the graph as input and, if non-faulty, must output a node such that – all the outputs are within distance 1 of one another, and – each output value lies on a shortest path between two input values. From prior work, it is known that there is no wait-free algorithm among processes for this problem on any cycle of length , by reduction from 2-set agreement (Castañeda et al., 2018). In this work, we investigate the solvability of this task on general graphs. We give a new, direct proof of the impossibility of approximate agreement on cycles of length , via a generalisation of Sperner's Lemma to convex polygons. We also extend the reduction from 2-set agreement to a larger class of graphs, showing that approximate agreement on these graphs is unsolvable. On the positive side, we present a wait-free algorithm for a different class of graphs, which properly contains the class of chordal graphs. AU - Alistarh, Dan-Adrian AU - Ellen, Faith AU - Rybicki, Joel ID - 12566 IS - 2 JF - Theoretical Computer Science SN - 0304-3975 TI - Wait-free approximate agreement on graphs VL - 948 ER -