TY - JOUR
AB - Generalizing the decomposition of a connected planar graph into a tree and a dual tree, we prove a combinatorial analog of the classic Helmholtz–Hodge decomposition of a smooth vector field. Specifically, we show that for every polyhedral complex, K, and every dimension, p, there is a partition of the set of p-cells into a maximal p-tree, a maximal p-cotree, and a collection of p-cells whose cardinality is the p-th reduced Betti number of K. Given an ordering of the p-cells, this tri-partition is unique, and it can be computed by a matrix reduction algorithm that also constructs canonical bases of cycle and boundary groups.
AU - Edelsbrunner, Herbert
AU - Ölsböck, Katharina
ID - 7666
JF - Discrete and Computational Geometry
SN - 01795376
TI - Tri-partitions and bases of an ordered complex
VL - 64
ER -
TY - JOUR
AB - Large overpotentials upon discharge and charge of Li-O2 cells have motivated extensive research into heterogeneous solid electrocatalysts or non-carbon electrodes with the aim to improve rate capability, round-trip efficiency and cycle life. These features are equally governed by parasitic reactions, which are now recognized to be caused by the highly reactive singlet oxygen (1O2). However, the link between the presence of electrocatalysts and 1O2 formation in metal-O2 cells is unknown. Here, we show that, compared to pristine carbon black electrodes, a representative selection of electrocatalysts or non-carbon electrodes (noble metal, transition metal compounds) may both slightly reduce or severely increase the 1O2 formation. The individual reaction steps, where the surfaces impact the 1O2 yield are deciphered, showing that 1O2 yield from superoxide disproportionation as well as the decomposition of trace H2O2 are sensitive to catalysts. Transition metal compounds in general are prone to increase 1O2.
AU - Samojlov, Aleksej
AU - Schuster, David
AU - Kahr, Jürgen
AU - Freunberger, Stefan Alexander
ID - 7672
IS - 12
JF - Electrochimica Acta
TI - Surface and catalyst driven singlet oxygen formation in Li-O2 cells
VL - 362
ER -
TY - GEN
AB - Combining drugs can improve the efficacy of treatments. However, predicting the effect of drug combinations is still challenging. The combined potency of drugs determines the drug interaction, which is classified as synergistic, additive, antagonistic, or suppressive. While probabilistic, non-mechanistic models exist, there is currently no biophysical model that can predict antibiotic interactions. Here, we present a physiologically relevant model of the combined action of antibiotics that inhibit protein synthesis by targeting the ribosome. This model captures the kinetics of antibiotic binding and transport, and uses bacterial growth laws to predict growth in the presence of antibiotic combinations. We find that this biophysical model can produce all drug interaction types except suppression. We show analytically that antibiotics which cannot bind to the ribosome simultaneously generally act as substitutes for one another, leading to additive drug interactions. Previously proposed null expectations for higher-order drug interactions follow as a limiting case of our model. We further extend the model to include the effects of direct physical or allosteric interactions between individual drugs on the ribosome. Notably, such direct interactions profoundly change the combined drug effect, depending on the kinetic parameters of the drugs used. The model makes additional predictions for the effects of resistance genes on drug interactions and for interactions between ribosome-targeting antibiotics and antibiotics with other targets. These findings enhance our understanding of the interplay between drug action and cell physiology and are a key step toward a general framework for predicting drug interactions.
AU - Kavcic, Bor
AU - Tkačik, Gašper
AU - Bollenbach, Tobias
ID - 7673
T2 - bioRxiv
TI - A minimal biophysical model of combined antibiotic action
ER -
TY - GEN
AB - In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene expression levels that is compatible with in vivo and in vitro bio-physical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In non-equilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal non-equilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in non-equilibrium models is in a tradeoff with gene expression noise, predicting bursty dynamics — an experimentally-observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space to a much smaller subspace that optimally realizes biological function prior to inference from data, our normative approach holds promise for mathematical models in systems biology.
AU - Grah, Rok
AU - Zoller, Benjamin
AU - Tkačik, Gašper
ID - 7675
T2 - bioRxiv
TI - Normative models of enhancer function
ER -
TY - JOUR
AB - For any free oriented Borel–Moore homology theory A, we construct an associative product on the A-theory of the stack of Higgs torsion sheaves over a projective curve C. We show that the resulting algebra AHa0C admits a natural shuffle presentation, and prove it is faithful when A is replaced with usual Borel–Moore homology groups. We also introduce moduli spaces of stable triples, heavily inspired by Nakajima quiver varieties, whose A-theory admits an AHa0C-action. These triples can be interpreted as certain sheaves on PC(ωC⊕OC). In particular, we obtain an action of AHa0C on the cohomology of Hilbert schemes of points on T∗C.
AU - Minets, Sasha
ID - 7683
IS - 2
JF - Selecta Mathematica, New Series
SN - 10221824
TI - Cohomological Hall algebras for Higgs torsion sheaves, moduli of triples and sheaves on surfaces
VL - 26
ER -
TY - JOUR
AU - Gridchyn, Igor
AU - Schönenberger, Philipp
AU - O'Neill, Joseph
AU - Csicsvari, Jozsef L
ID - 7684
IS - 2
JF - Neuron
SN - 08966273
TI - Assembly-specific disruption of hippocampal replay leads to selective memory deficit
VL - 106
ER -
TY - JOUR
AB - A working group, which was established within the Network of Repository Managers (RepManNet), has dealt with common certifications for repositories. In addition, current requirements of the research funding agencies FWF and EU were also taken into account. The Core Trust Seal was examined in more detail. For this purpose, a questionnaire was sent to those organizations that are already certified with CTS in Austria. The answers were summarized and evaluated anonymously. It is recommended to go for a repository certification. Moreover, the development of a DINI certificate in Austria is strongly suggested.
AU - Ernst, Doris
AU - Novotny, Gertraud
AU - Schönher, Eva Maria
ID - 7687
IS - 1
JF - Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare
SN - 1022-2588
TI - (Core Trust) Seal your repository!
VL - 73
ER -
TY - DATA
AB - These are the supplementary research data to the publication "Zero field splitting of heavy-hole states in quantum dots". All matrix files have the same format. Within each column the bias voltage is changed. Each column corresponds to either a different gate voltage or magnetic field. The voltage values are given in mV, the current values in pA. Find a specific description in the included Readme file.
AU - Katsaros, Georgios
ID - 7689
TI - Supplementary data for "Zero field splitting of heavy-hole states in quantum dots"
ER -
TY - JOUR
AB - The TPLATE complex (TPC) is a key endocytic adaptor protein complex in plants. TPC in Arabidopsis (Arabidopsis thaliana) contains six evolutionarily conserved subunits and two plant-specific subunits, AtEH1/Pan1 and AtEH2/Pan1, although cytoplasmic proteins are not associated with the hexameric subcomplex in the cytoplasm. To investigate the dynamic assembly of the octameric TPC at the plasma membrane (PM), we performed state-of-the-art dual-color live cell imaging at physiological and lowered temperatures. Lowering the temperature slowed down endocytosis, thereby enhancing the temporal resolution of the differential recruitment of endocytic components. Under both normal and lowered temperature conditions, the core TPC subunit TPLATE and the AtEH/Pan1 proteins exhibited simultaneous recruitment at the PM. These results, together with co-localization analysis of different TPC subunits, allow us to conclude that TPC in plant cells is not recruited to the PM sequentially but as an octameric complex.
AU - Wang, J
AU - Mylle, E
AU - Johnson, Alexander J
AU - Besbrugge, N
AU - De Jaeger, G
AU - Friml, Jiří
AU - Pleskot, R
AU - van Damme, D
ID - 7695
IS - 3
JF - Plant Physiology
SN - 0032-0889
TI - High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits
VL - 183
ER -
TY - JOUR
AB - * Morphogenesis and adaptive tropic growth in plants depend on gradients of the phytohormone auxin, mediated by the membrane‐based PIN‐FORMED (PIN) auxin transporters. PINs localize to a particular side of the plasma membrane (PM) or to the endoplasmic reticulum (ER) to directionally transport auxin and maintain intercellular and intracellular auxin homeostasis, respectively. However, the molecular cues that confer their diverse cellular localizations remain largely unknown.
* In this study, we systematically swapped the domains between ER‐ and PM‐localized PIN proteins, as well as between apical and basal PM‐localized PINs from Arabidopsis thaliana , to shed light on why PIN family members with similar topological structures reside at different membrane compartments within cells.
* Our results show that not only do the N‐ and C‐terminal transmembrane domains (TMDs) and central hydrophilic loop contribute to their differential subcellular localizations and cellular polarity, but that the pairwise‐matched N‐ and C‐terminal TMDs resulting from intramolecular domain–domain coevolution are also crucial for their divergent patterns of localization.
* These findings illustrate the complexity of the evolutionary path of PIN proteins in acquiring their plethora of developmental functions and adaptive growth in plants.
AU - Zhang, Yuzhou
AU - Hartinger, Corinna
AU - Wang, Xiaojuan
AU - Friml, Jiří
ID - 7697
IS - 5
JF - New Phytologist
SN - 0028-646X
TI - Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters
VL - 227
ER -
TY - JOUR
AB - Mutations in NDUFS4, which encodes an accessory subunit of mitochondrial oxidative phosphorylation (OXPHOS) complex I (CI), induce Leigh syndrome (LS). LS is a poorly understood pediatric disorder featuring brain-specific anomalies and early death. To study the LS pathomechanism, we here compared OXPHOS proteomes between various Ndufs4−/− mouse tissues. Ndufs4−/− animals displayed significantly lower CI subunit levels in brain/diaphragm relative to other tissues (liver/heart/kidney/skeletal muscle), whereas other OXPHOS subunit levels were not reduced. Absence of NDUFS4 induced near complete absence of the NDUFA12 accessory subunit, a 50% reduction in other CI subunit levels, and an increase in specific CI assembly factors. Among the latter, NDUFAF2 was most highly increased. Regarding NDUFS4, NDUFA12 and NDUFAF2, identical results were obtained in Ndufs4−/− mouse embryonic fibroblasts (MEFs) and NDUFS4-mutated LS patient cells. Ndufs4−/− MEFs contained active CI in situ but blue-native-PAGE highlighted that NDUFAF2 attached to an inactive CI subcomplex (CI-830) and inactive assemblies of higher MW. In NDUFA12-mutated LS patient cells, NDUFA12 absence did not reduce NDUFS4 levels but triggered NDUFAF2 association to active CI. BN-PAGE revealed no such association in LS patient fibroblasts with mutations in other CI subunit-encoding genes where NDUFAF2 was attached to CI-830 (NDUFS1, NDUFV1 mutation) or not detected (NDUFS7 mutation). Supported by enzymological and CI in silico structural analysis, we conclude that absence of NDUFS4 induces near complete absence of NDUFA12 but not vice versa, and that NDUFAF2 stabilizes active CI in Ndufs4−/− mice and LS patient cells, perhaps in concert with mitochondrial inner membrane lipids.
AU - Adjobo-Hermans, Merel J.W.
AU - De Haas, Ria
AU - Willems, Peter H.G.M.
AU - Wojtala, Aleksandra
AU - Van Emst-De Vries, Sjenet E.
AU - Wagenaars, Jori A.
AU - Van Den Brand, Mariel
AU - Rodenburg, Richard J.
AU - Smeitink, Jan A.M.
AU - Nijtmans, Leo G.
AU - Sazanov, Leonid A
AU - Wieckowski, Mariusz R.
AU - Koopman, Werner J.H.
ID - 7788
IS - 8
JF - Biochimica et Biophysica Acta - Bioenergetics
SN - 00052728
TI - NDUFS4 deletion triggers loss of NDUFA12 in Ndufs4−/− mice and Leigh syndrome patients: A stabilizing role for NDUFAF2
VL - 1861
ER -
TY - JOUR
AB - During embryonic and postnatal development, organs and tissues grow steadily to achieve their final size at the end of puberty. However, little is known about the cellular dynamics that mediate postnatal growth. By combining in vivo clonal lineage tracing, proliferation kinetics, single-cell transcriptomics, andin vitro micro-pattern experiments, we resolved the cellular dynamics taking place during postnatal skin epidermis expansion. Our data revealed that harmonious growth is engineered by a single population of developmental progenitors presenting a fixed fate imbalance of self-renewing divisions with an ever-decreasing proliferation rate. Single-cell RNA sequencing revealed that epidermal developmental progenitors form a more uniform population compared with adult stem and progenitor cells. Finally, we found that the spatial pattern of cell division orientation is dictated locally by the underlying collagen fiber orientation. Our results uncover a simple design principle of organ growth where progenitors and differentiated cells expand in harmony with their surrounding tissues.
AU - Dekoninck, Sophie
AU - Hannezo, Edouard B
AU - Sifrim, Alejandro
AU - Miroshnikova, Yekaterina A.
AU - Aragona, Mariaceleste
AU - Malfait, Milan
AU - Gargouri, Souhir
AU - De Neunheuser, Charlotte
AU - Dubois, Christine
AU - Voet, Thierry
AU - Wickström, Sara A.
AU - Simons, Benjamin D.
AU - Blanpain, Cédric
ID - 7789
IS - 3
JF - Cell
SN - 00928674
TI - Defining the design principles of skin epidermis postnatal growth
VL - 181
ER -
TY - JOUR
AB - We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas in the thermodynamic limit. We show that the free energy at density 𝜌 and inverse temperature 𝛽 differs from the one of the noninteracting system by the correction term 𝜋𝜌𝜌𝛽𝛽 . Here, is the scattering length of the interaction potential, and 𝛽 is the inverse Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity. The result is valid in the dilute limit 𝜌 and if 𝛽𝜌 .
AU - Deuchert, Andreas
AU - Mayer, Simon
AU - Seiringer, Robert
ID - 7790
JF - Forum of Mathematics, Sigma
TI - The free energy of the two-dimensional dilute Bose gas. I. Lower bound
VL - 8
ER -
TY - JOUR
AB - Extending a result of Milena Radnovic and Serge Tabachnikov, we establish conditionsfor two different non-symmetric norms to define the same billiard reflection law.
AU - Akopyan, Arseniy
AU - Karasev, Roman
ID - 7791
JF - European Journal of Mathematics
SN - 2199675X
TI - When different norms lead to same billiard trajectories?
ER -
TY - JOUR
AB - Hormonal signalling in animals often involves direct transcription factor-hormone interactions that modulate gene expression. In contrast, plant hormone signalling is most commonly based on de-repression via the degradation of transcriptional repressors. Recently, we uncovered a non-canonical signalling mechanism for the plant hormone auxin whereby auxin directly affects the activity of the atypical auxin response factor (ARF), ETTIN towards target genes without the requirement for protein degradation. Here we show that ETTIN directly binds auxin, leading to dissociation from co-repressor proteins of the TOPLESS/TOPLESS-RELATED family followed by histone acetylation and induction of gene expression. This mechanism is reminiscent of animal hormone signalling as it affects the activity towards regulation of target genes and provides the first example of a DNA-bound hormone receptor in plants. Whilst auxin affects canonical ARFs indirectly by facilitating degradation of Aux/IAA repressors, direct ETTIN-auxin interactions allow switching between repressive and de-repressive chromatin states in an instantly-reversible manner.
AU - Kuhn, André
AU - Ramans Harborough, Sigurd
AU - McLaughlin, Heather M
AU - Natarajan, Bhavani
AU - Verstraeten, Inge
AU - Friml, Jiří
AU - Kepinski, Stefan
AU - Østergaard, Lars
ID - 7793
JF - eLife
SN - 2050-084X
TI - Direct ETTIN-auxin interaction controls chromatin states in gynoecium development
VL - 9
ER -
TY - GEN
AB - De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). Here, we used Cul3 mouse models to evaluate the consequences of Cul3 mutations in vivo. Our results show that Cul3 haploinsufficient mice exhibit deficits in motor coordination as well as ASD-relevant social and cognitive impairments. Cul3 mutant brain displays cortical lamination abnormalities due to defective neuronal migration and reduced numbers of excitatory and inhibitory neurons. In line with the observed abnormal columnar organization, Cul3 haploinsufficiency is associated with decreased spontaneous excitatory and inhibitory activity in the cortex. At the molecular level, employing a quantitative proteomic approach, we show that Cul3 regulates cytoskeletal and adhesion protein abundance in mouse embryos. Abnormal regulation of cytoskeletal proteins in Cul3 mutant neuronal cells results in atypical organization of the actin mesh at the cell leading edge, likely causing the observed migration deficits. In contrast to these important functions early in development, Cul3 deficiency appears less relevant at adult stages. In fact, induction of Cul3 haploinsufficiency in adult mice does not result in the behavioral defects observed in constitutive Cul3 haploinsufficient animals. Taken together, our data indicate that Cul3 has a critical role in the regulation of cytoskeletal proteins and neuronal migration and that ASD-associated defects and behavioral abnormalities are primarily due to Cul3 functions at early developmental stages.
AU - Morandell, Jasmin
AU - Schwarz, Lena A
AU - Basilico, Bernadette
AU - Tasciyan, Saren
AU - Nicolas, Armel
AU - Sommer, Christoph M
AU - Kreuzinger, Caroline
AU - Knaus, Lisa
AU - Dobler, Zoe
AU - Cacci, Emanuele
AU - Danzl, Johann G
AU - Novarino, Gaia
ID - 7800
T2 - bioRxiv
TI - Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development
ER -
TY - CONF
AB - We settle the complexity of the (Δ+1)-coloring and (Δ+1)-list coloring problems in the CONGESTED CLIQUE model by presenting a simple deterministic algorithm for both problems running in a constant number of rounds. This matches the complexity of the recent breakthrough randomized constant-round (Δ+1)-list coloring algorithm due to Chang et al. (PODC'19), and significantly improves upon the state-of-the-art O(logΔ)-round deterministic (Δ+1)-coloring bound of Parter (ICALP'18).
A remarkable property of our algorithm is its simplicity. Whereas the state-of-the-art randomized algorithms for this problem are based on the quite involved local coloring algorithm of Chang et al. (STOC'18), our algorithm can be described in just a few lines. At a high level, it applies a careful derandomization of a recursive procedure which partitions the nodes and their respective palettes into separate bins. We show that after O(1) recursion steps, the remaining uncolored subgraph within each bin has linear size, and thus can be solved locally by collecting it to a single node. This algorithm can also be implemented in the Massively Parallel Computation (MPC) model provided that each machine has linear (in n, the number of nodes in the input graph) space.
We also show an extension of our algorithm to the MPC regime in which machines have sublinear space: we present the first deterministic (Δ+1)-list coloring algorithm designed for sublinear-space MPC, which runs in O(logΔ+loglogn) rounds.
AU - Czumaj, Artur
AU - Davies, Peter
AU - Parter, Merav
ID - 7803
T2 - Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing
TI - Simple, deterministic, constant-round coloring in the congested clique
ER -
TY - JOUR
AB - Besides pro-inflammatory roles, the ancient cytokine interleukin-17 (IL-17) modulates neural circuit function. We investigate IL-17 signaling in neurons, and the extent it can alter organismal phenotypes. We combine immunoprecipitation and mass spectrometry to biochemically characterize endogenous signaling complexes that function downstream of IL-17 receptors in C. elegans neurons. We identify the paracaspase MALT-1 as a critical output of the pathway. MALT1 mediates signaling from many immune receptors in mammals, but was not previously implicated in IL-17 signaling or nervous system function. C. elegans MALT-1 forms a complex with homologs of Act1 and IRAK and appears to function both as a scaffold and a protease. MALT-1 is expressed broadly in the C. elegans nervous system, and neuronal IL-17–MALT-1 signaling regulates multiple phenotypes, including escape behavior, associative learning, immunity and longevity. Our data suggest MALT1 has an ancient role modulating neural circuit function downstream of IL-17 to remodel physiology and behavior.
AU - Flynn, Sean M.
AU - Chen, Changchun
AU - Artan, Murat
AU - Barratt, Stephen
AU - Crisp, Alastair
AU - Nelson, Geoffrey M.
AU - Peak-Chew, Sew Yeu
AU - Begum, Farida
AU - Skehel, Mark
AU - De Bono, Mario
ID - 7804
JF - Nature Communications
TI - MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity
VL - 11
ER -
TY - JOUR
AB - Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.
AU - Hurny, Andrej
AU - Cuesta, Candela
AU - Cavallari, Nicola
AU - Ötvös, Krisztina
AU - Duclercq, Jerome
AU - Dokládal, Ladislav
AU - Montesinos López, Juan C
AU - Gallemi, Marçal
AU - Semeradova, Hana
AU - Rauter, Thomas
AU - Stenzel, Irene
AU - Persiau, Geert
AU - Benade, Freia
AU - Bhalearo, Rishikesh
AU - Sýkorová, Eva
AU - Gorzsás, András
AU - Sechet, Julien
AU - Mouille, Gregory
AU - Heilmann, Ingo
AU - De Jaeger, Geert
AU - Ludwig-Müller, Jutta
AU - Benková, Eva
ID - 7805
JF - Nature Communications
TI - Synergistic on Auxin and Cytokinin 1 positively regulates growth and attenuates soil pathogen resistance
VL - 11
ER -
TY - CONF
AB - We consider the following decision problem EMBEDk→d in computational topology (where k ≤ d are fixed positive integers): Given a finite simplicial complex K of dimension k, does there exist a (piecewise-linear) embedding of K into ℝd?
The special case EMBED1→2 is graph planarity, which is decidable in linear time, as shown by Hopcroft and Tarjan. In higher dimensions, EMBED2→3 and EMBED3→3 are known to be decidable (as well as NP-hard), and recent results of Čadek et al. in computational homotopy theory, in combination with the classical Haefliger–Weber theorem in geometric topology, imply that EMBEDk→d can be solved in polynomial time for any fixed pair (k, d) of dimensions in the so-called metastable range .
Here, by contrast, we prove that EMBEDk→d is algorithmically undecidable for almost all pairs of dimensions outside the metastable range, namely for . This almost completely resolves the decidability vs. undecidability of EMBEDk→d in higher dimensions and establishes a sharp dichotomy between polynomial-time solvability and undecidability.
Our result complements (and in a wide range of dimensions strengthens) earlier results of Matoušek, Tancer, and the second author, who showed that EMBEDk→d is undecidable for 4 ≤ k ϵ {d – 1, d}, and NP-hard for all remaining pairs (k, d) outside the metastable range and satisfying d ≥ 4.
AU - Filakovský, Marek
AU - Wagner, Uli
AU - Zhechev, Stephan Y
ID - 7806
SN - 9781611975994
T2 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
TI - Embeddability of simplicial complexes is undecidable
VL - 2020-January
ER -
TY - CONF
AB - In a straight-line embedded triangulation of a point set P in the plane, removing an inner edge and—provided the resulting quadrilateral is convex—adding the other diagonal is called an edge flip. The (edge) flip graph has all triangulations as vertices, and a pair of triangulations is adjacent if they can be obtained from each other by an edge flip. The goal of this paper is to contribute to a better understanding of the flip graph, with an emphasis on its connectivity.
For sets in general position, it is known that every triangulation allows at least edge flips (a tight bound) which gives the minimum degree of any flip graph for n points. We show that for every point set P in general position, the flip graph is at least -vertex connected. Somewhat more strongly, we show that the vertex connectivity equals the minimum degree occurring in the flip graph, i.e. the minimum number of flippable edges in any triangulation of P, provided P is large enough. Finally, we exhibit some of the geometry of the flip graph by showing that the flip graph can be covered by 1-skeletons of polytopes of dimension (products of associahedra).
A corresponding result ((n – 3)-vertex connectedness) can be shown for the bistellar flip graph of partial triangulations, i.e. the set of all triangulations of subsets of P which contain all extreme points of P. This will be treated separately in a second part.
AU - Wagner, Uli
AU - Welzl, Emo
ID - 7807
SN - 9781611975994
T2 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
TI - Connectivity of triangulation flip graphs in the plane (Part I: Edge flips)
VL - 2020-January
ER -
TY - CONF
AB - Quantization converts neural networks into low-bit fixed-point computations which can be carried out by efficient integer-only hardware, and is standard practice for the deployment of neural networks on real-time embedded devices. However, like their real-numbered counterpart, quantized networks are not immune to malicious misclassification caused by adversarial attacks. We investigate how quantization affects a network’s robustness to adversarial attacks, which is a formal verification question. We show that neither robustness nor non-robustness are monotonic with changing the number of bits for the representation and, also, neither are preserved by quantization from a real-numbered network. For this reason, we introduce a verification method for quantized neural networks which, using SMT solving over bit-vectors, accounts for their exact, bit-precise semantics. We built a tool and analyzed the effect of quantization on a classifier for the MNIST dataset. We demonstrate that, compared to our method, existing methods for the analysis of real-numbered networks often derive false conclusions about their quantizations, both when determining robustness and when detecting attacks, and that existing methods for quantized networks often miss attacks. Furthermore, we applied our method beyond robustness, showing how the number of bits in quantization enlarges the gender bias of a predictor for students’ grades.
AU - Giacobbe, Mirco
AU - Henzinger, Thomas A
AU - Lechner, Mathias
ID - 7808
SN - 03029743
T2 - International Conference on Tools and Algorithms for the Construction and Analysis of Systems
TI - How many bits does it take to quantize your neural network?
VL - 12079
ER -
TY - JOUR
AB - Scientific research is to date largely restricted to wealthy laboratories in developed nations due to the necessity of complex and expensive equipment. This inequality limits the capacity of science to be used as a diplomatic channel. Maker movements use open-source technologies including additive manufacturing (3D printing) and laser cutting, together with low-cost computers for developing novel products. This movement is setting the groundwork for a revolution, allowing scientific equipment to be sourced at a fraction of the cost and has the potential to increase the availability of equipment for scientists around the world. Science education is increasingly recognized as another channel for science diplomacy. In this perspective, we introduce the idea that the Maker movement and open-source technologies have the potential to revolutionize science, technology, engineering and mathematics (STEM) education worldwide. We present an open-source STEM didactic tool called SCOPES (Sparking Curiosity through Open-source Platforms in Education and Science). SCOPES is self-contained, independent of local resources, and cost-effective. SCOPES can be adapted to communicate complex subjects from genetics to neurobiology, perform real-world biological experiments and explore digitized scientific samples. We envision such platforms will enhance science diplomacy by providing a means for scientists to share their findings with classrooms and for educators to incorporate didactic concepts into STEM lessons. By providing students the opportunity to design, perform, and share scientific experiments, students also experience firsthand the benefits of a multinational scientific community. We provide instructions on how to build and use SCOPES on our webpage: http://scopeseducation.org.
AU - Beattie, Robert J
AU - Hippenmeyer, Simon
AU - Pauler, Florian
ID - 7814
JF - Frontiers in Education
SN - 2504-284X
TI - SCOPES: Sparking curiosity through Open-Source platforms in education and science
VL - 5
ER -
TY - JOUR
AB - Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities nearing 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Here, we reveal two distinct reduction potentials for the chemical environments of 'free' and 'bound' water and that both contribute to SEI formation. Free-water is reduced ~1V above bound water in a hydrogen evolution reaction (HER) and responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability.
AU - Bouchal, Roza
AU - Li, Zhujie
AU - Bongu, Chandra
AU - Le Vot, Steven
AU - Berthelot, Romain
AU - Rotenberg, Benjamin
AU - Favier, Fréderic
AU - Freunberger, Stefan Alexander
AU - Salanne, Mathieu
AU - Fontaine, Olivier
ID - 7847
IS - 37
JF - Angewandte Chemie International Edition
SN - 1433-7851
TI - Competitive salt precipitation/dissolution during free‐water reduction in water‐in‐salt electrolyte
VL - 59
ER -
TY - JOUR
AB - In this paper, we establish convergence to equilibrium for a drift–diffusion–recombination system modelling the charge transport within certain semiconductor devices. More precisely, we consider a two-level system for electrons and holes which is augmented by an intermediate energy level for electrons in so-called trapped states. The recombination dynamics use the mass action principle by taking into account this additional trap level. The main part of the paper is concerned with the derivation of an entropy–entropy production inequality, which entails exponential convergence to the equilibrium via the so-called entropy method. The novelty of our approach lies in the fact that the entropy method is applied uniformly in a fast-reaction parameter which governs the lifetime of electrons on the trap level. Thus, the resulting decay estimate for the densities of electrons and holes extends to the corresponding quasi-steady-state approximation.
AU - Fellner, Klemens
AU - Kniely, Michael
ID - 7866
JF - Journal of Elliptic and Parabolic Equations
SN - 22969020
TI - Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model
VL - 6
ER -
TY - JOUR
AB - Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence.
AU - Kopf, Aglaja
AU - Renkawitz, Jörg
AU - Hauschild, Robert
AU - Girkontaite, Irute
AU - Tedford, Kerry
AU - Merrin, Jack
AU - Thorn-Seshold, Oliver
AU - Trauner, Dirk
AU - Häcker, Hans
AU - Fischer, Klaus Dieter
AU - Kiermaier, Eva
AU - Sixt, Michael K
ID - 7875
IS - 6
JF - The Journal of Cell Biology
TI - Microtubules control cellular shape and coherence in amoeboid migrating cells
VL - 219
ER -
TY - JOUR
AB - In contrast to lymph nodes, the lymphoid regions of the spleen—the white pulp—are located deep within the organ, yielding the trafficking paths of T cells in the white pulp largely invisible. In an intravital microscopy tour de force reported in this issue of Immunity, Chauveau et al. show that T cells perform unidirectional, perivascular migration through the enigmatic marginal zone bridging channels.
AU - Sixt, Michael K
AU - Lämmermann, Tim
ID - 7876
IS - 5
JF - Immunity
SN - 10747613
TI - T cells: Bridge-and-channel commute to the white pulp
VL - 52
ER -
TY - JOUR
AB - The NIPBL/MAU2 heterodimer loads cohesin onto chromatin. Mutations inNIPBLaccount for most cases ofthe rare developmental disorder Cornelia de Lange syndrome (CdLS). Here we report aMAU2 variant causing CdLS, a deletion of seven amino acids that impairs the interaction between MAU2 and the NIPBL N terminus.Investigating this interaction, we discovered that MAU2 and the NIPBL N terminus are largely dispensable fornormal cohesin and NIPBL function in cells with a NIPBL early truncating mutation. Despite a predicted fataloutcome of an out-of-frame single nucleotide duplication inNIPBL, engineered in two different cell lines,alternative translation initiation yields a form of NIPBL missing N-terminal residues. This form cannot interactwith MAU2, but binds DNA and mediates cohesin loading. Altogether, our work reveals that cohesin loading can occur independently of functional NIPBL/MAU2 complexes and highlights a novel mechanism protectiveagainst out-of-frame mutations that is potentially relevant for other genetic conditions.
AU - Parenti, Ilaria
AU - Diab, Farah
AU - Gil, Sara Ruiz
AU - Mulugeta, Eskeatnaf
AU - Casa, Valentina
AU - Berutti, Riccardo
AU - Brouwer, Rutger W.W.
AU - Dupé, Valerie
AU - Eckhold, Juliane
AU - Graf, Elisabeth
AU - Puisac, Beatriz
AU - Ramos, Feliciano
AU - Schwarzmayr, Thomas
AU - Gines, Macarena Moronta
AU - Van Staveren, Thomas
AU - Van Ijcken, Wilfred F.J.
AU - Strom, Tim M.
AU - Pié, Juan
AU - Watrin, Erwan
AU - Kaiser, Frank J.
AU - Wendt, Kerstin S.
ID - 7877
IS - 7
JF - Cell Reports
TI - MAU2 and NIPBL variants impair the heterodimerization of the cohesin loader subunits and cause Cornelia de Lange syndrome
VL - 31
ER -
TY - JOUR
AB - Type 1 metabotropic glutamate receptors (mGluR1s) are key elements in neuronal signaling. While their function is well documented in slices, requirements for their activation in vivo are poorly understood. We examine this question in adult mice in vivo using 2-photon imaging of cerebellar molecular layer interneurons (MLIs) expressing GCaMP. In anesthetized mice, parallel fiber activation evokes beam-like Cai rises in postsynaptic MLIs which depend on co-activation of mGluR1s and ionotropic glutamate receptors (iGluRs). In awake mice, blocking mGluR1 decreases Cai rises associated with locomotion. In vitro studies and freeze-fracture electron microscopy show that the iGluR-mGluR1 interaction is synergistic and favored by close association of the two classes of receptors. Altogether our results suggest that mGluR1s, acting in synergy with iGluRs, potently contribute to processing cerebellar neuronal signaling under physiological conditions.
AU - Bao, Jin
AU - Graupner, Michael
AU - Astorga, Guadalupe
AU - Collin, Thibault
AU - Jalil, Abdelali
AU - Indriati, Dwi Wahyu
AU - Bradley, Jonathan
AU - Shigemoto, Ryuichi
AU - Llano, Isabel
ID - 7878
JF - eLife
TI - Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo
VL - 9
ER -
TY - JOUR
AB - Following its evoked release, dopamine (DA) signaling is rapidly terminated by presynaptic reuptake, mediated by the cocaine-sensitive DA transporter (DAT). DAT surface availability is dynamically regulated by endocytic trafficking, and direct protein kinase C (PKC) activation acutely diminishes DAT surface expression by accelerating DAT internalization. Previous cell line studies demonstrated that PKC-stimulated DAT endocytosis requires both Ack1 inactivation, which releases a DAT-specific endocytic brake, and the neuronal GTPase, Rit2, which binds DAT. However, it is unknown whether Rit2 is required for PKC-stimulated DAT endocytosis in DAergic terminals or whether there are region- and/or sex-dependent differences in PKC-stimulated DAT trafficking. Moreover, the mechanisms by which Rit2 controls PKC-stimulated DAT endocytosis are unknown. Here, we directly examined these important questions. Ex vivo studies revealed that PKC activation acutely decreased DAT surface expression selectively in ventral, but not dorsal, striatum. AAV-mediated, conditional Rit2 knockdown in DAergic neurons impacted baseline DAT surface:intracellular distribution in DAergic terminals from female ventral, but not dorsal, striatum. Further, Rit2 was required for PKC-stimulated DAT internalization in both male and female ventral striatum. FRET and surface pulldown studies in cell lines revealed that PKC activation drives DAT-Rit2 surface dissociation and that the DAT N terminus is required for both PKC-mediated DAT-Rit2 dissociation and DAT internalization. Finally, we found that Rit2 and Ack1 independently converge on DAT to facilitate PKC-stimulated DAT endocytosis. Together, our data provide greater insight into mechanisms that mediate PKC-regulated DAT internalization and reveal unexpected region-specific differences in PKC-stimulated DAT trafficking in bona fide DAergic terminals.
AU - Fagan, Rita R.
AU - Kearney, Patrick J.
AU - Sweeney, Carolyn G.
AU - Luethi, Dino
AU - Schoot Uiterkamp, Florianne E
AU - Schicker, Klaus
AU - Alejandro, Brian S.
AU - O'Connor, Lauren C.
AU - Sitte, Harald H.
AU - Melikian, Haley E.
ID - 7880
IS - 16
JF - Journal of Biological Chemistry
SN - 00219258
TI - Dopamine transporter trafficking and Rit2 GTPase: Mechanism of action and in vivo impact
VL - 295
ER -
TY - JOUR
AB - A few-body cluster is a building block of a many-body system in a gas phase provided the temperature at most is of the order of the binding energy of this cluster. Here we illustrate this statement by considering a system of tubes filled with dipolar distinguishable particles. We calculate the partition function, which determines the probability to find a few-body cluster at a given temperature. The input for our calculations—the energies of few-body clusters—is estimated using the harmonic approximation. We first describe and demonstrate the validity of our numerical procedure. Then we discuss the results featuring melting of the zero-temperature many-body state into a gas of free particles and few-body clusters. For temperature higher than its binding energy threshold, the dimers overwhelmingly dominate the ensemble, where the remaining probability is in free particles. At very high temperatures free (harmonic oscillator trap-bound) particle dominance is eventually reached. This structure evolution appears both for one and two particles in each layer providing crucial information about the behavior of ultracold dipolar gases. The investigation addresses the transition region between few- and many-body physics as a function of temperature using a system of ten dipoles in five tubes.
AU - Armstrong, Jeremy R.
AU - Jensen, Aksel S.
AU - Volosniev, Artem
AU - Zinner, Nikolaj T.
ID - 7882
IS - 4
JF - Mathematics
TI - Clusters in separated tubes of tilted dipoles
VL - 8
ER -
TY - JOUR
AB - All vertebrates have a spinal cord with dimensions and shape specific to their species. Yet how species‐specific organ size and shape are achieved is a fundamental unresolved question in biology. The formation and sculpting of organs begins during embryonic development. As it develops, the spinal cord extends in anterior–posterior direction in synchrony with the overall growth of the body. The dorsoventral (DV) and apicobasal lengths of the spinal cord neuroepithelium also change, while at the same time a characteristic pattern of neural progenitor subtypes along the DV axis is established and elaborated. At the basis of these changes in tissue size and shape are biophysical determinants, such as the change in cell number, cell size and shape, and anisotropic tissue growth. These processes are controlled by global tissue‐scale regulators, such as morphogen signaling gradients as well as mechanical forces. Current challenges in the field are to uncover how these tissue‐scale regulatory mechanisms are translated to the cellular and molecular level, and how regulation of distinct cellular processes gives rise to an overall defined size. Addressing these questions will help not only to achieve a better understanding of how size is controlled, but also of how tissue size is coordinated with the specification of pattern.
AU - Kuzmicz-Kowalska, Katarzyna
AU - Kicheva, Anna
ID - 7883
JF - Wiley Interdisciplinary Reviews: Developmental Biology
SN - 17597684
TI - Regulation of size and scale in vertebrate spinal cord development
ER -
TY - JOUR
AB - Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order.
AU - Schauer, Alexandra
AU - Nunes Pinheiro, Diana C
AU - Hauschild, Robert
AU - Heisenberg, Carl-Philipp J
ID - 7888
JF - eLife
SN - 2050-084X
TI - Zebrafish embryonic explants undergo genetically encoded self-assembly
VL - 9
ER -
TY - THES
AB - A search problem lies in the complexity class FNP if a solution to the given instance of the problem can be verified efficiently. The complexity class TFNP consists of all search problems in FNP that are total in the sense that a solution is guaranteed to exist. TFNP contains a host of interesting problems from fields such as algorithmic game theory, computational topology, number theory and combinatorics. Since TFNP is a semantic class, it is unlikely to have a complete problem. Instead, one studies its syntactic subclasses which are defined based on the combinatorial principle used to argue totality. Of particular interest is the subclass PPAD, which contains important problems
like computing Nash equilibrium for bimatrix games and computational counterparts of several fixed-point theorems as complete. In the thesis, we undertake the study of averagecase hardness of TFNP, and in particular its subclass PPAD.
Almost nothing was known about average-case hardness of PPAD before a series of recent results showed how to achieve it using a cryptographic primitive called program obfuscation.
However, it is currently not known how to construct program obfuscation from standard cryptographic assumptions. Therefore, it is desirable to relax the assumption under which average-case hardness of PPAD can be shown. In the thesis we take a step in this direction. First, we show that assuming the (average-case) hardness of a numbertheoretic
problem related to factoring of integers, which we call Iterated-Squaring, PPAD is hard-on-average in the random-oracle model. Then we strengthen this result to show that the average-case hardness of PPAD reduces to the (adaptive) soundness of the Fiat-Shamir Transform, a well-known technique used to compile a public-coin interactive protocol into a non-interactive one. As a corollary, we obtain average-case hardness for PPAD in the random-oracle model assuming the worst-case hardness of #SAT. Moreover, the above results can all be strengthened to obtain average-case hardness for the class CLS ⊆ PPAD.
Our main technical contribution is constructing incrementally-verifiable procedures for computing Iterated-Squaring and #SAT. By incrementally-verifiable, we mean that every intermediate state of the computation includes a proof of its correctness, and the proof can be updated and verified in polynomial time. Previous constructions of such procedures relied on strong, non-standard assumptions. Instead, we introduce a technique called recursive proof-merging to obtain the same from weaker assumptions.
AU - Kamath Hosdurg, Chethan
ID - 7896
TI - On the average-case hardness of total search problems
ER -
TY - JOUR
AB - We investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1355–1370, ACM, New York, 2012), and the cohomology stratification algorithm given in Nanda (Found. Comput. Math. 20(2), 195–222, 2020). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (Rev. Mat. Complut. 31(3), 545–593, 2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms.
AU - Brown, Adam
AU - Wang, Bei
ID - 7905
JF - Discrete and Computational Geometry
SN - 0179-5376
TI - Sheaf-theoretic stratification learning from geometric and topological perspectives
ER -
TY - JOUR
AB - Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca2+ currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca2+ currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca2+ influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses.
AU - Wang, Han Ying
AU - Eguchi, Kohgaku
AU - Yamashita, Takayuki
AU - Takahashi, Tomoyuki
ID - 7908
IS - 21
JF - Journal of Neuroscience
TI - Frequency-dependent block of excitatory neurotransmission by isoflurane via dual presynaptic mechanisms
VL - 40
ER -
TY - JOUR
AB - Cell migration entails networks and bundles of actin filaments termed lamellipodia and microspikes or filopodia, respectively, as well as focal adhesions, all of which recruit Ena/VASP family members hitherto thought to antagonize efficient cell motility. However, we find these proteins to act as positive regulators of migration in different murine cell lines. CRISPR/Cas9-mediated loss of Ena/VASP proteins reduced lamellipodial actin assembly and perturbed lamellipodial architecture, as evidenced by changed network geometry as well as reduction of filament length and number that was accompanied by abnormal Arp2/3 complex and heterodimeric capping protein accumulation. Loss of Ena/VASP function also abolished the formation of microspikes normally embedded in lamellipodia, but not of filopodia capable of emanating without lamellipodia. Ena/VASP-deficiency also impaired integrin-mediated adhesion accompanied by reduced traction forces exerted through these structures. Our data thus uncover novel Ena/VASP functions of these actin polymerases that are fully consistent with their promotion of cell migration.
AU - Damiano-Guercio, Julia
AU - Kurzawa, Laëtitia
AU - Müller, Jan
AU - Dimchev, Georgi A
AU - Schaks, Matthias
AU - Nemethova, Maria
AU - Pokrant, Thomas
AU - Brühmann, Stefan
AU - Linkner, Joern
AU - Blanchoin, Laurent
AU - Sixt, Michael K
AU - Rottner, Klemens
AU - Faix, Jan
ID - 7909
JF - eLife
TI - Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion
VL - 9
ER -
TY - JOUR
AB - We explore the time evolution of two impurities in a trapped one-dimensional Bose gas that follows a change of the boson-impurity interaction. We study the induced impurity-impurity interactions and their effect on the quench dynamics. In particular, we report on the size of the impurity cloud, the impurity-impurity entanglement, and the impurity-impurity correlation function. The presented numerical simulations are based upon the variational multilayer multiconfiguration time-dependent Hartree method for bosons. To analyze and quantify induced impurity-impurity correlations, we employ an effective two-body Hamiltonian with a contact interaction. We show that the effective model consistent with the mean-field attraction of two heavy impurities explains qualitatively our results for weak interactions. Our findings suggest that the quench dynamics in cold-atom systems can be a tool for studying impurity-impurity correlations.
AU - Mistakidis, S. I.
AU - Volosniev, Artem
AU - Schmelcher, P.
ID - 7919
JF - Physical Review Research
SN - 2643-1564
TI - Induced correlations between impurities in a one-dimensional quenched Bose gas
VL - 2
ER -
TY - JOUR
AB - In this paper, we introduce a relaxed CQ method with alternated inertial step for solving split feasibility problems. We give convergence of the sequence generated by our method under some suitable assumptions. Some numerical implementations from sparse signal and image deblurring are reported to show the efficiency of our method.
AU - Shehu, Yekini
AU - Gibali, Aviv
ID - 7925
JF - Optimization Letters
SN - 1862-4472
TI - New inertial relaxed method for solving split feasibilities
ER -
TY - JOUR
AB - In the course of sample preparation for Next Generation Sequencing (NGS), DNA is fragmented by various methods. Fragmentation shows a persistent bias with regard to the cleavage rates of various dinucleotides. With the exception of CpG dinucleotides the previously described biases were consistent with results of the DNA cleavage in solution. Here we computed cleavage rates of all dinucleotides including the methylated CpG and unmethylated CpG dinucleotides using data of the Whole Genome Sequencing datasets of the 1000 Genomes project. We found that the cleavage rate of CpG is significantly higher for the methylated CpG dinucleotides. Using this information, we developed a classifier for distinguishing cancer and healthy tissues based on their CpG islands statuses of the fragmentation. A simple Support Vector Machine classifier based on this algorithm shows an accuracy of 84%. The proposed method allows the detection of epigenetic markers purely based on mechanochemical DNA fragmentation, which can be detected by a simple analysis of the NGS sequencing data.
AU - Uroshlev, Leonid A.
AU - Abdullaev, Eldar T.
AU - Umarova, Iren R.
AU - Il’Icheva, Irina A.
AU - Panchenko, Larisa A.
AU - Polozov, Robert V.
AU - Kondrashov, Fyodor
AU - Nechipurenko, Yury D.
AU - Grokhovsky, Sergei L.
ID - 7931
JF - Scientific Reports
TI - A method for identification of the methylation level of CpG islands from NGS data
VL - 10
ER -
TY - JOUR
AB - Pulsating flows through tubular geometries are laminar provided that velocities are moderate. This in particular is also believed to apply to cardiovascular flows where inertial forces are typically too low to sustain turbulence. On the other hand, flow instabilities and fluctuating shear stresses are held responsible for a variety of cardiovascular diseases. Here we report a nonlinear instability mechanism for pulsating pipe flow that gives rise to bursts of turbulence at low flow rates. Geometrical distortions of small, yet finite, amplitude are found to excite a state consisting of helical vortices during flow deceleration. The resulting flow pattern grows rapidly in magnitude, breaks down into turbulence, and eventually returns to laminar when the flow accelerates. This scenario causes shear stress fluctuations and flow reversal during each pulsation cycle. Such unsteady conditions can adversely affect blood vessels and have been shown to promote inflammation and dysfunction of the shear stress-sensitive endothelial cell layer.
AU - Xu, Duo
AU - Varshney, Atul
AU - Ma, Xingyu
AU - Song, Baofang
AU - Riedl, Michael
AU - Avila, Marc
AU - Hof, Björn
ID - 7932
IS - 21
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 00278424
TI - Nonlinear hydrodynamic instability and turbulence in pulsatile flow
VL - 117
ER -
TY - JOUR
AB - We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem, we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a correlation function between the internal and the orbital angular momentum operators. The strong-coupling regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the states that exhibit strong interaction with the surroundings. The results might find applications in such fields as spintronics or topological insulators where spin-orbit coupling is of crucial importance.
AU - Maslov, Mikhail
AU - Lemeshko, Mikhail
AU - Yakaboylu, Enderalp
ID - 7933
IS - 18
JF - Physical Review B
SN - 24699950
TI - Synthetic spin-orbit coupling mediated by a bosonic environment
VL - 101
ER -
TY - CONF
AB - State-of-the-art detection systems are generally evaluated on their ability to exhaustively retrieve objects densely distributed in the image, across a wide variety of appearances and semantic categories. Orthogonal to this, many real-life object detection applications, for example in remote sensing, instead require dealing with large images that contain only a few small objects of a single class, scattered heterogeneously across the space. In addition, they are often subject to strict computational constraints, such as limited battery capacity and computing power.To tackle these more practical scenarios, we propose a novel flexible detection scheme that efficiently adapts to variable object sizes and densities: We rely on a sequence of detection stages, each of which has the ability to predict groups of objects as well as individuals. Similar to a detection cascade, this multi-stage architecture spares computational effort by discarding large irrelevant regions of the image early during the detection process. The ability to group objects provides further computational and memory savings, as it allows working with lower image resolutions in early stages, where groups are more easily detected than individuals, as they are more salient. We report experimental results on two aerial image datasets, and show that the proposed method is as accurate yet computationally more efficient than standard single-shot detectors, consistently across three different backbone architectures.
AU - Royer, Amélie
AU - Lampert, Christoph
ID - 7936
SN - 9781728165530
T2 - IEEE Winter Conference on Applications of Computer Vision
TI - Localizing grouped instances for efficient detection in low-resource scenarios
ER -
TY - CONF
AB - Fine-tuning is a popular way of exploiting knowledge contained in a pre-trained convolutional network for a new visual recognition task. However, the orthogonal setting of transferring knowledge from a pretrained network to a visually different yet semantically close source is rarely considered: This commonly happens with real-life data, which is not necessarily as clean as the training source (noise, geometric transformations, different modalities, etc.).To tackle such scenarios, we introduce a new, generalized form of fine-tuning, called flex-tuning, in which any individual unit (e.g. layer) of a network can be tuned, and the most promising one is chosen automatically. In order to make the method appealing for practical use, we propose two lightweight and faster selection procedures that prove to be good approximations in practice. We study these selection criteria empirically across a variety of domain shifts and data scarcity scenarios, and show that fine-tuning individual units, despite its simplicity, yields very good results as an adaptation technique. As it turns out, in contrast to common practice, rather than the last fully-connected unit it is best to tune an intermediate or early one in many domain- shift scenarios, which is accurately detected by flex-tuning.
AU - Royer, Amélie
AU - Lampert, Christoph
ID - 7937
SN - 9781728165530
T2 - 2020 IEEE Winter Conference on Applications of Computer Vision
TI - A flexible selection scheme for minimum-effort transfer learning
ER -
TY - JOUR
AB - We design fast deterministic algorithms for distance computation in the Congested Clique model. Our key contributions include:
A (2+ϵ)-approximation for all-pairs shortest paths in O(log2n/ϵ) rounds on unweighted undirected graphs. With a small additional additive factor, this also applies for weighted graphs. This is the first sub-polynomial constant-factor approximation for APSP in this model.
A (1+ϵ)-approximation for multi-source shortest paths from O(n−−√) sources in O(log2n/ϵ) rounds on weighted undirected graphs. This is the first sub-polynomial algorithm obtaining this approximation for a set of sources of polynomial size.
Our main techniques are new distance tools that are obtained via improved algorithms for sparse matrix multiplication, which we leverage to construct efficient hopsets and shortest paths. Furthermore, our techniques extend to additional distance problems for which we improve upon the state-of-the-art, including diameter approximation, and an exact single-source shortest paths algorithm for weighted undirected graphs in O~(n1/6) rounds.
AU - Censor-Hillel, Keren
AU - Dory, Michal
AU - Korhonen, Janne
AU - Leitersdorf, Dean
ID - 7939
JF - Distributed Computing
SN - 01782770
TI - Fast approximate shortest paths in the congested clique
ER -
TY - JOUR
AB - We prove that the Yangian associated to an untwisted symmetric affine Kac–Moody Lie algebra is isomorphic to the Drinfeld double of a shuffle algebra. The latter is constructed in [YZ14] as an algebraic formalism of cohomological Hall algebras. As a consequence, we obtain the Poincare–Birkhoff–Witt (PBW) theorem for this class of affine Yangians. Another independent proof of the PBW theorem is given recently by Guay, Regelskis, and Wendlandt [GRW18].
AU - Yang, Yaping
AU - Zhao, Gufang
ID - 7940
JF - Transformation Groups
SN - 10834362
TI - The PBW theorem for affine Yangians
VL - 25
ER -
TY - JOUR
AB - An understanding of the missing antinodal electronic excitations in the pseudogap state is essential for uncovering the physics of the underdoped cuprate high-temperature superconductors1,2,3,4,5,6. The majority of high-temperature experiments performed thus far, however, have been unable to discern whether the antinodal states are rendered unobservable due to their damping or whether they vanish due to their gapping7,8,9,10,11,12,13,14,15,16,17,18. Here, we distinguish between these two scenarios by using quantum oscillations to examine whether the small Fermi surface pocket, found to occupy only 2% of the Brillouin zone in the underdoped cuprates19,20,21,22,23,24, exists in isolation against a majority of completely gapped density of states spanning the antinodes, or whether it is thermodynamically coupled to a background of ungapped antinodal states. We find that quantum oscillations associated with the small Fermi surface pocket exhibit a signature sawtooth waveform characteristic of an isolated two-dimensional Fermi surface pocket25,26,27,28,29,30,31,32. This finding reveals that the antinodal states are destroyed by a hard gap that extends over the majority of the Brillouin zone, placing strong constraints on a drastic underlying origin of quasiparticle disappearance over almost the entire Brillouin zone in the pseudogap regime7,8,9,10,11,12,13,14,15,16,17,18.
AU - Hartstein, Máté
AU - Hsu, Yu Te
AU - Modic, Kimberly A
AU - Porras, Juan
AU - Loew, Toshinao
AU - Tacon, Matthieu Le
AU - Zuo, Huakun
AU - Wang, Jinhua
AU - Zhu, Zengwei
AU - Chan, Mun K.
AU - Mcdonald, Ross D.
AU - Lonzarich, Gilbert G.
AU - Keimer, Bernhard
AU - Sebastian, Suchitra E.
AU - Harrison, Neil
ID - 7942
JF - Nature Physics
SN - 17452473
TI - Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors
VL - 16
ER -
TY - THES
AB - This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph.
For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton.
In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars.
AU - Masárová, Zuzana
ID - 7944
KW - reconfiguration
KW - reconfiguration graph
KW - triangulations
KW - flip
KW - constrained triangulations
KW - shellability
KW - piecewise-linear balls
KW - token swapping
KW - trees
KW - coloured weighted token swapping
SN - 978-3-99078-005-3
TI - Reconfiguration problems
ER -
TY - JOUR
AB - In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule for plant growth, development and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). In addition, our present study shows that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene expression in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing cell wall remodeling required for overlying tissues separation during LRP emergence. Both NRT1.1-mediated repression of TAR2 and LAX3 are suppressed at high nitrate availability, resulting in the nitrate induction of TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously anticipated in regulating the nitrate response of root system architecture.
AU - Maghiaoui, A
AU - Bouguyon, E
AU - Cuesta, Candela
AU - Perrine-Walker, F
AU - Alcon, C
AU - Krouk, G
AU - Benková, Eva
AU - Nacry, P
AU - Gojon, A
AU - Bach, L
ID - 7948
IS - 15
JF - Journal of Experimental Botany
SN - 0022-0957
TI - The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate
VL - 71
ER -
TY - CONF
AB - Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. manifolds defined as the zero set of some multivariate vector-valued smooth function f: ℝ^d → ℝ^(d-n). A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL) approximation based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we give conditions under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold. The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently fine triangulation 𝒯. This contrasts with previous results on the triangulation of manifolds where, in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness, which leads to strong limitations in practice. We further give a bound on the Fréchet distance between the original isomanifold and its PL-approximation. Finally we show analogous results for the PL-approximation of an isomanifold with boundary.
AU - Boissonnat, Jean-Daniel
AU - Wintraecken, Mathijs
ID - 7952
SN - 1868-8969
T2 - 36th International Symposium on Computational Geometry
TI - The topological correctness of PL-approximations of isomanifolds
VL - 164
ER -
TY - CONF
AB - Simple stochastic games are turn-based 2½-player games with a reachability objective. The basic question asks whether one player can ensure reaching a given target with at least a given probability. A natural extension is games with a conjunction of such conditions as objective. Despite a plethora of recent results on the analysis of systems with multiple objectives, the decidability of this basic problem remains open. In this paper, we present an algorithm approximating the Pareto frontier of the achievable values to a given precision. Moreover, it is an anytime algorithm, meaning it can be stopped at any time returning the current approximation and its error bound.
AU - Ashok, Pranav
AU - Chatterjee, Krishnendu
AU - Kretinsky, Jan
AU - Weininger, Maximilian
AU - Winkler, Tobias
ID - 7955
SN - 9781450371049
T2 - Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science
TI - Approximating values of generalized-reachability stochastic games
ER -
TY - JOUR
AB - We introduce dynamically warping grids for adaptive liquid simulation. Our primary contributions are a strategy for dynamically deforming regular grids over the course of a simulation and a method for efficiently utilizing these deforming grids for liquid simulation. Prior work has shown that unstructured grids are very effective for adaptive fluid simulations. However, unstructured grids often lead to complicated implementations and a poor cache hit rate due to inconsistent memory access. Regular grids, on the other hand, provide a fast, fixed memory access pattern and straightforward implementation. Our method combines the advantages of both: we leverage the simplicity of regular grids while still achieving practical and controllable spatial adaptivity. We demonstrate that our method enables adaptive simulations that are fast, flexible, and robust to null-space issues. At the same time, our method is simple to implement and takes advantage of existing highly-tuned algorithms.
AU - Hikaru, Ibayashi
AU - Wojtan, Christopher J
AU - Thuerey, Nils
AU - Igarashi, Takeo
AU - Ando, Ryoichi
ID - 5681
IS - 6
JF - IEEE Transactions on Visualization and Computer Graphics
SN - 10772626
TI - Simulating liquids on dynamically warping grids
VL - 26
ER -
TY - JOUR
AB - We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models.
AU - Alt, Johannes
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6184
IS - 2
JF - Annals of Probability
TI - Correlated random matrices: Band rigidity and edge universality
VL - 48
ER -
TY - JOUR
AB - For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner–Dyson–Mehta universality conjecture for the last remaining universality type in the complex Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp for both symmetry classes. This result is also the key input in the companion paper (Cipolloni et al. in Pure Appl Anal, 2018. arXiv:1811.04055) where the cusp universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is also essential for the recent results on the spectral radius of non-Hermitian random matrices (Alt et al. in Spectral radius of random matrices with independent entries, 2019. arXiv:1907.13631), and the non-Hermitian edge universality (Cipolloni et al. in Edge universality for non-Hermitian random matrices, 2019. arXiv:1908.00969).
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6185
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Cusp universality for random matrices I: Local law and the complex Hermitian case
VL - 378
ER -
TY - JOUR
AB - We study dynamical optimal transport metrics between density matricesassociated to symmetric Dirichlet forms on finite-dimensional C∗-algebras. Our settingcovers arbitrary skew-derivations and it provides a unified framework that simultaneously generalizes recently constructed transport metrics for Markov chains, Lindblad equations, and the Fermi Ornstein–Uhlenbeck semigroup. We develop a non-nommutative differential calculus that allows us to obtain non-commutative Ricci curvature bounds, logarithmic Sobolev inequalities, transport-entropy inequalities, andspectral gap estimates.
AU - Carlen, Eric A.
AU - Maas, Jan
ID - 6358
IS - 2
JF - Journal of Statistical Physics
SN - 00224715
TI - Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems
VL - 178
ER -
TY - JOUR
AB - The strong rate of convergence of the Euler-Maruyama scheme for nondegenerate SDEs with irregular drift coefficients is considered. In the case of α-Hölder drift in the recent literature the rate α/2 was proved in many related situations. By exploiting the regularising effect of the noise more efficiently, we show that the rate is in fact arbitrarily close to 1/2 for all α>0. The result extends to Dini continuous coefficients, while in d=1 also to all bounded measurable coefficients.
AU - Dareiotis, Konstantinos
AU - Gerencser, Mate
ID - 6359
JF - Electronic Journal of Probability
TI - On the regularisation of the noise for the Euler-Maruyama scheme with irregular drift
VL - 25
ER -
TY - JOUR
AB - We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix W˜ and its minor W. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of W˜ and W. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.
AU - Cipolloni, Giorgio
AU - Erdös, László
ID - 6488
IS - 3
JF - Random Matrices: Theory and Application
SN - 20103263
TI - Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices
VL - 9
ER -
TY - JOUR
AB - This paper presents two algorithms. The first decides the existence of a pointed homotopy between given simplicial maps 𝑓,𝑔:𝑋→𝑌, and the second computes the group [𝛴𝑋,𝑌]∗ of pointed homotopy classes of maps from a suspension; in both cases, the target Y is assumed simply connected. More generally, these algorithms work relative to 𝐴⊆𝑋.
AU - Filakovský, Marek
AU - Vokřínek, Lukas
ID - 6563
JF - Foundations of Computational Mathematics
SN - 16153375
TI - Are two given maps homotopic? An algorithmic viewpoint
VL - 20
ER -
TY - JOUR
AB - We consider the monotone variational inequality problem in a Hilbert space and describe a projection-type method with inertial terms under the following properties: (a) The method generates a strongly convergent iteration sequence; (b) The method requires, at each iteration, only one projection onto the feasible set and two evaluations of the operator; (c) The method is designed for variational inequality for which the underline operator is monotone and uniformly continuous; (d) The method includes an inertial term. The latter is also shown to speed up the convergence in our numerical results. A comparison with some related methods is given and indicates that the new method is promising.
AU - Shehu, Yekini
AU - Li, Xiao-Huan
AU - Dong, Qiao-Li
ID - 6593
JF - Numerical Algorithms
SN - 1017-1398
TI - An efficient projection-type method for monotone variational inequalities in Hilbert spaces
VL - 84
ER -
TY - JOUR
AB - While Hartree–Fock theory is well established as a fundamental approximation for interacting fermions, it has been unclear how to describe corrections to it due to many-body correlations. In this paper we start from the Hartree–Fock state given by plane waves and introduce collective particle–hole pair excitations. These pairs can be approximately described by a bosonic quadratic Hamiltonian. We use Bogoliubov theory to construct a trial state yielding a rigorous Gell-Mann–Brueckner–type upper bound to the ground state energy. Our result justifies the random-phase approximation in the mean-field scaling regime, for repulsive, regular interaction potentials.
AU - Benedikter, Niels P
AU - Nam, Phan Thành
AU - Porta, Marcello
AU - Schlein, Benjamin
AU - Seiringer, Robert
ID - 6649
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Optimal upper bound for the correlation energy of a Fermi gas in the mean-field regime
VL - 374
ER -
TY - JOUR
AB - In resource allocation games, selfish players share resources that are needed in order to fulfill their objectives. The cost of using a resource depends on the load on it. In the traditional setting, the players make their choices concurrently and in one-shot. That is, a strategy for a player is a subset of the resources. We introduce and study dynamic resource allocation games. In this setting, the game proceeds in phases. In each phase each player chooses one resource. A scheduler dictates the order in which the players proceed in a phase, possibly scheduling several players to proceed concurrently. The game ends when each player has collected a set of resources that fulfills his objective. The cost for each player then depends on this set as well as on the load on the resources in it – we consider both congestion and cost-sharing games. We argue that the dynamic setting is the suitable setting for many applications in practice. We study the stability of dynamic resource allocation games, where the appropriate notion of stability is that of subgame perfect equilibrium, study the inefficiency incurred due to selfish behavior, and also study problems that are particular to the dynamic setting, like constraints on the order in which resources can be chosen or the problem of finding a scheduler that achieves stability.
AU - Avni, Guy
AU - Henzinger, Thomas A
AU - Kupferman, Orna
ID - 6761
JF - Theoretical Computer Science
SN - 03043975
TI - Dynamic resource allocation games
VL - 807
ER -
TY - JOUR
AB - Nearby grid cells have been observed to express a remarkable degree of long-rangeorder, which is often idealized as extending potentially to infinity. Yet their strict peri-odic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent grid maps inferred in the lab relevant to chart their way in their natural habitat? We consider spheres as simple models of curved environments and waiting for the appropriate experiments to be performed, we use our adaptation model to predict what grid maps would emerge in a network with the same type of recurrent connections, which on the plane produce coherence among the units. We find that on the sphere such connections distort the maps that single grid units would express on their own, and aggregate them into clusters. When remapping to a different spherical environment, units in each cluster maintain only partial coherence, similar to what is observed in disordered materials, such as spin glasses.
AU - Stella, Federico
AU - Urdapilleta, Eugenio
AU - Luo, Yifan
AU - Treves, Alessandro
ID - 6796
IS - 4
JF - Hippocampus
SN - 10509631
TI - Partial coherence and frustration in self-organizing spherical grids
VL - 30
ER -
TY - JOUR
AB - Super-resolution fluorescence microscopy has become an important catalyst for discovery in the life sciences. In STimulated Emission Depletion (STED) microscopy, a pattern of light drives fluorophores from a signal-emitting on-state to a non-signalling off-state. Only emitters residing in a sub-diffraction volume around an intensity minimum are allowed to fluoresce, rendering them distinguishable from the nearby, but dark fluorophores. STED routinely achieves resolution in the few tens of nanometers range in biological samples and is suitable for live imaging. Here, we review the working principle of STED and provide general guidelines for successful STED imaging. The strive for ever higher resolution comes at the cost of increased light burden. We discuss techniques to reduce light exposure and mitigate its detrimental effects on the specimen. These include specialized illumination strategies as well as protecting fluorophores from photobleaching mediated by high-intensity STED light. This opens up the prospect of volumetric imaging in living cells and tissues with diffraction-unlimited resolution in all three spatial dimensions.
AU - Jahr, Wiebke
AU - Velicky, Philipp
AU - Danzl, Johann G
ID - 6808
IS - 3
JF - Methods
SN - 1046-2023
TI - Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens
VL - 174
ER -
TY - JOUR
AB - We present a unified framework tackling two problems: class-specific 3D reconstruction from a single image, and generation of new 3D shape samples. These tasks have received considerable attention recently; however, most existing approaches rely on 3D supervision, annotation of 2D images with keypoints or poses, and/or training with multiple views of each object instance. Our framework is very general: it can be trained in similar settings to existing approaches, while also supporting weaker supervision. Importantly, it can be trained purely from 2D images, without pose annotations, and with only a single view per instance. We employ meshes as an output representation, instead of voxels used in most prior work. This allows us to reason over lighting parameters and exploit shading information during training, which previous 2D-supervised methods cannot. Thus, our method can learn to generate and reconstruct concave object classes. We evaluate our approach in various settings, showing that: (i) it learns to disentangle shape from pose and lighting; (ii) using shading in the loss improves performance compared to just silhouettes; (iii) when using a standard single white light, our model outperforms state-of-the-art 2D-supervised methods, both with and without pose supervision, thanks to exploiting shading cues; (iv) performance improves further when using multiple coloured lights, even approaching that of state-of-the-art 3D-supervised methods; (v) shapes produced by our model capture smooth surfaces and fine details better than voxel-based approaches; and (vi) our approach supports concave classes such as bathtubs and sofas, which methods based on silhouettes cannot learn.
AU - Henderson, Paul M
AU - Ferrari, Vittorio
ID - 6952
JF - International Journal of Computer Vision
SN - 0920-5691
TI - Learning single-image 3D reconstruction by generative modelling of shape, pose and shading
VL - 128
ER -
TY - JOUR
AB - The central object of investigation of this paper is the Hirzebruch class, a deformation of the Todd class, given by Hirzebruch (for smooth varieties). The generalization for singular varieties is due to Brasselet–Schürmann–Yokura. Following the work of Weber, we investigate its equivariant version for (possibly singular) toric varieties. The local decomposition of the Hirzebruch class to the fixed points of the torus action and a formula for the local class in terms of the defining fan are recalled. After this review part, we prove the positivity of local Hirzebruch classes for all toric varieties, thus proving false the alleged counterexample given by Weber.
AU - Rychlewicz, Kamil P
ID - 6965
JF - Bulletin of the London Mathematical Society
SN - 0024-6093
TI - The positivity of local equivariant Hirzebruch class for toric varieties
ER -
TY - JOUR
AU - Zhang, Yuzhou
AU - Friml, Jiří
ID - 6997
IS - 3
JF - New Phytologist
SN - 0028-646x
TI - Auxin guides roots to avoid obstacles during gravitropic growth
VL - 225
ER -
TY - JOUR
AB - We define an action of the (double of) Cohomological Hall algebra of Kontsevich and Soibelman on the cohomology of the moduli space of spiked instantons of Nekrasov. We identify this action with the one of the affine Yangian of gl(1). Based on that we derive the vertex algebra at the corner Wr1,r2,r3 of Gaiotto and Rapčák. We conjecture that our approach works for a big class of Calabi–Yau categories, including those associated with toric Calabi–Yau 3-folds.
AU - Rapcak, Miroslav
AU - Soibelman, Yan
AU - Yang, Yaping
AU - Zhao, Gufang
ID - 7004
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Cohomological Hall algebras, vertex algebras and instantons
VL - 376
ER -
TY - JOUR
AB - Removal of the Bax gene from mice completely protects the somas of retinal ganglion cells (RGCs) from apoptosis following optic nerve injury. This makes BAX a promising therapeutic target to prevent neurodegeneration. In this study, Bax+/− mice were used to test the hypothesis that lowering the quantity of BAX in RGCs would delay apoptosis following optic nerve injury. RGCs were damaged by performing optic nerve crush (ONC) and then immunostaining for phospho-cJUN, and quantitative PCR were used to monitor the status of the BAX activation mechanism in the months following injury. The apoptotic susceptibility of injured cells was directly tested by virally introducing GFP-BAX into Bax−/− RGCs after injury. The competency of quiescent RGCs to reactivate their BAX activation mechanism was tested by intravitreal injection of the JNK pathway agonist, anisomycin. Twenty-four weeks after ONC, Bax+/− mice had significantly less cell loss in their RGC layer than Bax+/+ mice 3 weeks after ONC. Bax+/− and Bax+/+ RGCs exhibited similar patterns of nuclear phospho-cJUN accumulation immediately after ONC, which persisted in Bax+/− RGCs for up to 7 weeks before abating. The transcriptional activation of BAX-activating genes was similar in Bax+/− and Bax+/+ RGCs following ONC. Intriguingly, cells deactivated their BAX activation mechanism between 7 and 12 weeks after crush. Introduction of GFP-BAX into Bax−/− cells at 4 weeks after ONC showed that these cells had a nearly normal capacity to activate this protein, but this capacity was lost 8 weeks after crush. Collectively, these data suggest that 8–12 weeks after crush, damaged cells no longer displayed increased susceptibility to BAX activation relative to their naïve counterparts. In this same timeframe, retinal glial activation and the signaling of the pro-apoptotic JNK pathway also abated. Quiescent RGCs did not show a timely reactivation of their JNK pathway following intravitreal injection with anisomycin. These findings demonstrate that lowering the quantity of BAX in RGCs is neuroprotective after acute injury. Damaged RGCs enter a quiescent state months after injury and are no longer responsive to an apoptotic stimulus. Quiescent RGCs will require rejuvenation to reacquire functionality.
AU - Donahue, RJ
AU - Maes, Margaret E
AU - Grosser, JA
AU - Nickells, RW
ID - 7033
IS - 2
JF - Molecular Neurobiology
SN - 0893-7648
TI - BAX-depleted retinal ganglion cells survive and become quiescent following optic nerve damage
VL - 57
ER -
TY - JOUR
AB - The unusual correlated state that emerges in URu2Si2 below THO = 17.5 K is known as “hidden order” because even basic characteristics of the order parameter, such as its dimensionality (whether it has one component or two), are “hidden.” We use resonant ultrasound spectroscopy to measure the symmetry-resolved elastic anomalies across THO. We observe no anomalies in the shear elastic moduli, providing strong thermodynamic evidence for a one-component order parameter. We develop a machine learning framework that reaches this conclusion directly from the raw data, even in a crystal that is too small for traditional resonant ultrasound. Our result rules out a broad class of theories of hidden order based on two-component order parameters, and constrains the nature of the fluctuations from which unconventional superconductivity emerges at lower temperature. Our machine learning framework is a powerful new tool for classifying the ubiquitous competing orders in correlated electron systems.
AU - Ghosh, Sayak
AU - Matty, Michael
AU - Baumbach, Ryan
AU - Bauer, Eric D.
AU - Modic, Kimberly A
AU - Shekhter, Arkady
AU - Mydosh, J. A.
AU - Kim, Eun-Ah
AU - Ramshaw, B. J.
ID - 7084
IS - 10
JF - Science Advances
TI - One-component order parameter in URu2Si2 uncovered by resonant ultrasound spectroscopy and machine learning
VL - 6
ER -
TY - JOUR
AB - We consider dynamical transport metrics for probability measures on discretisations of a bounded convex domain in ℝd. These metrics are natural discrete counterparts to the Kantorovich metric 𝕎2, defined using a Benamou-Brenier type formula. Under mild assumptions we prove an asymptotic upper bound for the discrete transport metric Wt in terms of 𝕎2, as the size of the mesh T tends to 0. However, we show that the corresponding lower bound may fail in general, even on certain one-dimensional and symmetric two-dimensional meshes. In addition, we show that the asymptotic lower bound holds under an isotropy assumption on the mesh, which turns out to be essentially necessary. This assumption is satisfied, e.g., for tilings by convex regular polygons, and it implies Gromov-Hausdorff convergence of the transport metric.
AU - Gladbach, Peter
AU - Kopfer, Eva
AU - Maas, Jan
ID - 71
IS - 3
JF - SIAM Journal on Mathematical Analysis
SN - 00361410
TI - Scaling limits of discrete optimal transport
VL - 52
ER -
TY - JOUR
AB - The phytohormone auxin acts as an amazingly versatile coordinator of plant growth and development. With its morphogen-like properties, auxin controls sites and timing of differentiation and/or growth responses both, in quantitative and qualitative terms. Specificity in the auxin response depends largely on distinct modes of signal transmission, by which individual cells perceive and convert auxin signals into a remarkable diversity of responses. The best understood, or so-called canonical mechanism of auxin perception ultimately results in variable adjustments of the cellular transcriptome, via a short, nuclear signal transduction pathway. Additional findings that accumulated over decades implied that an additional, presumably, cell surface-based auxin perception mechanism mediates very rapid cellular responses and decisively contributes to the cell's overall hormonal response. Recent investigations into both, nuclear and cell surface auxin signalling challenged this assumed partition of roles for different auxin signalling pathways and revealed an unexpected complexity in transcriptional and non-transcriptional cellular responses mediated by auxin.
AU - Gallei, Michelle C
AU - Luschnig, C
AU - Friml, Jiří
ID - 7142
IS - 2
JF - Current Opinion in Plant Biology
SN - 1369-5266
TI - Auxin signalling in growth: Schrödinger's cat out of the bag
VL - 53
ER -
TY - GEN
AB - A semiconducting nanowire core fully wrapped by a superconducting shell has been proposed as an alternative geometry for obtaining Majorana modes without the need of fine tuning the chemical potential or an external magnetic field. While this robustness seems to avoid interpretation ambiguities in terms of non-topological Andreev bound states, we here demonstrate that the appearance of subgap states is actually governed by the junction region in tunneling spectroscopy measurements, not the full-shell nanowire itself. Short tunneling regions never show subgap states, while longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. Their intricate magnetic-field dependence, both through the Zeeman and the Little-Parks effects, may result in robust zero-bias peaks, a feature that could be easily misinterpreted as originating from Majoranas, but is unrelated to topology.
AU - Valentini, Marco
AU - Peñaranda, Fernando
AU - Hofmann, Andrea C
AU - Brauns, Matthias
AU - Hauschild, Robert
AU - Krogstrup, Peter
AU - Pablo San-Jose, Pablo San-Jose
AU - Prada, Elsa
AU - Aguado, Ramón
AU - Katsaros, Georgios
ID - 8910
T2 - arXiv
TI - Non-topological zero bias peaks in full-shell nanowires induced by flux tunable Andreev states
ER -
TY - JOUR
AB - In the worldwide endeavor for disruptive quantum technologies, germanium is emerging as a versatile material to realize devices capable of encoding, processing, or transmitting quantum information. These devices leverage special properties of the germanium valence-band states, commonly known as holes, such as their inherently strong spin-orbit coupling and the ability to host superconducting pairing correlations. In this Review, we initially introduce the physics of holes in low-dimensional germanium structures with key insights from a theoretical perspective. We then examine the material science progress underpinning germanium-based planar heterostructures and nanowires. We review the most significant experimental results demonstrating key building blocks for quantum technology, such as an electrically driven universal quantum gate set with spin qubits in quantum dots and superconductor-semiconductor devices for hybrid quantum systems. We conclude by identifying the most promising prospects
toward scalable quantum information processing.
AU - Scappucci, Giordano
AU - Kloeffel, Christoph
AU - Zwanenburg, Floris A.
AU - Loss, Daniel
AU - Myronov, Maksym
AU - Zhang, Jian-Jun
AU - Franceschi, Silvano De
AU - Katsaros, Georgios
AU - Veldhorst, Menno
ID - 8911
JF - Nature Reviews Materials
TI - The germanium quantum information route
ER -
TY - JOUR
AB - Amyotrophic lateral sclerosis (ALS) leads to a loss of specific motor neuron populations in the spinal cord and cortex. Emerging evidence suggests that interneurons may also be affected, but a detailed characterization of interneuron loss and its potential impacts on motor neuron loss and disease progression is lacking. To examine this issue, the fate of V1 inhibitory neurons during ALS was assessed in the ventral spinal cord using the SODG93A mouse model. The V1 population makes up ∼30% of all ventral inhibitory neurons, ∼50% of direct inhibitory synaptic contacts onto motor neuron cell bodies, and is thought to play a key role in modulating motor output, in part through recurrent and reciprocal inhibitory circuits. We find that approximately half of V1 inhibitory neurons are lost in SODG93A mice at late disease stages, but that this loss is delayed relative to the loss of motor neurons and V2a excitatory neurons. We further identify V1 subpopulations based on transcription factor expression that are differentially susceptible to degeneration in SODG93A mice. At an early disease stage, we show that V1 synaptic contacts with motor neuron cell bodies increase, suggesting an upregulation of inhibition before V1 neurons are lost in substantial numbers. These data support a model in which progressive changes in V1 synaptic contacts early in disease, and in select V1 subpopulations at later stages, represent a compensatory upregulation and then deleterious breakdown of specific interneuron circuits within the spinal cord.
AU - Salamatina, Alina
AU - Yang, Jerry H
AU - Brenner-Morton, Susan
AU - Bikoff, Jay B
AU - Fang, Linjing
AU - Kintner, Christopher R
AU - Jessell, Thomas M
AU - Sweeney, Lora Beatrice Jaeger
ID - 8914
JF - Neuroscience
SN - 0306-4522
TI - Differential loss of spinal interneurons in a mouse model of ALS
VL - 450
ER -
TY - JOUR
AB - Maintaining fertility in a fluctuating environment is key to the reproductive success of flowering plants. Meiosis and pollen formation are particularly sensitive to changes in growing conditions, especially temperature. We have previously identified cyclin-dependent kinase G1 (CDKG1) as a master regulator of temperature-dependent meiosis and this may involve the regulation of alternative splicing (AS), including of its own transcript. CDKG1 mRNA can undergo several AS events, potentially producing two protein variants: CDKG1L and CDKG1S, differing in their N-terminal domain which may be involved in co-factor interaction. In leaves, both isoforms have distinct temperature-dependent functions on target mRNA processing, but their role in pollen development is unknown. In the present study, we characterize the role of CDKG1L and CDKG1S in maintaining Arabidopsis fertility. We show that the long (L) form is necessary and sufficient to rescue the fertility defects of the cdkg1-1 mutant, while the short (S) form is unable to rescue fertility. On the other hand, an extra copy of CDKG1L reduces fertility. In addition, mutation of the ATP binding pocket of the kinase indicates that kinase activity is necessary for the function of CDKG1. Kinase mutants of CDKG1L and CDKG1S correctly localize to the cell nucleus and nucleus and cytoplasm, respectively, but are unable to rescue either the fertility or the splicing defects of the cdkg1-1 mutant. Furthermore, we show that there is partial functional overlap between CDKG1 and its paralog CDKG2 that could in part be explained by overlapping gene expression.
AU - Nibau, Candida
AU - Dadarou, Despoina
AU - Kargios, Nestoras
AU - Mallioura, Areti
AU - Fernandez-Fuentes, Narcis
AU - Cavallari, Nicola
AU - Doonan, John H.
ID - 8924
JF - Frontiers in Plant Science
TI - A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis
VL - 11
ER -
TY - DATA
AB - Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial “growth laws,” which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems.
AU - Kavcic, Bor
ID - 8930
KW - Escherichia coli
KW - antibiotic combinations
KW - translation
KW - growth laws
KW - drug interactions
KW - bacterial physiology
KW - translation inhibitors
TI - Analysis scripts and research data for the paper "Minimal biophysical model of combined antibiotic action"
ER -
TY - JOUR
AB - We quantise Whitney’s construction to prove the existence of a triangulation for any C^2 manifold, so that we get an algorithm with explicit bounds. We also give a new elementary proof, which is completely geometric.
AU - Boissonnat, Jean-Daniel
AU - Kachanovich, Siargey
AU - Wintraecken, Mathijs
ID - 8940
JF - Discrete & Computational Geometry
KW - Theoretical Computer Science
KW - Computational Theory and Mathematics
KW - Geometry and Topology
KW - Discrete Mathematics and Combinatorics
SN - 0179-5376
TI - Triangulating submanifolds: An elementary and quantified version of Whitney’s method
ER -
TY - JOUR
AB - The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone salicylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-independent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuticals in plants and provide insights into the molecular mechanism underlying the cellular action of this class of anti-inflammatory compounds.
AU - Tan, Shutang
AU - Di Donato, Martin
AU - Glanc, Matous
AU - Zhang, Xixi
AU - Klíma, Petr
AU - Liu, Jie
AU - Bailly, Aurélien
AU - Ferro, Noel
AU - Petrášek, Jan
AU - Geisler, Markus
AU - Friml, Jiří
ID - 8943
IS - 9
JF - Cell Reports
TI - Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development
VL - 33
ER -
TY - JOUR
AB - Superconductor insulator transition in transverse magnetic field is studied in the highly disordered MoC film with the product of the Fermi momentum and the mean free path kF*l close to unity. Surprisingly, the Zeeman paramagnetic effects dominate over orbital coupling on both sides of the transition. In superconducting state it is evidenced by a high upper critical magnetic field 𝐵𝑐2, by its square root dependence on temperature, as well as by the Zeeman splitting of the quasiparticle density of states (DOS) measured by scanning tunneling microscopy. At 𝐵𝑐2 a logarithmic anomaly in DOS is observed. This anomaly is further enhanced in increasing magnetic field, which is explained by the Zeeman splitting of the Altshuler-Aronov DOS driving
the system into a more insulating or resistive state. Spin dependent Altshuler-Aronov correction is also needed to explain the transport behavior above 𝐵𝑐2.
AU - Zemlicka, Martin
AU - Kopčík, M.
AU - Szabó, P.
AU - Samuely, T.
AU - Kačmarčík, J.
AU - Neilinger, P.
AU - Grajcar, M.
AU - Samuely, P.
ID - 8944
IS - 18
JF - Physical Review B
SN - 24699950
TI - Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field
VL - 102
ER -
TY - JOUR
AB - Development of the nervous system undergoes important transitions, including one from neurogenesis to gliogenesis which occurs late during embryonic gestation. Here we report on clonal analysis of gliogenesis in mice using Mosaic Analysis with Double Markers (MADM) with quantitative and computational methods. Results reveal that developmental gliogenesis in the cerebral cortex occurs in a fraction of earlier neurogenic clones, accelerating around E16.5, and giving rise to both astrocytes and oligodendrocytes. Moreover, MADM-based genetic deletion of the epidermal growth factor receptor (Egfr) in gliogenic clones revealed that Egfr is cell autonomously required for gliogenesis in the mouse dorsolateral cortices. A broad range in the proliferation capacity, symmetry of clones, and competitive advantage of MADM cells was evident in clones that contained one cellular lineage with double dosage of Egfr relative to their environment, while their sibling Egfr-null cells failed to generate glia. Remarkably, the total numbers of glia in MADM clones balance out regardless of significant alterations in clonal symmetries. The variability in glial clones shows stochastic patterns that we define mathematically, which are different from the deterministic patterns in neuronal clones. This study sets a foundation for studying the biological significance of stochastic and deterministic clonal principles underlying tissue development, and identifying mechanisms that differentiate between neurogenesis and gliogenesis.
AU - Zhang, Xuying
AU - Mennicke, Christine V.
AU - Xiao, Guanxi
AU - Beattie, Robert J
AU - Haider, Mansoor
AU - Hippenmeyer, Simon
AU - Ghashghaei, H. Troy
ID - 8949
IS - 12
JF - Cells
SN - 2073-4409
TI - Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage
VL - 9
ER -
TY - JOUR
AB - Skeletal muscle activity is continuously modulated across physiologic states to provide coordination, flexibility and responsiveness to body tasks and external inputs. Despite the central role the muscular system plays in facilitating vital body functions, the network of brain-muscle interactions required to control hundreds of muscles and synchronize their activation in relation to distinct physiologic states has not been investigated. Recent approaches have focused on general associations between individual brain rhythms and muscle activation during movement tasks. However, the specific forms of coupling, the functional network of cortico-muscular coordination, and how network structure and dynamics are modulated by autonomic regulation across physiologic states remains unknown. To identify and quantify the cortico-muscular interaction network and uncover basic features of neuro-autonomic control of muscle function, we investigate the coupling between synchronous bursts in cortical rhythms and peripheral muscle activation during sleep and wake. Utilizing the concept of time delay stability and a novel network physiology approach, we find that the brain-muscle network exhibits complex dynamic patterns of communication involving multiple brain rhythms across cortical locations and different electromyographic frequency bands. Moreover, our results show that during each physiologic state the cortico-muscular network is characterized by a specific profile of network links strength, where particular brain rhythms play role of main mediators of interaction and control. Further, we discover a hierarchical reorganization in network structure across physiologic states, with high connectivity and network link strength during wake, intermediate during REM and light sleep, and low during deep sleep, a sleep-stage stratification that demonstrates a unique association between physiologic states and cortico-muscular network structure. The reported empirical observations are consistent across individual subjects, indicating universal behavior in network structure and dynamics, and high sensitivity of cortico-muscular control to changes in autonomic regulation, even at low levels of physical activity and muscle tone during sleep. Our findings demonstrate previously unrecognized basic principles of brain-muscle network communication and control, and provide new perspectives on the regulatory mechanisms of brain dynamics and locomotor activation, with potential clinical implications for neurodegenerative, movement and sleep disorders, and for developing efficient treatment strategies.
AU - Rizzo, Rossella
AU - Zhang, Xiyun
AU - Wang, Jilin W.J.L.
AU - Lombardi, Fabrizio
AU - Ivanov, Plamen Ch
ID - 8955
JF - Frontiers in Physiology
TI - Network physiology of cortico–muscular interactions
VL - 11
ER -
TY - THES
AB - The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment.
In this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath.
With this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states.
For the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.
AU - Li, Xiang
ID - 8958
SN - 2663-337X
TI - Rotation of coupled cold molecules in the presence of a many-body environment
ER -
TY - JOUR
AB - During development, a single cell is transformed into a highly complex organism through progressive cell division, specification and rearrangement. An important prerequisite for the emergence of patterns within the developing organism is to establish asymmetries at various scales, ranging from individual cells to the entire embryo, eventually giving rise to the different body structures. This becomes especially apparent during gastrulation, when the earliest major lineage restriction events lead to the formation of the different germ layers. Traditionally, the unfolding of the developmental program from symmetry breaking to germ layer formation has been studied by dissecting the contributions of different signaling pathways and cellular rearrangements in the in vivo context of intact embryos. Recent efforts, using the intrinsic capacity of embryonic stem cells to self-assemble and generate embryo-like structures de novo, have opened new avenues for understanding the many ways by which an embryo can be built and the influence of extrinsic factors therein. Here, we discuss and compare divergent and conserved strategies leading to germ layer formation in embryos as compared to in vitro systems, their upstream molecular cascades and the role of extrinsic factors in this process.
AU - Schauer, Alexandra
AU - Heisenberg, Carl-Philipp J
ID - 8966
JF - Developmental Biology
KW - Developmental Biology
KW - Cell Biology
KW - Molecular Biology
SN - 0012-1606
TI - Reassembling gastrulation
ER -
TY - JOUR
AB - The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation.
AU - Fäßler, Florian
AU - Dimchev, Georgi A
AU - Hodirnau, Victor-Valentin
AU - Wan, William
AU - Schur, Florian KM
ID - 8971
JF - Nature Communications
KW - General Biochemistry
KW - Genetics and Molecular Biology
KW - General Physics and Astronomy
KW - General Chemistry
SN - 2041-1723
TI - Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction
VL - 11
ER -
TY - JOUR
AB - We consider the symmetric simple exclusion process in Zd with quenched bounded dynamic random conductances and prove its hydrodynamic limit in path space. The main tool is the connection, due to the self-duality of the process, between the invariance principle for single particles starting from all points and the macroscopic behavior of the density field. While the hydrodynamic limit at fixed macroscopic times is obtained via a generalization to the time-inhomogeneous context of the strategy introduced in [41], in order to prove tightness for the sequence of empirical density fields we develop a new criterion based on the notion of uniform conditional stochastic continuity, following [50]. In conclusion, we show that uniform elliptic dynamic conductances provide an example of environments in which the so-called arbitrary starting point invariance principle may be derived from the invariance principle of a single particle starting from the origin. Therefore, our hydrodynamics result applies to the examples of quenched environments considered in, e.g., [1], [3], [6] in combination with the hypothesis of uniform ellipticity.
AU - Redig, Frank
AU - Saada, Ellen
AU - Sau, Federico
ID - 8973
JF - Electronic Journal of Probability
TI - Symmetric simple exclusion process in dynamic environment: Hydrodynamics
VL - 25
ER -
TY - JOUR
AB - Mosaic analysis with double markers (MADM) technology enables concomitant fluorescent cell labeling and induction of uniparental chromosome disomy (UPD) with single-cell resolution. In UPD, imprinted genes are either overexpressed 2-fold or are not expressed. Here, the MADM platform is utilized to probe imprinting phenotypes at the transcriptional level. This protocol highlights major steps for the generation and isolation of projection neurons and astrocytes with MADM-induced UPD from mouse cerebral cortex for downstream single-cell and low-input sample RNA-sequencing experiments.
For complete details on the use and execution of this protocol, please refer to Laukoter et al. (2020b).
AU - Laukoter, Susanne
AU - Amberg, Nicole
AU - Pauler, Florian
AU - Hippenmeyer, Simon
ID - 8978
IS - 3
JF - STAR Protocols
SN - 2666-1667
TI - Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy
VL - 1
ER -
TY - JOUR
AB - Flowering plants display the highest diversity among plant species and have notably shaped terrestrial landscapes. Nonetheless, the evolutionary origin of their unprecedented morphological complexity remains largely an enigma. Here, we show that the coevolution of cis-regulatory and coding regions of PIN-FORMED (PIN) auxin transporters confined their expression to certain cell types and directed their subcellular localization to particular cell sides, which together enabled dynamic auxin gradients across tissues critical to the complex architecture of flowering plants. Extensive intraspecies and interspecies genetic complementation experiments with PINs from green alga up to flowering plant lineages showed that PIN genes underwent three subsequent, critical evolutionary innovations and thus acquired a triple function to regulate the development of three essential components of the flowering plant Arabidopsis: shoot/root, inflorescence, and floral organ. Our work highlights the critical role of functional innovations within the PIN gene family as essential prerequisites for the origin of flowering plants.
AU - Zhang, Yuzhou
AU - Rodriguez Solovey, Lesia
AU - Li, Lanxin
AU - Zhang, Xixi
AU - Friml, Jiří
ID - 8986
IS - 50
JF - Science Advances
TI - Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants
VL - 6
ER -
TY - CONF
AB - Currently several projects aim at designing and implementing protocols for privacy preserving automated contact tracing to help fight the current pandemic. Those proposal are quite similar, and in their most basic form basically propose an app for mobile phones which broadcasts frequently changing pseudorandom identifiers via (low energy) Bluetooth, and at the same time, the app stores IDs broadcast by phones in its proximity. Only if a user is tested positive, they upload either the beacons they did broadcast (which is the case in decentralized proposals as DP-3T, east and west coast PACT or Covid watch) or received (as in Popp-PT or ROBERT) during the last two weeks or so.
Vaudenay [eprint 2020/399] observes that this basic scheme (he considers the DP-3T proposal) succumbs to relay and even replay attacks, and proposes more complex interactive schemes which prevent those attacks without giving up too many privacy aspects. Unfortunately interaction is problematic for this application for efficiency and security reasons. The countermeasures that have been suggested so far are either not practical or give up on key privacy aspects. We propose a simple non-interactive variant of the basic protocol that
(security) Provably prevents replay and (if location data is available) relay attacks.
(privacy) The data of all parties (even jointly) reveals no information on the location or time where encounters happened.
(efficiency) The broadcasted message can fit into 128 bits and uses only basic crypto (commitments and secret key authentication).
Towards this end we introduce the concept of “delayed authentication”, which basically is a message authentication code where verification can be done in two steps, where the first doesn’t require the key, and the second doesn’t require the message.
AU - Pietrzak, Krzysztof Z
ID - 8987
SN - 03029743
T2 - Progress in Cryptology
TI - Delayed authentication: Preventing replay and relay attacks in private contact tracing
VL - 12578
ER -
TY - JOUR
AB - In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene-expression levels that is compatible with in vivo and in vitro biophysical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In nonequilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal nonequilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity, and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate,” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in nonequilibrium models is in a trade-off with gene-expression noise, predicting bursty dynamics—an experimentally observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space of nonequilibrium enhancer models to a much smaller subspace that optimally realizes biological function, we deliver a rich class of models that could be tractably inferred from data in the near future.
AU - Grah, Rok
AU - Zoller, Benjamin
AU - Tkačik, Gašper
ID - 9000
IS - 50
JF - PNAS
SN - 00278424
TI - Nonequilibrium models of optimal enhancer function
VL - 117
ER -
TY - JOUR
AB - Motivated by a recent question of Peyre, we apply the Hardy–Littlewood circle method to count “sufficiently free” rational points of bounded height on arbitrary smooth projective hypersurfaces of low degree that are defined over the rationals.
AU - Browning, Timothy D
AU - Sawin, Will
ID - 9007
IS - 4
JF - Commentarii Mathematici Helvetici
SN - 00102571
TI - Free rational points on smooth hypersurfaces
VL - 95
ER -
TY - JOUR
AB - We give a short and self-contained proof for rates of convergence of the Allen--Cahn equation towards mean curvature flow, assuming that a classical (smooth) solution to the latter exists and starting from well-prepared initial data. Our approach is based on a relative entropy technique. In particular, it does not require a stability analysis for the linearized Allen--Cahn operator. As our analysis also does not rely on the comparison principle, we expect it to be applicable to more complex equations and systems.
AU - Fischer, Julian L
AU - Laux, Tim
AU - Simon, Theresa M.
ID - 9039
IS - 6
JF - SIAM Journal on Mathematical Analysis
SN - 00361410
TI - Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies
VL - 52
ER -
TY - CONF
AB - Machine learning and formal methods have complimentary benefits and drawbacks. In this work, we address the controller-design problem with a combination of techniques from both fields. The use of black-box neural networks in deep reinforcement learning (deep RL) poses a challenge for such a combination. Instead of reasoning formally about the output of deep RL, which we call the wizard, we extract from it a decision-tree based model, which we refer to as the magic book. Using the extracted model as an intermediary, we are able to handle problems that are infeasible for either deep RL or formal methods by themselves. First, we suggest, for the first time, a synthesis procedure that is based on a magic book. We synthesize a stand-alone correct-by-design controller that enjoys the favorable performance of RL. Second, we incorporate a magic book in a bounded model checking (BMC) procedure. BMC allows us to find numerous traces of the plant under the control of the wizard, which a user can use to increase the trustworthiness of the wizard and direct further training.
AU - Alamdari, Par Alizadeh
AU - Avni, Guy
AU - Henzinger, Thomas A
AU - Lukina, Anna
ID - 9040
SN - 9783854480426
T2 - Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design
TI - Formal methods with a touch of magic
ER -
TY - CONF
AB - We introduce LRT-NG, a set of techniques and an associated toolset that computes a reachtube (an over-approximation of the set of reachable states over a given time horizon) of a nonlinear dynamical system. LRT-NG significantly advances the state-of-the-art Langrangian Reachability and its associated tool LRT. From a theoretical perspective, LRT-NG is superior to LRT in three ways. First, it uses for the first time an analytically computed metric for the propagated ball which is proven to minimize the ball’s volume. We emphasize that the metric computation is the centerpiece of all bloating-based techniques. Secondly, it computes the next reachset as the intersection of two balls: one based on the Cartesian metric and the other on the new metric. While the two metrics were previously considered opposing approaches, their joint use considerably tightens the reachtubes. Thirdly, it avoids the "wrapping effect" associated with the validated integration of the center of the reachset, by optimally absorbing the interval approximation in the radius of the next ball. From a tool-development perspective, LRT-NG is superior to LRT in two ways. First, it is a standalone tool that no longer relies on CAPD. This required the implementation of the Lohner method and a Runge-Kutta time-propagation method. Secondly, it has an improved interface, allowing the input model and initial conditions to be provided as external input files. Our experiments on a comprehensive set of benchmarks, including two Neural ODEs, demonstrates LRT-NG’s superior performance compared to LRT, CAPD, and Flow*.
AU - Gruenbacher, Sophie
AU - Cyranka, Jacek
AU - Lechner, Mathias
AU - Islam, Md Ariful
AU - Smolka, Scott A.
AU - Grosu, Radu
ID - 9103
SN - 07431546
T2 - Proceedings of the 59th IEEE Conference on Decision and Control
TI - Lagrangian reachtubes: The next generation
VL - 2020
ER -
TY - JOUR
AB - We consider the free additive convolution of two probability measures μ and ν on the real line and show that μ ⊞ v is supported on a single interval if μ and ν each has single interval support. Moreover, the density of μ ⊞ ν is proven to vanish as a square root near the edges of its support if both μ and ν have power law behavior with exponents between −1 and 1 near their edges. In particular, these results show the ubiquity of the conditions in our recent work on optimal local law at the spectral edges for addition of random matrices [5].
AU - Bao, Zhigang
AU - Erdös, László
AU - Schnelli, Kevin
ID - 9104
JF - Journal d'Analyse Mathematique
SN - 00217670
TI - On the support of the free additive convolution
VL - 142
ER -
TY - JOUR
AB - We study the probabilistic convergence between the mapper graph and the Reeb graph of a topological space X equipped with a continuous function f:X→R. We first give a categorification of the mapper graph and the Reeb graph by interpreting them in terms of cosheaves and stratified covers of the real line R. We then introduce a variant of the classic mapper graph of Singh et al. (in: Eurographics symposium on point-based graphics, 2007), referred to as the enhanced mapper graph, and demonstrate that such a construction approximates the Reeb graph of (X,f) when it is applied to points randomly sampled from a probability density function concentrated on (X,f). Our techniques are based on the interleaving distance of constructible cosheaves and topological estimation via kernel density estimates. Following Munch and Wang (In: 32nd international symposium on computational geometry, volume 51 of Leibniz international proceedings in informatics (LIPIcs), Dagstuhl, Germany, pp 53:1–53:16, 2016), we first show that the mapper graph of (X,f), a constructible R-space (with a fixed open cover), approximates the Reeb graph of the same space. We then construct an isomorphism between the mapper of (X,f) to the mapper of a super-level set of a probability density function concentrated on (X,f). Finally, building on the approach of Bobrowski et al. (Bernoulli 23(1):288–328, 2017b), we show that, with high probability, we can recover the mapper of the super-level set given a sufficiently large sample. Our work is the first to consider the mapper construction using the theory of cosheaves in a probabilistic setting. It is part of an ongoing effort to combine sheaf theory, probability, and statistics, to support topological data analysis with random data.
AU - Brown, Adam
AU - Bobrowski, Omer
AU - Munch, Elizabeth
AU - Wang, Bei
ID - 9111
JF - Journal of Applied and Computational Topology
SN - 2367-1726
TI - Probabilistic convergence and stability of random mapper graphs
ER -
TY - JOUR
AB - Microwave photonics lends the advantages of fiber optics to electronic sensing and communication systems. In contrast to nonlinear optics, electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a microwave mode occupancy as low as 0.025 ± 0.005 and an added output noise of less than or equal to 0.074 photons. This is facilitated by radiative cooling and a triply resonant ultra-low-loss transducer operating at millikelvin temperatures. The high bandwidth of 10.7 MHz and total (internal) photon conversion
efficiency of 0.03% (0.67%) combined with the extremely slow heating rate of 1.1 added output noise photons per second for the highest available pump power of 1.48 mW puts near-unity efficiency pulsed quantum transduction within reach. Together with the non-Gaussian resources of superconducting qubits this might provide the practical foundation to extend the range and scope of current quantum networks in analogy to electrical repeaters in classical fiber optic communication.
AU - Hease, William J
AU - Rueda Sanchez, Alfredo R
AU - Sahu, Rishabh
AU - Wulf, Matthias
AU - Arnold, Georg M
AU - Schwefel, Harald G.L.
AU - Fink, Johannes M
ID - 9114
IS - 2
JF - PRX Quantum
SN - 2691-3399
TI - Bidirectional electro-optic wavelength conversion in the quantum ground state
VL - 1
ER -
TY - JOUR
AB - Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
AU - Semeradova, Hana
AU - Montesinos López, Juan C
AU - Benková, Eva
ID - 9160
IS - 3
JF - Plant Communications
SN - 2590-3462
TI - All roads lead to auxin: Post-translational regulation of auxin transport by multiple hormonal pathways
VL - 1
ER -
TY - JOUR
AB - The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.
AU - Akopyan, Arseniy
AU - Edelsbrunner, Herbert
ID - 9156
IS - 1
JF - Computational and Mathematical Biophysics
SN - 2544-7297
TI - The weighted Gaussian curvature derivative of a space-filling diagram
VL - 8
ER -
TY - JOUR
AB - Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy.
AU - Akopyan, Arseniy
AU - Edelsbrunner, Herbert
ID - 9157
IS - 1
JF - Computational and Mathematical Biophysics
SN - 2544-7297
TI - The weighted mean curvature derivative of a space-filling diagram
VL - 8
ER -
TY - CONF
AB - Efficiently handling time-triggered and possibly nondeterministic switches
for hybrid systems reachability is a challenging task. In this paper we present
an approach based on conservative set-based enclosure of the dynamics that can
handle systems with uncertain parameters and inputs, where the uncertainties
are bound to given intervals. The method is evaluated on the plant model of an
experimental electro-mechanical braking system with periodic controller. In
this model, the fast-switching controller dynamics requires simulation time
scales of the order of nanoseconds. Accurate set-based computations for
relatively large time horizons are known to be expensive. However, by
appropriately decoupling the time variable with respect to the spatial
variables, and enclosing the uncertain parameters using interval matrix maps
acting on zonotopes, we show that the computation time can be lowered to 5000
times faster with respect to previous works. This is a step forward in formal
verification of hybrid systems because reduced run-times allow engineers to
introduce more expressiveness in their models with a relatively inexpensive
computational cost.
AU - Forets, Marcelo
AU - Freire, Daniel
AU - Schilling, Christian
ID - 8750
SN - 9781728191485
T2 - 18th ACM-IEEE International Conference on Formal Methods and Models for System Design
TI - Efficient reachability analysis of parametric linear hybrid systems with time-triggered transitions
ER -