@article{1215, abstract = {Two generalizations of Itô formula to infinite-dimensional spaces are given. The first one, in Hilbert spaces, extends the classical one by taking advantage of cancellations when they occur in examples and it is applied to the case of a group generator. The second one, based on the previous one and a limit procedure, is an Itô formula in a special class of Banach spaces having a product structure with the noise in a Hilbert component; again the key point is the extension due to a cancellation. This extension to Banach spaces and in particular the specific cancellation are motivated by path-dependent Itô calculus.}, author = {Flandoli, Franco and Russo, Francesco and Zanco, Giovanni A}, journal = {Journal of Theoretical Probability}, number = {2}, pages = {789--826}, publisher = {Springer}, title = {{Infinite-dimensional calculus under weak spatial regularity of the processes}}, doi = {10.1007/s10959-016-0724-2}, volume = {31}, year = {2018}, } @inproceedings{185, abstract = {We resolve in the affirmative conjectures of A. Skopenkov and Repovš (1998), and M. Skopenkov (2003) generalizing the classical Hanani-Tutte theorem to the setting of approximating maps of graphs on 2-dimensional surfaces by embeddings. Our proof of this result is constructive and almost immediately implies an efficient algorithm for testing whether a given piecewise linear map of a graph in a surface is approximable by an embedding. More precisely, an instance of this problem consists of (i) a graph G whose vertices are partitioned into clusters and whose inter-cluster edges are partitioned into bundles, and (ii) a region R of a 2-dimensional compact surface M given as the union of a set of pairwise disjoint discs corresponding to the clusters and a set of pairwise disjoint "pipes" corresponding to the bundles, connecting certain pairs of these discs. We are to decide whether G can be embedded inside M so that the vertices in every cluster are drawn in the corresponding disc, the edges in every bundle pass only through its corresponding pipe, and every edge crosses the boundary of each disc at most once.}, author = {Fulek, Radoslav and Kynčl, Jan}, isbn = {978-3-95977-066-8}, location = {Budapest, Hungary}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Hanani-Tutte for approximating maps of graphs}}, doi = {10.4230/LIPIcs.SoCG.2018.39}, volume = {99}, year = {2018}, } @inproceedings{188, abstract = {Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex.}, author = {Edelsbrunner, Herbert and Virk, Ziga and Wagner, Hubert}, location = {Budapest, Hungary}, pages = {35:1 -- 35:13}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Smallest enclosing spheres and Chernoff points in Bregman geometry}}, doi = {10.4230/LIPIcs.SoCG.2018.35}, volume = {99}, year = {2018}, } @article{306, abstract = {A cornerstone of statistical inference, the maximum entropy framework is being increasingly applied to construct descriptive and predictive models of biological systems, especially complex biological networks, from large experimental data sets. Both its broad applicability and the success it obtained in different contexts hinge upon its conceptual simplicity and mathematical soundness. Here we try to concisely review the basic elements of the maximum entropy principle, starting from the notion of ‘entropy’, and describe its usefulness for the analysis of biological systems. As examples, we focus specifically on the problem of reconstructing gene interaction networks from expression data and on recent work attempting to expand our system-level understanding of bacterial metabolism. Finally, we highlight some extensions and potential limitations of the maximum entropy approach, and point to more recent developments that are likely to play a key role in the upcoming challenges of extracting structures and information from increasingly rich, high-throughput biological data.}, author = {De Martino, Andrea and De Martino, Daniele}, journal = {Heliyon}, number = {4}, publisher = {Elsevier}, title = {{An introduction to the maximum entropy approach and its application to inference problems in biology}}, doi = {10.1016/j.heliyon.2018.e00596}, volume = {4}, year = {2018}, } @inbook{37, abstract = {Developmental processes are inherently dynamic and understanding them requires quantitative measurements of gene and protein expression levels in space and time. While live imaging is a powerful approach for obtaining such data, it is still a challenge to apply it over long periods of time to large tissues, such as the embryonic spinal cord in mouse and chick. Nevertheless, dynamics of gene expression and signaling activity patterns in this organ can be studied by collecting tissue sections at different developmental stages. In combination with immunohistochemistry, this allows for measuring the levels of multiple developmental regulators in a quantitative manner with high spatiotemporal resolution. The mean protein expression levels over time, as well as embryo-to-embryo variability can be analyzed. A key aspect of the approach is the ability to compare protein levels across different samples. This requires a number of considerations in sample preparation, imaging and data analysis. Here we present a protocol for obtaining time course data of dorsoventral expression patterns from mouse and chick neural tube in the first 3 days of neural tube development. The described workflow starts from embryo dissection and ends with a processed dataset. Software scripts for data analysis are included. The protocol is adaptable and instructions that allow the user to modify different steps are provided. Thus, the procedure can be altered for analysis of time-lapse images and applied to systems other than the neural tube.}, author = {Zagórski, Marcin P and Kicheva, Anna}, booktitle = {Morphogen Gradients }, isbn = {978-1-4939-8771-9}, issn = {1064-3745}, pages = {47 -- 63}, publisher = {Springer Nature}, title = {{Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube}}, doi = {10.1007/978-1-4939-8772-6_4}, volume = {1863}, year = {2018}, } @inproceedings{325, abstract = {Probabilistic programs extend classical imperative programs with real-valued random variables and random branching. The most basic liveness property for such programs is the termination property. The qualitative (aka almost-sure) termination problem asks whether a given program program terminates with probability 1. While ranking functions provide a sound and complete method for non-probabilistic programs, the extension of them to probabilistic programs is achieved via ranking supermartingales (RSMs). Although deep theoretical results have been established about RSMs, their application to probabilistic programs with nondeterminism has been limited only to programs of restricted control-flow structure. For non-probabilistic programs, lexicographic ranking functions provide a compositional and practical approach for termination analysis of real-world programs. In this work we introduce lexicographic RSMs and show that they present a sound method for almost-sure termination of probabilistic programs with nondeterminism. We show that lexicographic RSMs provide a tool for compositional reasoning about almost-sure termination, and for probabilistic programs with linear arithmetic they can be synthesized efficiently (in polynomial time). We also show that with additional restrictions even asymptotic bounds on expected termination time can be obtained through lexicographic RSMs. Finally, we present experimental results on benchmarks adapted from previous work to demonstrate the effectiveness of our approach.}, author = {Agrawal, Sheshansh and Chatterjee, Krishnendu and Novotny, Petr}, location = {Los Angeles, CA, USA}, number = {POPL}, publisher = {ACM}, title = {{Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs}}, doi = {10.1145/3158122}, volume = {2}, year = {2018}, } @article{53, abstract = {In 2013, a publication repository was implemented at IST Austria and 2015 after a thorough preparation phase a data repository was implemented - both based on the Open Source Software EPrints. In this text, designed as field report, we will reflect on our experiences with Open Source Software in general and specifically with EPrints regarding technical aspects but also regarding their characteristics of the user community. The second part is a pleading for including the end users in the process of implementation, adaption and evaluation.}, author = {Petritsch, Barbara and Porsche, Jana}, journal = {VÖB Mitteilungen}, number = {1}, pages = {199 -- 206}, publisher = {Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare}, title = {{IST PubRep and IST DataRep: the institutional repositories at IST Austria}}, doi = {10.31263/voebm.v71i1.1993}, volume = {71}, year = {2018}, } @article{536, abstract = {We consider the problem of consensus in the challenging classic model. In this model, the adversary is adaptive; it can choose which processors crash at any point during the course of the algorithm. Further, communication is via asynchronous message passing: there is no known upper bound on the time to send a message from one processor to another, and all messages and coin flips are seen by the adversary. We describe a new randomized consensus protocol with expected message complexity O(n2log2n) when fewer than n / 2 processes may fail by crashing. This is an almost-linear improvement over the best previously known protocol, and within logarithmic factors of a known Ω(n2) message lower bound. The protocol further ensures that no process sends more than O(nlog3n) messages in expectation, which is again within logarithmic factors of optimal. We also present a generalization of the algorithm to an arbitrary number of failures t, which uses expected O(nt+t2log2t) total messages. Our approach is to build a message-efficient, resilient mechanism for aggregating individual processor votes, implementing the message-passing equivalent of a weak shared coin. Roughly, in our protocol, a processor first announces its votes to small groups, then propagates them to increasingly larger groups as it generates more and more votes. To bound the number of messages that an individual process might have to send or receive, the protocol progressively increases the weight of generated votes. The main technical challenge is bounding the impact of votes that are still “in flight” (generated, but not fully propagated) on the final outcome of the shared coin, especially since such votes might have different weights. We achieve this by leveraging the structure of the algorithm, and a technical argument based on martingale concentration bounds. Overall, we show that it is possible to build an efficient message-passing implementation of a shared coin, and in the process (almost-optimally) solve the classic consensus problem in the asynchronous message-passing model.}, author = {Alistarh, Dan-Adrian and Aspnes, James and King, Valerie and Saia, Jared}, issn = {01782770}, journal = {Distributed Computing}, number = {6}, pages = {489--501}, publisher = {Springer}, title = {{Communication-efficient randomized consensus}}, doi = {10.1007/s00446-017-0315-1}, volume = {31}, year = {2018}, } @article{554, abstract = {We analyse the canonical Bogoliubov free energy functional in three dimensions at low temperatures in the dilute limit. We prove existence of a first-order phase transition and, in the limit (Formula presented.), we determine the critical temperature to be (Formula presented.) to leading order. Here, (Formula presented.) is the critical temperature of the free Bose gas, ρ is the density of the gas and a is the scattering length of the pair-interaction potential V. We also prove asymptotic expansions for the free energy. In particular, we recover the Lee–Huang–Yang formula in the limit (Formula presented.).}, author = {Napiórkowski, Marcin M and Reuvers, Robin and Solovej, Jan}, issn = {00103616}, journal = {Communications in Mathematical Physics}, number = {1}, pages = {347--403}, publisher = {Springer}, title = {{The Bogoliubov free energy functional II: The dilute Limit}}, doi = {10.1007/s00220-017-3064-x}, volume = {360}, year = {2018}, } @inbook{562, abstract = {Primary neuronal cell culture preparations are widely used to investigate synaptic functions. This chapter describes a detailed protocol for the preparation of a neuronal cell culture in which giant calyx-type synaptic terminals are formed. This chapter also presents detailed protocols for utilizing the main technical advantages provided by such a preparation, namely, labeling and imaging of synaptic organelles and electrophysiological recordings directly from presynaptic terminals.}, author = {Dimitrov, Dimitar and Guillaud, Laurent and Eguchi, Kohgaku and Takahashi, Tomoyuki}, booktitle = {Neurotrophic Factors}, editor = {Skaper, Stephen D.}, pages = {201 -- 215}, publisher = {Springer}, title = {{Culture of mouse giant central nervous system synapses and application for imaging and electrophysiological analyses}}, doi = {10.1007/978-1-4939-7571-6_15}, volume = {1727}, year = {2018}, } @article{6354, abstract = {Blood platelets are critical for hemostasis and thrombosis, but also play diverse roles during immune responses. We have recently reported that platelets migrate at sites of infection in vitro and in vivo. Importantly, platelets use their ability to migrate to collect and bundle fibrin (ogen)-bound bacteria accomplishing efficient intravascular bacterial trapping. Here, we describe a method that allows analyzing platelet migration in vitro, focusing on their ability to collect bacteria and trap bacteria under flow.}, author = {Fan, Shuxia and Lorenz, Michael and Massberg, Steffen and Gärtner, Florian R}, issn = {2331-8325}, journal = {Bio-Protocol}, keywords = {Platelets, Cell migration, Bacteria, Shear flow, Fibrinogen, E. coli}, number = {18}, publisher = {Bio-Protocol}, title = {{Platelet migration and bacterial trapping assay under flow}}, doi = {10.21769/bioprotoc.3018}, volume = {8}, year = {2018}, } @misc{6459, author = {Petritsch, Barbara}, keywords = {Open Access, Publication Analysis}, location = {Graz, Austria}, publisher = {IST Austria}, title = {{Open Access at IST Austria 2009-2017}}, doi = {10.5281/zenodo.1410279}, year = {2018}, } @article{690, abstract = {We consider spectral properties and the edge universality of sparse random matrices, the class of random matrices that includes the adjacency matrices of the Erdős–Rényi graph model G(N, p). We prove a local law for the eigenvalue density up to the spectral edges. Under a suitable condition on the sparsity, we also prove that the rescaled extremal eigenvalues exhibit GOE Tracy–Widom fluctuations if a deterministic shift of the spectral edge due to the sparsity is included. For the adjacency matrix of the Erdős–Rényi graph this establishes the Tracy–Widom fluctuations of the second largest eigenvalue when p is much larger than N−2/3 with a deterministic shift of order (Np)−1.}, author = {Lee, Jii and Schnelli, Kevin}, journal = {Probability Theory and Related Fields}, number = {1-2}, publisher = {Springer}, title = {{Local law and Tracy–Widom limit for sparse random matrices}}, doi = {10.1007/s00440-017-0787-8}, volume = {171}, year = {2018}, } @article{703, abstract = {We consider the NP-hard problem of MAP-inference for undirected discrete graphical models. We propose a polynomial time and practically efficient algorithm for finding a part of its optimal solution. Specifically, our algorithm marks some labels of the considered graphical model either as (i) optimal, meaning that they belong to all optimal solutions of the inference problem; (ii) non-optimal if they provably do not belong to any solution. With access to an exact solver of a linear programming relaxation to the MAP-inference problem, our algorithm marks the maximal possible (in a specified sense) number of labels. We also present a version of the algorithm, which has access to a suboptimal dual solver only and still can ensure the (non-)optimality for the marked labels, although the overall number of the marked labels may decrease. We propose an efficient implementation, which runs in time comparable to a single run of a suboptimal dual solver. Our method is well-scalable and shows state-of-the-art results on computational benchmarks from machine learning and computer vision.}, author = {Shekhovtsov, Alexander and Swoboda, Paul and Savchynskyy, Bogdan}, issn = {01628828}, journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, number = {7}, pages = {1668--1682}, publisher = {IEEE}, title = {{Maximum persistency via iterative relaxed inference with graphical models}}, doi = {10.1109/TPAMI.2017.2730884}, volume = {40}, year = {2018}, } @inproceedings{7116, abstract = {Training deep learning models has received tremendous research interest recently. In particular, there has been intensive research on reducing the communication cost of training when using multiple computational devices, through reducing the precision of the underlying data representation. Naturally, such methods induce system trade-offs—lowering communication precision could de-crease communication overheads and improve scalability; but, on the other hand, it can also reduce the accuracy of training. In this paper, we study this trade-off space, and ask:Can low-precision communication consistently improve the end-to-end performance of training modern neural networks, with no accuracy loss?From the performance point of view, the answer to this question may appear deceptively easy: compressing communication through low precision should help when the ratio between communication and computation is high. However, this answer is less straightforward when we try to generalize this principle across various neural network architectures (e.g., AlexNet vs. ResNet),number of GPUs (e.g., 2 vs. 8 GPUs), machine configurations(e.g., EC2 instances vs. NVIDIA DGX-1), communication primitives (e.g., MPI vs. NCCL), and even different GPU architectures(e.g., Kepler vs. Pascal). Currently, it is not clear how a realistic realization of all these factors maps to the speed up provided by low-precision communication. In this paper, we conduct an empirical study to answer this question and report the insights.}, author = {Grubic, Demjan and Tam, Leo and Alistarh, Dan-Adrian and Zhang, Ce}, booktitle = {Proceedings of the 21st International Conference on Extending Database Technology}, isbn = {9783893180783}, issn = {2367-2005}, location = {Vienna, Austria}, pages = {145--156}, publisher = {OpenProceedings}, title = {{Synchronous multi-GPU training for deep learning with low-precision communications: An empirical study}}, doi = {10.5441/002/EDBT.2018.14}, year = {2018}, } @inproceedings{7407, abstract = {Proofs of space (PoS) [Dziembowski et al., CRYPTO'15] are proof systems where a prover can convince a verifier that he "wastes" disk space. PoS were introduced as a more ecological and economical replacement for proofs of work which are currently used to secure blockchains like Bitcoin. In this work we investigate extensions of PoS which allow the prover to embed useful data into the dedicated space, which later can be recovered. Our first contribution is a security proof for the original PoS from CRYPTO'15 in the random oracle model (the original proof only applied to a restricted class of adversaries which can store a subset of the data an honest prover would store). When this PoS is instantiated with recent constructions of maximally depth robust graphs, our proof implies basically optimal security. As a second contribution we show three different extensions of this PoS where useful data can be embedded into the space required by the prover. Our security proof for the PoS extends (non-trivially) to these constructions. We discuss how some of these variants can be used as proofs of catalytic space (PoCS), a notion we put forward in this work, and which basically is a PoS where most of the space required by the prover can be used to backup useful data. Finally we discuss how one of the extensions is a candidate construction for a proof of replication (PoR), a proof system recently suggested in the Filecoin whitepaper. }, author = {Pietrzak, Krzysztof Z}, booktitle = {10th Innovations in Theoretical Computer Science Conference (ITCS 2019)}, isbn = {978-3-95977-095-8}, issn = {1868-8969}, location = {San Diego, CA, United States}, pages = {59:1--59:25}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Proofs of catalytic space}}, doi = {10.4230/LIPICS.ITCS.2019.59}, volume = {124}, year = {2018}, } @inproceedings{7812, abstract = {Deep neural networks (DNNs) continue to make significant advances, solving tasks from image classification to translation or reinforcement learning. One aspect of the field receiving considerable attention is efficiently executing deep models in resource-constrained environments, such as mobile or embedded devices. This paper focuses on this problem, and proposes two new compression methods, which jointly leverage weight quantization and distillation of larger teacher networks into smaller student networks. The first method we propose is called quantized distillation and leverages distillation during the training process, by incorporating distillation loss, expressed with respect to the teacher, into the training of a student network whose weights are quantized to a limited set of levels. The second method, differentiable quantization, optimizes the location of quantization points through stochastic gradient descent, to better fit the behavior of the teacher model. We validate both methods through experiments on convolutional and recurrent architectures. We show that quantized shallow students can reach similar accuracy levels to full-precision teacher models, while providing order of magnitude compression, and inference speedup that is linear in the depth reduction. In sum, our results enable DNNs for resource-constrained environments to leverage architecture and accuracy advances developed on more powerful devices.}, author = {Polino, Antonio and Pascanu, Razvan and Alistarh, Dan-Adrian}, booktitle = {6th International Conference on Learning Representations}, location = {Vancouver, Canada}, title = {{Model compression via distillation and quantization}}, year = {2018}, } @unpublished{8547, abstract = {The cerebral cortex contains multiple hierarchically organized areas with distinctive cytoarchitectonical patterns, but the cellular mechanisms underlying the emergence of this diversity remain unclear. Here, we have quantitatively investigated the neuronal output of individual progenitor cells in the ventricular zone of the developing mouse neocortex using a combination of methods that together circumvent the biases and limitations of individual approaches. We found that individual cortical progenitor cells show a high degree of stochasticity and generate pyramidal cell lineages that adopt a wide range of laminar configurations. Mathematical modelling these lineage data suggests that a small number of progenitor cell populations, each generating pyramidal cells following different stochastic developmental programs, suffice to generate the heterogenous complement of pyramidal cell lineages that collectively build the complex cytoarchitecture of the neocortex.}, author = {Llorca, Alfredo and Ciceri, Gabriele and Beattie, Robert J and Wong, Fong K. and Diana, Giovanni and Serafeimidou, Eleni and Fernández-Otero, Marian and Streicher, Carmen and Arnold, Sebastian J. and Meyer, Martin and Hippenmeyer, Simon and Maravall, Miguel and Marín, Oscar}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Heterogeneous progenitor cell behaviors underlie the assembly of neocortical cytoarchitecture}}, doi = {10.1101/494088}, year = {2018}, } @inbook{86, abstract = {Responsiveness—the requirement that every request to a system be eventually handled—is one of the fundamental liveness properties of a reactive system. Average response time is a quantitative measure for the responsiveness requirement used commonly in performance evaluation. We show how average response time can be computed on state-transition graphs, on Markov chains, and on game graphs. In all three cases, we give polynomial-time algorithms.}, author = {Chatterjee, Krishnendu and Henzinger, Thomas A and Otop, Jan}, booktitle = {Principles of Modeling}, editor = {Lohstroh, Marten and Derler, Patricia and Sirjani, Marjan}, pages = {143 -- 161}, publisher = {Springer}, title = {{Computing average response time}}, doi = {10.1007/978-3-319-95246-8_9}, volume = {10760}, year = {2018}, } @article{9229, author = {Danzl, Johann G}, issn = {2500-2295}, journal = {Opera Medica et Physiologica}, number = {S1}, pages = {11}, publisher = {Lobachevsky State University of Nizhny Novgorod}, title = {{Diffraction-unlimited optical imaging for synaptic physiology}}, doi = {10.20388/omp2018.00s1.001}, volume = {4}, year = {2018}, } @inproceedings{6005, abstract = {Network games are widely used as a model for selfish resource-allocation problems. In the classicalmodel, each player selects a path connecting her source and target vertices. The cost of traversingan edge depends on theload; namely, number of players that traverse it. Thus, it abstracts the factthat different users may use a resource at different times and for different durations, which playsan important role in determining the costs of the users in reality. For example, when transmittingpackets in a communication network, routing traffic in a road network, or processing a task in aproduction system, actual sharing and congestion of resources crucially depends on time.In [13], we introducedtimed network games, which add a time component to network games.Each vertexvin the network is associated with a cost function, mapping the load onvto theprice that a player pays for staying invfor one time unit with this load. Each edge in thenetwork is guarded by the time intervals in which it can be traversed, which forces the players tospend time in the vertices. In this work we significantly extend the way time can be referred toin timed network games. In the model we study, the network is equipped withclocks, and, as intimed automata, edges are guarded by constraints on the values of the clocks, and their traversalmay involve a reset of some clocks. We argue that the stronger model captures many realisticnetworks. The addition of clocks breaks the techniques we developed in [13] and we developnew techniques in order to show that positive results on classic network games carry over to thestronger timed setting.}, author = {Avni, Guy and Guha, Shibashis and Kupferman, Orna}, issn = {1868-8969}, location = {Liverpool, United Kingdom}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Timed network games with clocks}}, doi = {10.4230/LIPICS.MFCS.2018.23}, volume = {117}, year = {2018}, } @article{315, abstract = {More than 100 years after Grigg’s influential analysis of species’ borders, the causes of limits to species’ ranges still represent a puzzle that has never been understood with clarity. The topic has become especially important recently as many scientists have become interested in the potential for species’ ranges to shift in response to climate change—and yet nearly all of those studies fail to recognise or incorporate evolutionary genetics in a way that relates to theoretical developments. I show that range margins can be understood based on just two measurable parameters: (i) the fitness cost of dispersal—a measure of environmental heterogeneity—and (ii) the strength of genetic drift, which reduces genetic diversity. Together, these two parameters define an ‘expansion threshold’: adaptation fails when genetic drift reduces genetic diversity below that required for adaptation to a heterogeneous environment. When the key parameters drop below this expansion threshold locally, a sharp range margin forms. When they drop below this threshold throughout the species’ range, adaptation collapses everywhere, resulting in either extinction or formation of a fragmented metapopulation. Because the effects of dispersal differ fundamentally with dimension, the second parameter—the strength of genetic drift—is qualitatively different compared to a linear habitat. In two-dimensional habitats, genetic drift becomes effectively independent of selection. It decreases with ‘neighbourhood size’—the number of individuals accessible by dispersal within one generation. Moreover, in contrast to earlier predictions, which neglected evolution of genetic variance and/or stochasticity in two dimensions, dispersal into small marginal populations aids adaptation. This is because the reduction of both genetic and demographic stochasticity has a stronger effect than the cost of dispersal through increased maladaptation. The expansion threshold thus provides a novel, theoretically justified, and testable prediction for formation of the range margin and collapse of the species’ range.}, author = {Polechova, Jitka}, issn = {15449173}, journal = {PLoS Biology}, number = {6}, publisher = {Public Library of Science}, title = {{Is the sky the limit? On the expansion threshold of a species’ range}}, doi = {10.1371/journal.pbio.2005372}, volume = {16}, year = {2018}, } @inproceedings{186, abstract = {A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The ℤ2-genus of a graph G is the minimum g such that G has an independently even drawing on the orientable surface of genus g. An unpublished result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus contains as a minor a projective t × t grid or one of the following so-called t-Kuratowski graphs: K3, t, or t copies of K5 or K3,3 sharing at most 2 common vertices. We show that the ℤ2-genus of graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its ℤ2-genus, solving a problem posed by Schaefer and Štefankovič, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces.}, author = {Fulek, Radoslav and Kynčl, Jan}, location = {Budapest, Hungary}, pages = {40.1 -- 40.14}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{The ℤ2-Genus of Kuratowski minors}}, doi = {10.4230/LIPIcs.SoCG.2018.40}, volume = {99}, year = {2018}, } @inproceedings{433, abstract = {A thrackle is a graph drawn in the plane so that every pair of its edges meet exactly once: either at a common end vertex or in a proper crossing. We prove that any thrackle of n vertices has at most 1.3984n edges. Quasi-thrackles are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an odd number of times. It is also shown that the maximum number of edges of a quasi-thrackle on n vertices is 3/2(n-1), and that this bound is best possible for infinitely many values of n.}, author = {Fulek, Radoslav and Pach, János}, location = {Boston, MA, United States}, pages = {160 -- 166}, publisher = {Springer}, title = {{Thrackles: An improved upper bound}}, doi = {10.1007/978-3-319-73915-1_14}, volume = {10692}, year = {2018}, } @misc{9837, abstract = {Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients.}, author = {Faria, Rui and Chaube, Pragya and Morales, Hernán E. and Larsson, Tomas and Lemmon, Alan R. and Lemmon, Emily M. and Rafajlović, Marina and Panova, Marina and Ravinet, Mark and Johannesson, Kerstin and Westram, Anja M and Butlin, Roger K.}, publisher = {Dryad}, title = {{Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes}}, doi = {10.5061/dryad.72cg113}, year = {2018}, } @misc{5457, abstract = {We consider the problem of expected cost analysis over nondeterministic probabilistic programs, which aims at automated methods for analyzing the resource-usage of such programs. Previous approaches for this problem could only handle nonnegative bounded costs. However, in many scenarios, such as queuing networks or analysis of cryptocurrency protocols, both positive and negative costs are necessary and the costs are unbounded as well. In this work, we present a sound and efficient approach to obtain polynomial bounds on the expected accumulated cost of nondeterministic probabilistic programs. Our approach can handle (a) general positive and negative costs with bounded updates in variables; and (b) nonnegative costs with general updates to variables. We show that several natural examples which could not be handled by previous approaches are captured in our framework. Moreover, our approach leads to an efficient polynomial-time algorithm, while no previous approach for cost analysis of probabilistic programs could guarantee polynomial runtime. Finally, we show the effectiveness of our approach by presenting experimental results on a variety of programs, motivated by real-world applications, for which we efficiently synthesize tight resource-usage bounds.}, author = {Anonymous, 1 and Anonymous, 2 and Anonymous, 3 and Anonymous, 4 and Anonymous, 5 and Anonymous, 6}, issn = {2664-1690}, pages = {27}, publisher = {IST Austria}, title = {{Cost analysis of nondeterministic probabilistic programs}}, year = {2018}, } @inbook{10864, abstract = {We prove that every congruence distributive variety has directed Jónsson terms, and every congruence modular variety has directed Gumm terms. The directed terms we construct witness every case of absorption witnessed by the original Jónsson or Gumm terms. This result is equivalent to a pair of claims about absorption for admissible preorders in congruence distributive and congruence modular varieties, respectively. For finite algebras, these absorption theorems have already seen significant applications, but until now, it was not clear if the theorems hold for general algebras as well. Our method also yields a novel proof of a result by P. Lipparini about the existence of a chain of terms (which we call Pixley terms) in varieties that are at the same time congruence distributive and k-permutable for some k.}, author = {Kazda, Alexandr and Kozik, Marcin and McKenzie, Ralph and Moore, Matthew}, booktitle = {Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science}, editor = {Czelakowski, J}, isbn = {9783319747712}, issn = {2211-2766}, pages = {203--220}, publisher = {Springer Nature}, title = {{Absorption and directed Jónsson terms}}, doi = {10.1007/978-3-319-74772-9_7}, volume = {16}, year = {2018}, } @inproceedings{184, abstract = {We prove that for every d ≥ 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d ≥ 2 and k ≥ 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d ≥ 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes.}, author = {Goaoc, Xavier and Paták, Pavel and Patakova, Zuzana and Tancer, Martin and Wagner, Uli}, location = {Budapest, Hungary}, pages = {41:1 -- 41:16}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Shellability is NP-complete}}, doi = {10.4230/LIPIcs.SoCG.2018.41}, volume = {99}, year = {2018}, } @inproceedings{285, abstract = {In graph theory, as well as in 3-manifold topology, there exist several width-type parameters to describe how "simple" or "thin" a given graph or 3-manifold is. These parameters, such as pathwidth or treewidth for graphs, or the concept of thin position for 3-manifolds, play an important role when studying algorithmic problems; in particular, there is a variety of problems in computational 3-manifold topology - some of them known to be computationally hard in general - that become solvable in polynomial time as soon as the dual graph of the input triangulation has bounded treewidth. In view of these algorithmic results, it is natural to ask whether every 3-manifold admits a triangulation of bounded treewidth. We show that this is not the case, i.e., that there exists an infinite family of closed 3-manifolds not admitting triangulations of bounded pathwidth or treewidth (the latter implies the former, but we present two separate proofs). We derive these results from work of Agol and of Scharlemann and Thompson, by exhibiting explicit connections between the topology of a 3-manifold M on the one hand and width-type parameters of the dual graphs of triangulations of M on the other hand, answering a question that had been raised repeatedly by researchers in computational 3-manifold topology. In particular, we show that if a closed, orientable, irreducible, non-Haken 3-manifold M has a triangulation of treewidth (resp. pathwidth) k then the Heegaard genus of M is at most 48(k+1) (resp. 4(3k+1)).}, author = {Huszár, Kristóf and Spreer, Jonathan and Wagner, Uli}, issn = {18688969}, location = {Budapest, Hungary}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{On the treewidth of triangulated 3-manifolds}}, doi = {10.4230/LIPIcs.SoCG.2018.46}, volume = {99}, year = {2018}, } @misc{13059, abstract = {This dataset contains a GitHub repository containing all the data, analysis, Nextflow workflows and Jupyter notebooks to replicate the manuscript titled "Fast and accurate large multiple sequence alignments with a root-to-leaf regressive method". It also contains the Multiple Sequence Alignments (MSAs) generated and well as the main figures and tables from the manuscript. The repository is also available at GitHub (https://github.com/cbcrg/dpa-analysis) release `v1.2`. For details on how to use the regressive alignment algorithm, see the T-Coffee software suite (https://github.com/cbcrg/tcoffee).}, author = {Garriga, Edgar and di Tommaso, Paolo and Magis, Cedrik and Erb, Ionas and Mansouri, Leila and Baltzis, Athanasios and Laayouni, Hafid and Kondrashov, Fyodor and Floden, Evan and Notredame, Cedric}, publisher = {Zenodo}, title = {{Fast and accurate large multiple sequence alignments with a root-to-leaf regressive method}}, doi = {10.5281/ZENODO.2025846}, year = {2018}, } @phdthesis{49, abstract = {Nowadays, quantum computation is receiving more and more attention as an alternative to the classical way of computing. For realizing a quantum computer, different devices are investigated as potential quantum bits. In this thesis, the focus is on Ge hut wires, which turned out to be promising candidates for implementing hole spin quantum bits. The advantages of Ge as a material system are the low hyperfine interaction for holes and the strong spin orbit coupling, as well as the compatibility with the highly developed CMOS processes in industry. In addition, Ge can also be isotopically purified which is expected to boost the spin coherence times. The strong spin orbit interaction for holes in Ge on the one hand enables the full electrical control of the quantum bit and on the other hand should allow short spin manipulation times. Starting with a bare Si wafer, this work covers the entire process reaching from growth over the fabrication and characterization of hut wire devices up to the demonstration of hole spin resonance. From experiments with single quantum dots, a large g-factor anisotropy between the in-plane and the out-of-plane direction was found. A comparison to a theoretical model unveiled the heavy-hole character of the lowest energy states. The second part of the thesis addresses double quantum dot devices, which were realized by adding two gate electrodes to a hut wire. In such devices, Pauli spin blockade was observed, which can serve as a read-out mechanism for spin quantum bits. Applying oscillating electric fields in spin blockade allowed the demonstration of continuous spin rotations and the extraction of a lower bound for the spin dephasing time. Despite the strong spin orbit coupling in Ge, the obtained value for the dephasing time is comparable to what has been recently reported for holes in Si. All in all, the presented results point out the high potential of Ge hut wires as a platform for long-lived, fast and fully electrically tunable hole spin quantum bits.}, author = {Watzinger, Hannes}, issn = {2663-337X}, pages = {77}, publisher = {Institute of Science and Technology Austria}, title = {{Ge hut wires - from growth to hole spin resonance}}, doi = {10.15479/AT:ISTA:th_1033}, year = {2018}, } @phdthesis{201, abstract = {We describe arrangements of three-dimensional spheres from a geometrical and topological point of view. Real data (fitting this setup) often consist of soft spheres which show certain degree of deformation while strongly packing against each other. In this context, we answer the following questions: If we model a soft packing of spheres by hard spheres that are allowed to overlap, can we measure the volume in the overlapped areas? Can we be more specific about the overlap volume, i.e. quantify how much volume is there covered exactly twice, three times, or k times? What would be a good optimization criteria that rule the arrangement of soft spheres while making a good use of the available space? Fixing a particular criterion, what would be the optimal sphere configuration? The first result of this thesis are short formulas for the computation of volumes covered by at least k of the balls. The formulas exploit information contained in the order-k Voronoi diagrams and its closely related Level-k complex. The used complexes lead to a natural generalization into poset diagrams, a theoretical formalism that contains the order-k and degree-k diagrams as special cases. In parallel, we define different criteria to determine what could be considered an optimal arrangement from a geometrical point of view. Fixing a criterion, we find optimal soft packing configurations in 2D and 3D where the ball centers lie on a lattice. As a last step, we use tools from computational topology on real physical data, to show the potentials of higher-order diagrams in the description of melting crystals. The results of the experiments leaves us with an open window to apply the theories developed in this thesis in real applications.}, author = {Iglesias Ham, Mabel}, issn = {2663-337X}, pages = {171}, publisher = {Institute of Science and Technology Austria}, title = {{Multiple covers with balls}}, doi = {10.15479/AT:ISTA:th_1026}, year = {2018}, } @phdthesis{68, abstract = {The most common assumption made in statistical learning theory is the assumption of the independent and identically distributed (i.i.d.) data. While being very convenient mathematically, it is often very clearly violated in practice. This disparity between the machine learning theory and applications underlies a growing demand in the development of algorithms that learn from dependent data and theory that can provide generalization guarantees similar to the independent situations. This thesis is dedicated to two variants of dependencies that can arise in practice. One is a dependence on the level of samples in a single learning task. Another dependency type arises in the multi-task setting when the tasks are dependent on each other even though the data for them can be i.i.d. In both cases we model the data (samples or tasks) as stochastic processes and introduce new algorithms for both settings that take into account and exploit the resulting dependencies. We prove the theoretical guarantees on the performance of the introduced algorithms under different evaluation criteria and, in addition, we compliment the theoretical study by the empirical one, where we evaluate some of the algorithms on two real world datasets to highlight their practical applicability.}, author = {Zimin, Alexander}, issn = {2663-337X}, pages = {92}, publisher = {Institute of Science and Technology Austria}, title = {{Learning from dependent data}}, doi = {10.15479/AT:ISTA:TH1048}, year = {2018}, } @phdthesis{83, abstract = {A proof system is a protocol between a prover and a verifier over a common input in which an honest prover convinces the verifier of the validity of true statements. Motivated by the success of decentralized cryptocurrencies, exemplified by Bitcoin, the focus of this thesis will be on proof systems which found applications in some sustainable alternatives to Bitcoin, such as the Spacemint and Chia cryptocurrencies. In particular, we focus on proofs of space and proofs of sequential work. Proofs of space (PoSpace) were suggested as more ecological, economical, and egalitarian alternative to the energy-wasteful proof-of-work mining of Bitcoin. However, the state-of-the-art constructions of PoSpace are based on sophisticated graph pebbling lower bounds, and are therefore complex. Moreover, when these PoSpace are used in cryptocurrencies like Spacemint, miners can only start mining after ensuring that a commitment to their space is already added in a special transaction to the blockchain. Proofs of sequential work (PoSW) are proof systems in which a prover, upon receiving a statement x and a time parameter T, computes a proof which convinces the verifier that T time units had passed since x was received. Whereas Spacemint assumes synchrony to retain some interesting Bitcoin dynamics, Chia requires PoSW with unique proofs, i.e., PoSW in which it is hard to come up with more than one accepting proof for any true statement. In this thesis we construct simple and practically-efficient PoSpace and PoSW. When using our PoSpace in cryptocurrencies, miners can start mining on the fly, like in Bitcoin, and unlike current constructions of PoSW, which either achieve efficient verification of sequential work, or faster-than-recomputing verification of correctness of proofs, but not both at the same time, ours achieve the best of these two worlds.}, author = {Abusalah, Hamza M}, issn = {2663-337X}, pages = {59}, publisher = {Institute of Science and Technology Austria}, title = {{Proof systems for sustainable decentralized cryptocurrencies}}, doi = {10.15479/AT:ISTA:TH_1046}, year = {2018}, } @phdthesis{197, abstract = {Modern computer vision systems heavily rely on statistical machine learning models, which typically require large amounts of labeled data to be learned reliably. Moreover, very recently computer vision research widely adopted techniques for representation learning, which further increase the demand for labeled data. However, for many important practical problems there is relatively small amount of labeled data available, so it is problematic to leverage full potential of the representation learning methods. One way to overcome this obstacle is to invest substantial resources into producing large labelled datasets. Unfortunately, this can be prohibitively expensive in practice. In this thesis we focus on the alternative way of tackling the aforementioned issue. We concentrate on methods, which make use of weakly-labeled or even unlabeled data. Specifically, the first half of the thesis is dedicated to the semantic image segmentation task. We develop a technique, which achieves competitive segmentation performance and only requires annotations in a form of global image-level labels instead of dense segmentation masks. Subsequently, we present a new methodology, which further improves segmentation performance by leveraging tiny additional feedback from a human annotator. By using our methods practitioners can greatly reduce the amount of data annotation effort, which is required to learn modern image segmentation models. In the second half of the thesis we focus on methods for learning from unlabeled visual data. We study a family of autoregressive models for modeling structure of natural images and discuss potential applications of these models. Moreover, we conduct in-depth study of one of these applications, where we develop the state-of-the-art model for the probabilistic image colorization task.}, author = {Kolesnikov, Alexander}, issn = {2663-337X}, pages = {113}, publisher = {Institute of Science and Technology Austria}, title = {{Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images}}, doi = {10.15479/AT:ISTA:th_1021}, year = {2018}, } @article{6774, abstract = {A central problem of algebraic topology is to understand the homotopy groups 𝜋𝑑(𝑋) of a topological space X. For the computational version of the problem, it is well known that there is no algorithm to decide whether the fundamental group 𝜋1(𝑋) of a given finite simplicial complex X is trivial. On the other hand, there are several algorithms that, given a finite simplicial complex X that is simply connected (i.e., with 𝜋1(𝑋) trivial), compute the higher homotopy group 𝜋𝑑(𝑋) for any given 𝑑≥2 . However, these algorithms come with a caveat: They compute the isomorphism type of 𝜋𝑑(𝑋) , 𝑑≥2 as an abstract finitely generated abelian group given by generators and relations, but they work with very implicit representations of the elements of 𝜋𝑑(𝑋) . Converting elements of this abstract group into explicit geometric maps from the d-dimensional sphere 𝑆𝑑 to X has been one of the main unsolved problems in the emerging field of computational homotopy theory. Here we present an algorithm that, given a simply connected space X, computes 𝜋𝑑(𝑋) and represents its elements as simplicial maps from a suitable triangulation of the d-sphere 𝑆𝑑 to X. For fixed d, the algorithm runs in time exponential in size(𝑋) , the number of simplices of X. Moreover, we prove that this is optimal: For every fixed 𝑑≥2 , we construct a family of simply connected spaces X such that for any simplicial map representing a generator of 𝜋𝑑(𝑋) , the size of the triangulation of 𝑆𝑑 on which the map is defined, is exponential in size(𝑋) .}, author = {Filakovský, Marek and Franek, Peter and Wagner, Uli and Zhechev, Stephan Y}, issn = {2367-1734}, journal = {Journal of Applied and Computational Topology}, number = {3-4}, pages = {177--231}, publisher = {Springer}, title = {{Computing simplicial representatives of homotopy group elements}}, doi = {10.1007/s41468-018-0021-5}, volume = {2}, year = {2018}, } @inproceedings{133, abstract = {Synchronous programs are easy to specify because the side effects of an operation are finished by the time the invocation of the operation returns to the caller. Asynchronous programs, on the other hand, are difficult to specify because there are side effects due to pending computation scheduled as a result of the invocation of an operation. They are also difficult to verify because of the large number of possible interleavings of concurrent computation threads. We present synchronization, a new proof rule that simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Modular verification is enabled via pending asynchronous calls in atomic summaries, and a complementary proof rule that eliminates pending asynchronous calls when components and their specifications are composed. We evaluate synchronization in the context of a multi-layer refinement verification methodology on a collection of benchmark programs.}, author = {Kragl, Bernhard and Qadeer, Shaz and Henzinger, Thomas A}, issn = {18688969}, location = {Beijing, China}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{Synchronizing the asynchronous}}, doi = {10.4230/LIPIcs.CONCUR.2018.21}, volume = {118}, year = {2018}, } @inproceedings{187, abstract = {Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers. }, author = {Edelsbrunner, Herbert and Osang, Georg F}, location = {Budapest, Hungary}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik}, title = {{The multi-cover persistence of Euclidean balls}}, doi = {10.4230/LIPIcs.SoCG.2018.34}, volume = {99}, year = {2018}, } @article{692, abstract = {We consider families of confocal conics and two pencils of Apollonian circles having the same foci. We will show that these families of curves generate trivial 3-webs and find the exact formulas describing them.}, author = {Akopyan, Arseniy}, journal = {Geometriae Dedicata}, number = {1}, pages = {55 -- 64}, publisher = {Springer}, title = {{3-Webs generated by confocal conics and circles}}, doi = {10.1007/s10711-017-0265-6}, volume = {194}, year = {2018}, } @article{77, abstract = {Holes confined in quantum dots have gained considerable interest in the past few years due to their potential as spin qubits. Here we demonstrate two-axis control of a spin 3/2 qubit in natural Ge. The qubit is formed in a hut wire double quantum dot device. The Pauli spin blockade principle allowed us to demonstrate electric dipole spin resonance by applying a radio frequency electric field to one of the electrodes defining the double quantum dot. Coherent hole spin oscillations with Rabi frequencies reaching 140 MHz are demonstrated and dephasing times of 130 ns are measured. The reported results emphasize the potential of Ge as a platform for fast and electrically tunable hole spin qubit devices.}, author = {Watzinger, Hannes and Kukucka, Josip and Vukusic, Lada and Gao, Fei and Wang, Ting and Schäffler, Friedrich and Zhang, Jian and Katsaros, Georgios}, journal = {Nature Communications}, number = {3902 }, publisher = {Nature Publishing Group}, title = {{A germanium hole spin qubit}}, doi = {10.1038/s41467-018-06418-4}, volume = {9}, year = {2018}, } @article{401, abstract = {The actomyosin cytoskeleton, a key stress-producing unit in epithelial cells, oscillates spontaneously in a wide variety of systems. Although much of the signal cascade regulating myosin activity has been characterized, the origin of such oscillatory behavior is still unclear. Here, we show that basal myosin II oscillation in Drosophila ovarian epithelium is not controlled by actomyosin cortical tension, but instead relies on a biochemical oscillator involving ROCK and myosin phosphatase. Key to this oscillation is a diffusive ROCK flow, linking junctional Rho1 to medial actomyosin cortex, and dynamically maintained by a self-activation loop reliant on ROCK kinase activity. In response to the resulting myosin II recruitment, myosin phosphatase is locally enriched and shuts off ROCK and myosin II signals. Coupling Drosophila genetics, live imaging, modeling, and optogenetics, we uncover an intrinsic biochemical oscillator at the core of myosin II regulatory network, shedding light on the spatio-temporal dynamics of force generation.}, author = {Qin, Xiang and Hannezo, Edouard B and Mangeat, Thomas and Liu, Chang and Majumder, Pralay and Liu, Jjiaying and Choesmel Cadamuro, Valerie and Mcdonald, Jocelyn and Liu, Yinyao and Yi, Bin and Wang, Xiaobo}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, title = {{A biochemical network controlling basal myosin oscillation}}, doi = {10.1038/s41467-018-03574-5}, volume = {9}, year = {2018}, } @article{318, abstract = {The insect’s fat body combines metabolic and immunological functions. In this issue of Developmental Cell, Franz et al. (2018) show that in Drosophila, cells of the fat body are not static, but can actively “swim” toward sites of epithelial injury, where they physically clog the wound and locally secrete antimicrobial peptides.}, author = {Casano, Alessandra M and Sixt, Michael K}, journal = {Developmental Cell}, number = {4}, pages = {405 -- 406}, publisher = {Cell Press}, title = {{A fat lot of good for wound healing}}, doi = {10.1016/j.devcel.2018.02.009}, volume = {44}, year = {2018}, } @article{410, abstract = {Lesion verification and quantification is traditionally done via histological examination of sectioned brains, a time-consuming process that relies heavily on manual estimation. Such methods are particularly problematic in posterior cortical regions (e.g. visual cortex), where sectioning leads to significant damage and distortion of tissue. Even more challenging is the post hoc localization of micro-electrodes, which relies on the same techniques, suffers from similar drawbacks and requires even higher precision. Here, we propose a new, simple method for quantitative lesion characterization and electrode localization that is less labor-intensive and yields more detailed results than conventional methods. We leverage staining techniques standard in electron microscopy with the use of commodity micro-CT imaging. We stain whole rat and zebra finch brains in osmium tetroxide, embed these in resin and scan entire brains in a micro-CT machine. The scans result in 3D reconstructions of the brains with section thickness dependent on sample size (12–15 and 5–6 microns for rat and zebra finch respectively) that can be segmented manually or automatically. Because the method captures the entire intact brain volume, comparisons within and across studies are more tractable, and the extent of lesions and electrodes may be studied with higher accuracy than with current methods.}, author = {Masís, Javier and Mankus, David and Wolff, Steffen and Guitchounts, Grigori and Jösch, Maximilian A and Cox, David}, journal = {Scientific Reports}, number = {1}, publisher = {Nature Publishing Group}, title = {{A micro-CT-based method for quantitative brain lesion characterization and electrode localization}}, doi = {10.1038/s41598-018-23247-z}, volume = {8}, year = {2018}, } @article{277, abstract = {Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Abstract: Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein–protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.}, author = {Dokládal, Ladislav and Benková, Eva and Honys, David and Dupláková, Nikoleta and Lee, Lan and Gelvin, Stanton and Sýkorová, Eva}, journal = {Plant Molecular Biology}, number = {5}, pages = {407 -- 420}, publisher = {Springer}, title = {{An armadillo-domain protein participates in a telomerase interaction network}}, doi = {10.1007/s11103-018-0747-4}, volume = {97}, year = {2018}, } @inproceedings{299, abstract = {We introduce in this paper AMT 2.0 , a tool for qualitative and quantitative analysis of hybrid continuous and Boolean signals that combine numerical values and discrete events. The evaluation of the signals is based on rich temporal specifications expressed in extended Signal Temporal Logic (xSTL), which integrates Timed Regular Expressions (TRE) within Signal Temporal Logic (STL). The tool features qualitative monitoring (property satisfaction checking), trace diagnostics for explaining and justifying property violations and specification-driven measurement of quantitative features of the signal.}, author = {Nickovic, Dejan and Lebeltel, Olivier and Maler, Oded and Ferrere, Thomas and Ulus, Dogan}, editor = {Beyer, Dirk and Huisman, Marieke}, location = {Thessaloniki, Greece}, pages = {303 -- 319}, publisher = {Springer}, title = {{AMT 2.0: Qualitative and quantitative trace analysis with extended signal temporal logic}}, doi = {10.1007/978-3-319-89963-3_18}, volume = {10806}, year = {2018}, } @article{413, abstract = {Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host’s vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk.}, author = {Konrad, Matthias and Pull, Christopher and Metzler, Sina and Seif, Katharina and Naderlinger, Elisabeth and Grasse, Anna V and Cremer, Sylvia}, journal = {PNAS}, number = {11}, pages = {2782 -- 2787}, publisher = {National Academy of Sciences}, title = {{Ants avoid superinfections by performing risk-adjusted sanitary care}}, doi = {10.1073/pnas.1713501115}, volume = {115}, year = {2018}, } @article{195, abstract = {We demonstrate that identical impurities immersed in a two-dimensional many-particle bath can be viewed as flux-tube-charged-particle composites described by fractional statistics. In particular, we find that the bath manifests itself as an external magnetic flux tube with respect to the impurities, and hence the time-reversal symmetry is broken for the effective Hamiltonian describing the impurities. The emerging flux tube acts as a statistical gauge field after a certain critical coupling. This critical coupling corresponds to the intersection point between the quasiparticle state and the phonon wing, where the angular momentum is transferred from the impurity to the bath. This amounts to a novel configuration with emerging anyons. The proposed setup paves the way to realizing anyons using electrons interacting with superfluid helium or lattice phonons, as well as using atomic impurities in ultracold gases.}, author = {Yakaboylu, Enderalp and Lemeshko, Mikhail}, journal = {Physical Review B - Condensed Matter and Materials Physics}, number = {4}, publisher = {American Physical Society}, title = {{Anyonic statistics of quantum impurities in two dimensions}}, doi = {10.1103/PhysRevB.98.045402}, volume = {98}, year = {2018}, } @article{203, abstract = {Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved mainly by polarized cellular distribution of PIN auxin transporters, but whether other mechanisms involving auxin homeostasis are also relevant for the formation of auxin gradients is not clear. Here we show that auxin methylation is required for asymmetric auxin distribution across the hypocotyl, particularly during its response to gravity. We found that loss-of-function mutants in Arabidopsis IAA CARBOXYL METHYLTRANSFERASE1 (IAMT1) prematurely unfold the apical hook, and that their hypocotyls are impaired in gravitropic reorientation. This defect is linked to an auxin-dependent increase in PIN gene expression, leading to an increased polar auxin transport and lack of asymmetric distribution of PIN3 in the iamt1 mutant. Gravitropic reorientation in the iamt1 mutant could be restored with either endodermis-specific expression of IAMT1 or partial inhibition of polar auxin transport, which also results in normal PIN gene expression levels. We propose that IAA methylation is necessary in gravity-sensing cells to restrict polar auxin transport within the range of auxin levels that allow for differential responses.}, author = {Abbas, Mohamad and Hernández, García J and Pollmann, Stephan and Samodelov, Sophia L and Kolb, Martina and Friml, Jirí and Hammes, Ulrich Z and Zurbriggen, Matias D and Blázquez, Miguel and Alabadí, David}, journal = {PNAS}, number = {26}, pages = {6864--6869}, publisher = {National Academy of Sciences}, title = {{Auxin methylation is required for differential growth in Arabidopsis}}, doi = {10.1073/pnas.1806565115}, volume = {115}, year = {2018}, } @article{399, abstract = {Following an earlier calculation in 3D, we calculate the 2D critical temperature of a dilute, translation-invariant Bose gas using a variational formulation of the Bogoliubov approximation introduced by Critchley and Solomon in 1976. This provides the first analytical calculation of the Kosterlitz-Thouless transition temperature that includes the constant in the logarithm.}, author = {Napiórkowski, Marcin M and Reuvers, Robin and Solovej, Jan}, journal = {EPL}, number = {1}, publisher = {IOP Publishing Ltd.}, title = {{Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation}}, doi = {10.1209/0295-5075/121/10007}, volume = {121}, year = {2018}, } @article{5830, abstract = {CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss-of-function mutants were sensitivity to drought stress. CLE9-induced stomatal closure was impaired in abscisic acid (ABA)-deficient mutants, indicating that ABA is required for CLE9-medaited guard cell signalling. We further deciphered that two guard cell ABA-signalling components, OST1 and SLAC1, were responsible for CLE9-induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2O2) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase-deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA-dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants.}, author = {Zhang, Luosha and Shi, Xiong and Zhang, Yutao and Wang, Jiajing and Yang, Jingwei and Ishida, Takashi and Jiang, Wenqian and Han, Xiangyu and Kang, Jingke and Wang, Xuening and Pan, Lixia and Lv, Shuo and Cao, Bing and Zhang, Yonghong and Wu, Jinbin and Han, Huibin and Hu, Zhubing and Cui, Langjun and Sawa, Shinichiro and He, Junmin and Wang, Guodong}, issn = {01407791}, journal = {Plant Cell and Environment}, publisher = {Wiley}, title = {{CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana}}, doi = {10.1111/pce.13475}, year = {2018}, }