@article{7942, abstract = {An understanding of the missing antinodal electronic excitations in the pseudogap state is essential for uncovering the physics of the underdoped cuprate high-temperature superconductors1,2,3,4,5,6. The majority of high-temperature experiments performed thus far, however, have been unable to discern whether the antinodal states are rendered unobservable due to their damping or whether they vanish due to their gapping7,8,9,10,11,12,13,14,15,16,17,18. Here, we distinguish between these two scenarios by using quantum oscillations to examine whether the small Fermi surface pocket, found to occupy only 2% of the Brillouin zone in the underdoped cuprates19,20,21,22,23,24, exists in isolation against a majority of completely gapped density of states spanning the antinodes, or whether it is thermodynamically coupled to a background of ungapped antinodal states. We find that quantum oscillations associated with the small Fermi surface pocket exhibit a signature sawtooth waveform characteristic of an isolated two-dimensional Fermi surface pocket25,26,27,28,29,30,31,32. This finding reveals that the antinodal states are destroyed by a hard gap that extends over the majority of the Brillouin zone, placing strong constraints on a drastic underlying origin of quasiparticle disappearance over almost the entire Brillouin zone in the pseudogap regime7,8,9,10,11,12,13,14,15,16,17,18.}, author = {Hartstein, Máté and Hsu, Yu Te and Modic, Kimberly A and Porras, Juan and Loew, Toshinao and Tacon, Matthieu Le and Zuo, Huakun and Wang, Jinhua and Zhu, Zengwei and Chan, Mun K. and Mcdonald, Ross D. and Lonzarich, Gilbert G. and Keimer, Bernhard and Sebastian, Suchitra E. and Harrison, Neil}, issn = {17452481}, journal = {Nature Physics}, pages = {841--847}, publisher = {Springer Nature}, title = {{Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors}}, doi = {10.1038/s41567-020-0910-0}, volume = {16}, year = {2020}, } @article{7948, abstract = {In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule for plant growth, development and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). In addition, our present study shows that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene expression in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing cell wall remodeling required for overlying tissues separation during LRP emergence. Both NRT1.1-mediated repression of TAR2 and LAX3 are suppressed at high nitrate availability, resulting in the nitrate induction of TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously anticipated in regulating the nitrate response of root system architecture.}, author = {Maghiaoui, A and Bouguyon, E and Cuesta, Candela and Perrine-Walker, F and Alcon, C and Krouk, G and Benková, Eva and Nacry, P and Gojon, A and Bach, L}, issn = {1460-2431}, journal = {Journal of Experimental Botany}, number = {15}, pages = {4480--4494}, publisher = {Oxford University Press}, title = {{The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate}}, doi = {10.1093/jxb/eraa242}, volume = {71}, year = {2020}, } @article{7940, abstract = {We prove that the Yangian associated to an untwisted symmetric affine Kac–Moody Lie algebra is isomorphic to the Drinfeld double of a shuffle algebra. The latter is constructed in [YZ14] as an algebraic formalism of cohomological Hall algebras. As a consequence, we obtain the Poincare–Birkhoff–Witt (PBW) theorem for this class of affine Yangians. Another independent proof of the PBW theorem is given recently by Guay, Regelskis, and Wendlandt [GRW18].}, author = {Yang, Yaping and Zhao, Gufang}, issn = {1531586X}, journal = {Transformation Groups}, pages = {1371--1385}, publisher = {Springer Nature}, title = {{The PBW theorem for affine Yangians}}, doi = {10.1007/s00031-020-09572-6}, volume = {25}, year = {2020}, } @misc{9708, abstract = {This research data supports 'Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors'. A Readme file for plotting each figure is provided.}, author = {Hartstein, Mate and Hsu, Yu-Te and Modic, Kimberly A and Porras, Juan and Loew, Toshinao and Le Tacon, Matthieu and Zuo, Huakun and Wang, Jinhua and Zhu, Zengwei and Chan, Mun and McDonald, Ross and Lonzarich, Gilbert and Keimer, Bernhard and Sebastian, Suchitra and Harrison, Neil}, publisher = {Apollo - University of Cambridge}, title = {{Accompanying dataset for 'Hard antinodal gap revealed by quantum oscillations in the pseudogap regime of underdoped high-Tc superconductors'}}, doi = {10.17863/cam.50169}, year = {2020}, } @inproceedings{7955, abstract = {Simple stochastic games are turn-based 2½-player games with a reachability objective. The basic question asks whether one player can ensure reaching a given target with at least a given probability. A natural extension is games with a conjunction of such conditions as objective. Despite a plethora of recent results on the analysis of systems with multiple objectives, the decidability of this basic problem remains open. In this paper, we present an algorithm approximating the Pareto frontier of the achievable values to a given precision. Moreover, it is an anytime algorithm, meaning it can be stopped at any time returning the current approximation and its error bound.}, author = {Ashok, Pranav and Chatterjee, Krishnendu and Kretinsky, Jan and Weininger, Maximilian and Winkler, Tobias}, booktitle = {Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science }, isbn = {9781450371049}, location = {Saarbrücken, Germany}, pages = {102--115}, publisher = {Association for Computing Machinery}, title = {{Approximating values of generalized-reachability stochastic games}}, doi = {10.1145/3373718.3394761}, year = {2020}, } @article{7957, abstract = {Neurodevelopmental disorders (NDDs) are a class of disorders affecting brain development and function and are characterized by wide genetic and clinical variability. In this review, we discuss the multiple factors that influence the clinical presentation of NDDs, with particular attention to gene vulnerability, mutational load, and the two-hit model. Despite the complex architecture of mutational events associated with NDDs, the various proteins involved appear to converge on common pathways, such as synaptic plasticity/function, chromatin remodelers and the mammalian target of rapamycin (mTOR) pathway. A thorough understanding of the mechanisms behind these pathways will hopefully lead to the identification of candidates that could be targeted for treatment approaches.}, author = {Parenti, Ilaria and Garcia Rabaneda, Luis E and Schön, Hanna and Novarino, Gaia}, issn = {1878108X}, journal = {Trends in Neurosciences}, number = {8}, pages = {608--621}, publisher = {Elsevier}, title = {{Neurodevelopmental disorders: From genetics to functional pathways}}, doi = {10.1016/j.tins.2020.05.004}, volume = {43}, year = {2020}, } @article{7960, abstract = {Let A={A1,…,An} be a family of sets in the plane. For 0≤i2b be integers. We prove that if each k-wise or (k+1)-wise intersection of sets from A has at most b path-connected components, which all are open, then fk+1=0 implies fk≤cfk−1 for some positive constant c depending only on b and k. These results also extend to two-dimensional compact surfaces.}, author = {Kalai, Gil and Patakova, Zuzana}, issn = {14320444}, journal = {Discrete and Computational Geometry}, pages = {304--323}, publisher = {Springer Nature}, title = {{Intersection patterns of planar sets}}, doi = {10.1007/s00454-020-00205-z}, volume = {64}, year = {2020}, } @article{7962, abstract = {A string graph is the intersection graph of a family of continuous arcs in the plane. The intersection graph of a family of plane convex sets is a string graph, but not all string graphs can be obtained in this way. We prove the following structure theorem conjectured by Janson and Uzzell: The vertex set of almost all string graphs on n vertices can be partitioned into five cliques such that some pair of them is not connected by any edge (n→∞). We also show that every graph with the above property is an intersection graph of plane convex sets. As a corollary, we obtain that almost all string graphs on n vertices are intersection graphs of plane convex sets.}, author = {Pach, János and Reed, Bruce and Yuditsky, Yelena}, issn = {14320444}, journal = {Discrete and Computational Geometry}, number = {4}, pages = {888--917}, publisher = {Springer Nature}, title = {{Almost all string graphs are intersection graphs of plane convex sets}}, doi = {10.1007/s00454-020-00213-z}, volume = {63}, year = {2020}, } @article{7999, abstract = {Linking epigenetic marks to clinical outcomes improves insight into molecular processes, disease prediction, and therapeutic target identification. Here, a statistical approach is presented to infer the epigenetic architecture of complex disease, determine the variation captured by epigenetic effects, and estimate phenotype-epigenetic probe associations jointly. Implicitly adjusting for probe correlations, data structure (cell-count or relatedness), and single-nucleotide polymorphism (SNP) marker effects, improves association estimates and in 9,448 individuals, 75.7% (95% CI 71.70–79.3) of body mass index (BMI) variation and 45.6% (95% CI 37.3–51.9) of cigarette consumption variation was captured by whole blood methylation array data. Pathway-linked probes of blood cholesterol, lipid transport and sterol metabolism for BMI, and xenobiotic stimuli response for smoking, showed >1.5 times larger associations with >95% posterior inclusion probability. Prediction accuracy improved by 28.7% for BMI and 10.2% for smoking over a LASSO model, with age-, and tissue-specificity, implying associations are a phenotypic consequence rather than causal. }, author = {Trejo Banos, D and McCartney, DL and Patxot, M and Anchieri, L and Battram, T and Christiansen, C and Costeira, R and Walker, RM and Morris, SW and Campbell, A and Zhang, Q and Porteous, DJ and McRae, AF and Wray, NR and Visscher, PM and Haley, CS and Evans, KL and Deary, IJ and McIntosh, AM and Hemani, G and Bell, JT and Marioni, RE and Robinson, Matthew Richard}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Bayesian reassessment of the epigenetic architecture of complex traits}}, doi = {10.1038/s41467-020-16520-1}, volume = {11}, year = {2020}, } @article{7995, abstract = {When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple‐effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis , occur in North Atlantic rocky‐shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size‐assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment.}, author = {Perini, Samuel and Rafajlović, Marina and Westram, Anja M and Johannesson, Kerstin and Butlin, Roger K.}, issn = {15585646}, journal = {Evolution}, number = {7}, pages = {1482--1497}, publisher = {Wiley}, title = {{Assortative mating, sexual selection, and their consequences for gene flow in Littorina}}, doi = {10.1111/evo.14027}, volume = {74}, year = {2020}, } @misc{8809, abstract = {When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple-effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis, occur in North Atlantic rocky-shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size-assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively-sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment.}, author = {Perini, Samuel and Rafajlovic, Marina and Westram, Anja M and Johannesson, Kerstin and Butlin, Roger}, publisher = {Dryad}, title = {{Data from: Assortative mating, sexual selection and their consequences for gene flow in Littorina}}, doi = {10.5061/dryad.qrfj6q5cn}, year = {2020}, } @article{8001, abstract = {Post-tetanic potentiation (PTP) is an attractive candidate mechanism for hippocampus-dependent short-term memory. Although PTP has a uniquely large magnitude at hippocampal mossy fiber-CA3 pyramidal neuron synapses, it is unclear whether it can be induced by natural activity and whether its lifetime is sufficient to support short-term memory. We combined in vivo recordings from granule cells (GCs), in vitro paired recordings from mossy fiber terminals and postsynaptic CA3 neurons, and “flash and freeze” electron microscopy. PTP was induced at single synapses and showed a low induction threshold adapted to sparse GC activity in vivo. PTP was mainly generated by enlargement of the readily releasable pool of synaptic vesicles, allowing multiplicative interaction with other plasticity forms. PTP was associated with an increase in the docked vesicle pool, suggesting formation of structural “pool engrams.” Absence of presynaptic activity extended the lifetime of the potentiation, enabling prolonged information storage in the hippocampal network.}, author = {Vandael, David H and Borges Merjane, Carolina and Zhang, Xiaomin and Jonas, Peter M}, issn = {10974199}, journal = {Neuron}, number = {3}, pages = {509--521}, publisher = {Elsevier}, title = {{Short-term plasticity at hippocampal mossy fiber synapses is induced by natural activity patterns and associated with vesicle pool engram formation}}, doi = {10.1016/j.neuron.2020.05.013}, volume = {107}, year = {2020}, } @article{8038, abstract = {Microelectromechanical systems and integrated photonics provide the basis for many reliable and compact circuit elements in modern communication systems. Electro-opto-mechanical devices are currently one of the leading approaches to realize ultra-sensitive, low-loss transducers for an emerging quantum information technology. Here we present an on-chip microwave frequency converter based on a planar aluminum on silicon nitride platform that is compatible with slot-mode coupled photonic crystal cavities. We show efficient frequency conversion between two propagating microwave modes mediated by the radiation pressure interaction with a metalized dielectric nanobeam oscillator. We achieve bidirectional coherent conversion with a total device efficiency of up to ~60%, a dynamic range of 2 × 10^9 photons/s and an instantaneous bandwidth of up to 1.7 kHz. A high fidelity quantum state transfer would be possible if the drive dependent output noise of currently ~14 photons s^−1 Hz^−1 is further reduced. Such a silicon nitride based transducer is in situ reconfigurable and could be used for on-chip classical and quantum signal routing and filtering, both for microwave and hybrid microwave-optical applications.}, author = {Fink, Johannes M and Kalaee, M. and Norte, R. and Pitanti, A. and Painter, O.}, issn = {20589565}, journal = {Quantum Science and Technology}, number = {3}, publisher = {IOP Publishing}, title = {{Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator}}, doi = {10.1088/2058-9565/ab8dce}, volume = {5}, year = {2020}, } @article{8036, abstract = {When tiny soft ferromagnetic particles are placed along a liquid interface and exposed to a vertical magnetic field, the balance between capillary attraction and magnetic repulsion leads to self-organization into well-defined patterns. Here, we demonstrate experimentally that precessing magnetic fields induce metachronal waves on the periphery of these assemblies, similar to the ones observed in ciliates and some arthropods. The outermost layer of particles behaves like an array of cilia or legs whose sequential movement causes a net and controllable locomotion. This bioinspired many-particle swimming strategy is effective even at low Reynolds number, using only spatially uniform fields to generate the waves.}, author = {Collard, Ylona and Grosjean, Galien M and Vandewalle, Nicolas}, issn = {23993650}, journal = {Communications Physics}, publisher = {Springer Nature}, title = {{Magnetically powered metachronal waves induce locomotion in self-assemblies}}, doi = {10.1038/s42005-020-0380-9}, volume = {3}, year = {2020}, } @article{8043, abstract = {With decreasing Reynolds number, Re, turbulence in channel flow becomes spatio-temporally intermittent and self-organises into solitary stripes oblique to the mean flow direction. We report here the existence of localised nonlinear travelling wave solutions of the Navier–Stokes equations possessing this obliqueness property. Such solutions are identified numerically using edge tracking coupled with arclength continuation. All solutions emerge in saddle-node bifurcations at values of Re lower than the non-localised solutions. Relative periodic orbit solutions bifurcating from branches of travelling waves have also been computed. A complete parametric study is performed, including their stability, the investigation of their large-scale flow, and the robustness to changes of the numerical domain.}, author = {Paranjape, Chaitanya S and Duguet, Yohann and Hof, Björn}, issn = {14697645}, journal = {Journal of Fluid Mechanics}, publisher = {Cambridge University Press}, title = {{Oblique stripe solutions of channel flow}}, doi = {10.1017/jfm.2020.322}, volume = {897}, year = {2020}, } @misc{9326, abstract = {The mitochondrial respiratory chain, formed by five protein complexes, utilizes energy from catabolic processes to synthesize ATP. Complex I, the first and the largest protein complex of the chain, harvests electrons from NADH to reduce quinone, while pumping protons across the mitochondrial membrane. Detailed knowledge of the working principle of such coupled charge-transfer processes remains, however, fragmentary due to bottlenecks in understanding redox-driven conformational transitions and their interplay with the hydrated proton pathways. Complex I from Thermus thermophilus encases 16 subunits with nine iron–sulfur clusters, reduced by electrons from NADH. Here, employing the latest crystal structure of T. thermophilus complex I, we have used microsecond-scale molecular dynamics simulations to study the chemo-mechanical coupling between redox changes of the iron–sulfur clusters and conformational transitions across complex I. First, we identify the redox switches within complex I, which allosterically couple the dynamics of the quinone binding pocket to the site of NADH reduction. Second, our free-energy calculations reveal that the affinity of the quinone, specifically menaquinone, for the binding-site is higher than that of its reduced, menaquinol forma design essential for menaquinol release. Remarkably, the barriers to diffusive menaquinone dynamics are lesser than that of the more ubiquitous ubiquinone, and the naphthoquinone headgroup of the former furnishes stronger binding interactions with the pocket, favoring menaquinone for charge transport in T. thermophilus. Our computations are consistent with experimentally validated mutations and hierarchize the key residues into three functional classes, identifying new mutation targets. Third, long-range hydrogen-bond networks connecting the quinone-binding site to the transmembrane subunits are found to be responsible for proton pumping. Put together, the simulations reveal the molecular design principles linking redox reactions to quinone turnover to proton translocation in complex I.}, author = {Gupta, Chitrak and Khaniya, Umesh and Chan, Chun and Dehez, Francois and Shekhar, Mrinal and Gunner, M. R. and Sazanov, Leonid A and Chipot, Christophe and Singharoy, Abhishek}, publisher = {American Chemical Society}, title = {{Charge transfer and chemo-mechanical coupling in respiratory complex I}}, doi = {10.1021/jacs.9b13450.s002}, year = {2020}, } @article{8042, abstract = {We consider systems of N bosons in a box of volume one, interacting through a repulsive two-body potential of the form κN3β−1V(Nβx). For all 0<β<1, and for sufficiently small coupling constant κ>0, we establish the validity of Bogolyubov theory, identifying the ground state energy and the low-lying excitation spectrum up to errors that vanish in the limit of large N.}, author = {Boccato, Chiara and Brennecke, Christian and Cenatiempo, Serena and Schlein, Benjamin}, issn = {14359855}, journal = {Journal of the European Mathematical Society}, number = {7}, pages = {2331--2403}, publisher = {European Mathematical Society}, title = {{The excitation spectrum of Bose gases interacting through singular potentials}}, doi = {10.4171/JEMS/966}, volume = {22}, year = {2020}, } @article{8093, abstract = {Background: The activation of the EGFR/Ras-signalling pathway in tumour cells induces a distinct chemokine repertoire, which in turn modulates the tumour microenvironment. Methods: The effects of EGFR/Ras on the expression and translation of CCL20 were analysed in a large set of epithelial cancer cell lines and tumour tissues by RT-qPCR and ELISA in vitro. CCL20 production was verified by immunohistochemistry in different tumour tissues and correlated with clinical data. The effects of CCL20 on endothelial cell migration and tumour-associated vascularisation were comprehensively analysed with chemotaxis assays in vitro and in CCR6-deficient mice in vivo. Results: Tumours facilitate progression by the EGFR/Ras-induced production of CCL20. Expression of the chemokine CCL20 in tumours correlates with advanced tumour stage, increased lymph node metastasis and decreased survival in patients. Microvascular endothelial cells abundantly express the specific CCL20 receptor CCR6. CCR6 signalling in endothelial cells induces angiogenesis. CCR6-deficient mice show significantly decreased tumour growth and tumour-associated vascularisation. The observed phenotype is dependent on CCR6 deficiency in stromal cells but not within the immune system. Conclusion: We propose that the chemokine axis CCL20–CCR6 represents a novel and promising target to interfere with the tumour microenvironment, and opens an innovative multimodal strategy for cancer therapy.}, author = {Hippe, Andreas and Braun, Stephan Alexander and Oláh, Péter and Gerber, Peter Arne and Schorr, Anne and Seeliger, Stephan and Holtz, Stephanie and Jannasch, Katharina and Pivarcsi, Andor and Buhren, Bettina and Schrumpf, Holger and Kislat, Andreas and Bünemann, Erich and Steinhoff, Martin and Fischer, Jens and Lira, Sérgio A. and Boukamp, Petra and Hevezi, Peter and Stoecklein, Nikolas Hendrik and Hoffmann, Thomas and Alves, Frauke and Sleeman, Jonathan and Bauer, Thomas and Klufa, Jörg and Amberg, Nicole and Sibilia, Maria and Zlotnik, Albert and Müller-Homey, Anja and Homey, Bernhard}, issn = {1532-1827}, journal = {British Journal of Cancer}, pages = {942--954}, publisher = {Springer Nature}, title = {{EGFR/Ras-induced CCL20 production modulates the tumour microenvironment}}, doi = {10.1038/s41416-020-0943-2}, volume = {123}, year = {2020}, } @article{8091, abstract = {In the setting of the fractional quantum Hall effect we study the effects of strong, repulsive two-body interaction potentials of short range. We prove that Haldane’s pseudo-potential operators, including their pre-factors, emerge as mathematically rigorous limits of such interactions when the range of the potential tends to zero while its strength tends to infinity. In a common approach the interaction potential is expanded in angular momentum eigenstates in the lowest Landau level, which amounts to taking the pre-factors to be the moments of the potential. Such a procedure is not appropriate for very strong interactions, however, in particular not in the case of hard spheres. We derive the formulas valid in the short-range case, which involve the scattering lengths of the interaction potential in different angular momentum channels rather than its moments. Our results hold for bosons and fermions alike and generalize previous results in [6], which apply to bosons in the lowest angular momentum channel. Our main theorem asserts the convergence in a norm-resolvent sense of the Hamiltonian on the whole Hilbert space, after appropriate energy scalings, to Hamiltonians with contact interactions in the lowest Landau level.}, author = {Seiringer, Robert and Yngvason, Jakob}, issn = {15729613}, journal = {Journal of Statistical Physics}, pages = {448--464}, publisher = {Springer}, title = {{Emergence of Haldane pseudo-potentials in systems with short-range interactions}}, doi = {10.1007/s10955-020-02586-0}, volume = {181}, year = {2020}, } @article{8077, abstract = {The projection methods with vanilla inertial extrapolation step for variational inequalities have been of interest to many authors recently due to the improved convergence speed contributed by the presence of inertial extrapolation step. However, it is discovered that these projection methods with inertial steps lose the Fejér monotonicity of the iterates with respect to the solution, which is being enjoyed by their corresponding non-inertial projection methods for variational inequalities. This lack of Fejér monotonicity makes projection methods with vanilla inertial extrapolation step for variational inequalities not to converge faster than their corresponding non-inertial projection methods at times. Also, it has recently been proved that the projection methods with vanilla inertial extrapolation step may provide convergence rates that are worse than the classical projected gradient methods for strongly convex functions. In this paper, we introduce projection methods with alternated inertial extrapolation step for solving variational inequalities. We show that the sequence of iterates generated by our methods converges weakly to a solution of the variational inequality under some appropriate conditions. The Fejér monotonicity of even subsequence is recovered in these methods and linear rate of convergence is obtained. The numerical implementations of our methods compared with some other inertial projection methods show that our method is more efficient and outperforms some of these inertial projection methods.}, author = {Shehu, Yekini and Iyiola, Olaniyi S.}, issn = {0168-9274}, journal = {Applied Numerical Mathematics}, pages = {315--337}, publisher = {Elsevier}, title = {{Projection methods with alternating inertial steps for variational inequalities: Weak and linear convergence}}, doi = {10.1016/j.apnum.2020.06.009}, volume = {157}, year = {2020}, } @article{8133, abstract = {The molecular factors which control circulating levels of inflammatory proteins are not well understood. Furthermore, association studies between molecular probes and human traits are often performed by linear model-based methods which may fail to account for complex structure and interrelationships within molecular datasets.In this study, we perform genome- and epigenome-wide association studies (GWAS/EWAS) on the levels of 70 plasma-derived inflammatory protein biomarkers in healthy older adults (Lothian Birth Cohort 1936; n = 876; Olink® inflammation panel). We employ a Bayesian framework (BayesR+) which can account for issues pertaining to data structure and unknown confounding variables (with sensitivity analyses using ordinary least squares- (OLS) and mixed model-based approaches). We identified 13 SNPs associated with 13 proteins (n = 1 SNP each) concordant across OLS and Bayesian methods. We identified 3 CpG sites spread across 3 proteins (n = 1 CpG each) that were concordant across OLS, mixed-model and Bayesian analyses. Tagged genetic variants accounted for up to 45% of variance in protein levels (for MCP2, 36% of variance alone attributable to 1 polymorphism). Methylation data accounted for up to 46% of variation in protein levels (for CXCL10). Up to 66% of variation in protein levels (for VEGFA) was explained using genetic and epigenetic data combined. We demonstrated putative causal relationships between CD6 and IL18R1 with inflammatory bowel disease and between IL12B and Crohn’s disease. Our data may aid understanding of the molecular regulation of the circulating inflammatory proteome as well as causal relationships between inflammatory mediators and disease.}, author = {Hillary, Robert F. and Trejo-Banos, Daniel and Kousathanas, Athanasios and Mccartney, Daniel L. and Harris, Sarah E. and Stevenson, Anna J. and Patxot, Marion and Ojavee, Sven Erik and Zhang, Qian and Liewald, David C. and Ritchie, Craig W. and Evans, Kathryn L. and Tucker-Drob, Elliot M. and Wray, Naomi R. and Mcrae, Allan F. and Visscher, Peter M. and Deary, Ian J. and Robinson, Matthew Richard and Marioni, Riccardo E.}, issn = {1756994X}, journal = {Genome Medicine}, number = {1}, publisher = {Springer Nature}, title = {{Multi-method genome- and epigenome-wide studies of inflammatory protein levels in healthy older adults}}, doi = {10.1186/s13073-020-00754-1}, volume = {12}, year = {2020}, } @article{8127, abstract = {Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators—trained using model simulations—to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin–Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics.}, author = {Gonçalves, Pedro J. and Lueckmann, Jan-Matthis and Deistler, Michael and Nonnenmacher, Marcel and Öcal, Kaan and Bassetto, Giacomo and Chintaluri, Chaitanya and Podlaski, William F. and Haddad, Sara A. and Vogels, Tim P and Greenberg, David S. and Macke, Jakob H.}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Training deep neural density estimators to identify mechanistic models of neural dynamics}}, doi = {10.7554/eLife.56261}, volume = {9}, year = {2020}, } @article{8126, abstract = {Cortical areas comprise multiple types of inhibitory interneurons with stereotypical connectivity motifs, but their combined effect on postsynaptic dynamics has been largely unexplored. Here, we analyse the response of a single postsynaptic model neuron receiving tuned excitatory connections alongside inhibition from two plastic populations. Depending on the inhibitory plasticity rule, synapses remain unspecific (flat), become anti-correlated to, or mirror excitatory synapses. Crucially, the neuron’s receptive field, i.e., its response to presynaptic stimuli, depends on the modulatory state of inhibition. When both inhibitory populations are active, inhibition balances excitation, resulting in uncorrelated postsynaptic responses regardless of the inhibitory tuning profiles. Modulating the activity of a given inhibitory population produces strong correlations to either preferred or non-preferred inputs, in line with recent experimental findings showing dramatic context-dependent changes of neurons’ receptive fields. We thus confirm that a neuron’s receptive field doesn’t follow directly from the weight profiles of its presynaptic afferents.}, author = {Agnes, Everton J. and Luppi, Andrea I. and Vogels, Tim P}, issn = {1529-2401}, journal = {The Journal of Neuroscience}, number = {50}, pages = {9634--9649}, publisher = {Society for Neuroscience}, title = {{Complementary inhibitory weight profiles emerge from plasticity and allow attentional switching of receptive fields}}, doi = {10.1523/JNEUROSCI.0276-20.2020}, volume = {40}, year = {2020}, } @misc{9706, abstract = {Additional file 2: Supplementary Tables. The association of pre-adjusted protein levels with biological and technical covariates. Protein levels were adjusted for age, sex, array plate and four genetic principal components (population structure) prior to analyses. Significant associations are emboldened. (Table S1). pQTLs associated with inflammatory biomarker levels from Bayesian penalised regression model (Posterior Inclusion Probability > 95%). (Table S2). All pQTLs associated with inflammatory biomarker levels from ordinary least squares regression model (P < 7.14 × 10− 10). (Table S3). Summary of lambda values relating to ordinary least squares GWAS and EWAS performed on inflammatory protein levels (n = 70) in Lothian Birth Cohort 1936 study. (Table S4). Conditionally significant pQTLs associated with inflammatory biomarker levels from ordinary least squares regression model (P < 7.14 × 10− 10). (Table S5). Comparison of variance explained by ordinary least squares and Bayesian penalised regression models for concordantly identified SNPs. (Table S6). Estimate of heritability for blood protein levels as well as proportion of variance explained attributable to different prior mixtures. (Table S7). Comparison of heritability estimates from Ahsan et al. (maximum likelihood) and Hillary et al. (Bayesian penalised regression). (Table S8). List of concordant SNPs identified by linear model and Bayesian penalised regression and whether they have been previously identified as eQTLs. (Table S9). Bayesian tests of colocalisation for cis pQTLs and cis eQTLs. (Table S10). Sherlock algorithm: Genes whose expression are putatively associated with circulating inflammatory proteins that harbour pQTLs. (Table S11). CpGs associated with inflammatory protein biomarkers as identified by Bayesian model (Bayesian model; Posterior Inclusion Probability > 95%). (Table S12). CpGs associated with inflammatory protein biomarkers as identified by linear model (limma) at P < 5.14 × 10− 10. (Table S13). CpGs associated with inflammatory protein biomarkers as identified by mixed linear model (OSCA) at P < 5.14 × 10− 10. (Table S14). Estimate of variance explained for blood protein levels by DNA methylation as well as proportion of explained attributable to different prior mixtures - BayesR+. (Table S15). Comparison of variance in protein levels explained by genome-wide DNA methylation data by mixed linear model (OSCA) and Bayesian penalised regression model (BayesR+). (Table S16). Variance in circulating inflammatory protein biomarker levels explained by common genetic and methylation data (joint and conditional estimates from BayesR+). Ordered by combined variance explained by genetic and epigenetic data - smallest to largest. Significant results from t-tests comparing distributions for variance explained by methylation or genetics alone versus combined estimate are emboldened. (Table S17). Genetic and epigenetic factors identified by BayesR+ when conditioning on all SNPs and CpGs together. (Table S18). Mendelian Randomisation analyses to assess whether proteins with concordantly identified genetic signals are causally associated with Alzheimer’s disease risk. (Table S19).}, author = {Hillary, Robert F. and Trejo-Banos, Daniel and Kousathanas, Athanasios and McCartney, Daniel L. and Harris, Sarah E. and Stevenson, Anna J. and Patxot, Marion and Ojavee, Sven Erik and Zhang, Qian and Liewald, David C. and Ritchie, Craig W. and Evans, Kathryn L. and Tucker-Drob, Elliot M. and Wray, Naomi R. and McRae, Allan F. and Visscher, Peter M. and Deary, Ian J. and Robinson, Matthew Richard and Marioni, Riccardo E. }, publisher = {Springer Nature}, title = {{Additional file 2 of multi-method genome- and epigenome-wide studies of inflammatory protein levels in healthy older adults}}, doi = {10.6084/m9.figshare.12629697.v1}, year = {2020}, } @article{8134, abstract = {We prove an upper bound on the free energy of a two-dimensional homogeneous Bose gas in the thermodynamic limit. We show that for a2ρ ≪ 1 and βρ ≳ 1, the free energy per unit volume differs from the one of the non-interacting system by at most 4πρ2|lna2ρ|−1(2−[1−βc/β]2+) to leading order, where a is the scattering length of the two-body interaction potential, ρ is the density, β is the inverse temperature, and βc is the inverse Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity. In combination with the corresponding matching lower bound proved by Deuchert et al. [Forum Math. Sigma 8, e20 (2020)], this shows equality in the asymptotic expansion.}, author = {Mayer, Simon and Seiringer, Robert}, issn = {00222488}, journal = {Journal of Mathematical Physics}, number = {6}, publisher = {AIP Publishing}, title = {{The free energy of the two-dimensional dilute Bose gas. II. Upper bound}}, doi = {10.1063/5.0005950}, volume = {61}, year = {2020}, } @article{8162, abstract = {In mammalian genomes, a subset of genes is regulated by genomic imprinting, resulting in silencing of one parental allele. Imprinting is essential for cerebral cortex development, but prevalence and functional impact in individual cells is unclear. Here, we determined allelic expression in cortical cell types and established a quantitative platform to interrogate imprinting in single cells. We created cells with uniparental chromosome disomy (UPD) containing two copies of either the maternal or the paternal chromosome; hence, imprinted genes will be 2-fold overexpressed or not expressed. By genetic labeling of UPD, we determined cellular phenotypes and transcriptional responses to deregulated imprinted gene expression at unprecedented single-cell resolution. We discovered an unexpected degree of cell-type specificity and a novel function of imprinting in the regulation of cortical astrocyte survival. More generally, our results suggest functional relevance of imprinted gene expression in glial astrocyte lineage and thus for generating cortical cell-type diversity.}, author = {Laukoter, Susanne and Pauler, Florian and Beattie, Robert J and Amberg, Nicole and Hansen, Andi H and Streicher, Carmen and Penz, Thomas and Bock, Christoph and Hippenmeyer, Simon}, issn = {0896-6273}, journal = {Neuron}, number = {6}, pages = {1160--1179.e9}, publisher = {Elsevier}, title = {{Cell-type specificity of genomic imprinting in cerebral cortex}}, doi = {10.1016/j.neuron.2020.06.031}, volume = {107}, year = {2020}, } @article{8138, abstract = {Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution. D14 receptor- and MAX2 F-box-mediated SL signaling inhibits the formation of auxin-conducting channels after wounding or from artificial auxin sources, during vasculature de novo formation and regeneration. At the cellular level, SLs interfere with auxin effects on PIN polar targeting, constitutive PIN trafficking as well as clathrin-mediated endocytosis. Our results identify a non-transcriptional mechanism of SL action, uncoupling auxin feedback on PIN polarity and trafficking, thereby regulating vascular tissue formation and regeneration.}, author = {Zhang, J and Mazur, E and Balla, J and Gallei, Michelle C and Kalousek, P and Medveďová, Z and Li, Y and Wang, Y and Prat, Tomas and Vasileva, Mina K and Reinöhl, V and Procházka, S and Halouzka, R and Tarkowski, P and Luschnig, C and Brewer, PB and Friml, Jiří}, issn = {2041-1723}, journal = {Nature Communications}, number = {1}, pages = {3508}, publisher = {Springer Nature}, title = {{Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization}}, doi = {10.1038/s41467-020-17252-y}, volume = {11}, year = {2020}, } @article{8168, abstract = {Speciation, that is, the evolution of reproductive barriers eventually leading to complete isolation, is a crucial process generating biodiversity. Recent work has contributed much to our understanding of how reproductive barriers begin to evolve, and how they are maintained in the face of gene flow. However, little is known about the transition from partial to strong reproductive isolation (RI) and the completion of speciation. We argue that the evolution of strong RI is likely to involve different processes, or new interactions among processes, compared with the evolution of the first reproductive barriers. Transition to strong RI may be brought about by changing external conditions, for example, following secondary contact. However, the increasing levels of RI themselves create opportunities for new barriers to evolve and, and interaction or coupling among barriers. These changing processes may depend on genomic architecture and leave detectable signals in the genome. We outline outstanding questions and suggest more theoretical and empirical work, considering both patterns and processes associated with strong RI, is needed to understand how speciation is completed.}, author = {Kulmuni, Jonna and Butlin, Roger K. and Lucek, Kay and Savolainen, Vincent and Westram, Anja M}, issn = {1471-2970}, journal = {Philosophical Transactions of the Royal Society. Series B: Biological sciences}, number = {1806}, publisher = {The Royal Society}, title = {{Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers}}, doi = {10.1098/rstb.2019.0528}, volume = {375}, year = {2020}, } @article{8167, abstract = {The evolution of strong reproductive isolation (RI) is fundamental to the origins and maintenance of biological diversity, especially in situations where geographical distributions of taxa broadly overlap. But what is the history behind strong barriers currently acting in sympatry? Using whole-genome sequencing and single nucleotide polymorphism genotyping, we inferred (i) the evolutionary relationships, (ii) the strength of RI, and (iii) the demographic history of divergence between two broadly sympatric taxa of intertidal snail. Despite being cryptic, based on external morphology, Littorina arcana and Littorina saxatilis differ in their mode of female reproduction (egg-laying versus brooding), which may generate a strong post-zygotic barrier. We show that egg-laying and brooding snails are closely related, but genetically distinct. Genotyping of 3092 snails from three locations failed to recover any recent hybrid or backcrossed individuals, confirming that RI is strong. There was, however, evidence for a very low level of asymmetrical introgression, suggesting that isolation remains incomplete. The presence of strong, asymmetrical RI was further supported by demographic analysis of these populations. Although the taxa are currently broadly sympatric, demographic modelling suggests that they initially diverged during a short period of geographical separation involving very low gene flow. Our study suggests that some geographical separation may kick-start the evolution of strong RI, facilitating subsequent coexistence of taxa in sympatry. The strength of RI needed to achieve sympatry and the subsequent effect of sympatry on RI remain open questions.}, author = {Stankowski, Sean and Westram, Anja M and Zagrodzka, Zuzanna B. and Eyres, Isobel and Broquet, Thomas and Johannesson, Kerstin and Butlin, Roger K.}, issn = {1471-2970}, journal = {Philosophical Transactions of the Royal Society. Series B: Biological Sciences}, number = {1806}, publisher = {The Royal Society}, title = {{The evolution of strong reproductive isolation between sympatric intertidal snails}}, doi = {10.1098/rstb.2019.0545}, volume = {375}, year = {2020}, } @article{8170, abstract = {Alignment of OCS, CS2, and I2 molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For CS2 and I2, they are the first experimental results reported. The alignment dynamics calculated from the gas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in helium droplets introduced here should apply to a range of molecules and complexes.}, author = {Chatterley, Adam S. and Christiansen, Lars and Schouder, Constant A. and Jørgensen, Anders V. and Shepperson, Benjamin and Cherepanov, Igor and Bighin, Giacomo and Zillich, Robert E. and Lemeshko, Mikhail and Stapelfeldt, Henrik}, issn = {10797114}, journal = {Physical Review Letters}, number = {1}, publisher = {American Physical Society}, title = {{Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains}}, doi = {10.1103/PhysRevLett.125.013001}, volume = {125}, year = {2020}, } @inproceedings{8194, abstract = {Fixed-point arithmetic is a popular alternative to floating-point arithmetic on embedded systems. Existing work on the verification of fixed-point programs relies on custom formalizations of fixed-point arithmetic, which makes it hard to compare the described techniques or reuse the implementations. In this paper, we address this issue by proposing and formalizing an SMT theory of fixed-point arithmetic. We present an intuitive yet comprehensive syntax of the fixed-point theory, and provide formal semantics for it based on rational arithmetic. We also describe two decision procedures for this theory: one based on the theory of bit-vectors and the other on the theory of reals. We implement the two decision procedures, and evaluate our implementations using existing mature SMT solvers on a benchmark suite we created. Finally, we perform a case study of using the theory we propose to verify properties of quantized neural networks.}, author = {Baranowski, Marek and He, Shaobo and Lechner, Mathias and Nguyen, Thanh Son and Rakamarić, Zvonimir}, booktitle = {Automated Reasoning}, isbn = {9783030510732}, issn = {16113349}, location = {Paris, France}, pages = {13--31}, publisher = {Springer Nature}, title = {{An SMT theory of fixed-point arithmetic}}, doi = {10.1007/978-3-030-51074-9_2}, volume = {12166}, year = {2020}, } @article{8220, abstract = {Understanding to what extent stem cell potential is a cell-intrinsic property or an emergent behavior coming from global tissue dynamics and geometry is a key outstanding question of systems and stem cell biology. Here, we propose a theory of stem cell dynamics as a stochastic competition for access to a spatially localized niche, giving rise to a stochastic conveyor-belt model. Cell divisions produce a steady cellular stream which advects cells away from the niche, while random rearrangements enable cells away from the niche to be favorably repositioned. Importantly, even when assuming that all cells in a tissue are molecularly equivalent, we predict a common (“universal”) functional dependence of the long-term clonal survival probability on distance from the niche, as well as the emergence of a well-defined number of functional stem cells, dependent only on the rate of random movements vs. mitosis-driven advection. We test the predictions of this theory on datasets of pubertal mammary gland tips and embryonic kidney tips, as well as homeostatic intestinal crypts. Importantly, we find good agreement for the predicted functional dependency of the competition as a function of position, and thus functional stem cell number in each organ. This argues for a key role of positional fluctuations in dictating stem cell number and dynamics, and we discuss the applicability of this theory to other settings.}, author = {Corominas-Murtra, Bernat and Scheele, Colinda L.G.J. and Kishi, Kasumi and Ellenbroek, Saskia I.J. and Simons, Benjamin D. and Van Rheenen, Jacco and Hannezo, Edouard B}, issn = {10916490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {29}, pages = {16969--16975}, publisher = {National Academy of Sciences}, title = {{Stem cell lineage survival as a noisy competition for niche access}}, doi = {10.1073/pnas.1921205117}, volume = {117}, year = {2020}, } @article{8199, abstract = {We investigate a mechanism to transiently stabilize topological phenomena in long-lived quasi-steady states of isolated quantum many-body systems driven at low frequencies. We obtain an analytical bound for the lifetime of the quasi-steady states which is exponentially large in the inverse driving frequency. Within this lifetime, the quasi-steady state is characterized by maximum entropy subject to the constraint of fixed number of particles in the system's Floquet-Bloch bands. In such a state, all the non-universal properties of these bands are washed out, hence only the topological properties persist.}, author = {Gulden, Tobias and Berg, Erez and Rudner, Mark Spencer and Lindner, Netanel}, issn = {2542-4653}, journal = {SciPost Physics}, publisher = {SciPost Foundation}, title = {{Exponentially long lifetime of universal quasi-steady states in topological Floquet pumps}}, doi = {10.21468/scipostphys.9.1.015}, volume = {9}, year = {2020}, } @article{8261, abstract = {Dentate gyrus granule cells (GCs) connect the entorhinal cortex to the hippocampal CA3 region, but how they process spatial information remains enigmatic. To examine the role of GCs in spatial coding, we measured excitatory postsynaptic potentials (EPSPs) and action potentials (APs) in head-fixed mice running on a linear belt. Intracellular recording from morphologically identified GCs revealed that most cells were active, but activity level varied over a wide range. Whereas only ∼5% of GCs showed spatially tuned spiking, ∼50% received spatially tuned input. Thus, the GC population broadly encodes spatial information, but only a subset relays this information to the CA3 network. Fourier analysis indicated that GCs received conjunctive place-grid-like synaptic input, suggesting code conversion in single neurons. GC firing was correlated with dendritic complexity and intrinsic excitability, but not extrinsic excitatory input or dendritic cable properties. Thus, functional maturation may control input-output transformation and spatial code conversion.}, author = {Zhang, Xiaomin and Schlögl, Alois and Jonas, Peter M}, issn = {0896-6273}, journal = {Neuron}, number = {6}, pages = {1212--1225}, publisher = {Elsevier}, title = {{Selective routing of spatial information flow from input to output in hippocampal granule cells}}, doi = {10.1016/j.neuron.2020.07.006}, volume = {107}, year = {2020}, } @article{8268, abstract = {Modern scientific instruments produce vast amounts of data, which can overwhelm the processing ability of computer systems. Lossy compression of data is an intriguing solution, but comes with its own drawbacks, such as potential signal loss, and the need for careful optimization of the compression ratio. In this work, we focus on a setting where this problem is especially acute: compressive sensing frameworks for interferometry and medical imaging. We ask the following question: can the precision of the data representation be lowered for all inputs, with recovery guarantees and practical performance Our first contribution is a theoretical analysis of the normalized Iterative Hard Thresholding (IHT) algorithm when all input data, meaning both the measurement matrix and the observation vector are quantized aggressively. We present a variant of low precision normalized IHT that, under mild conditions, can still provide recovery guarantees. The second contribution is the application of our quantization framework to radio astronomy and magnetic resonance imaging. We show that lowering the precision of the data can significantly accelerate image recovery. We evaluate our approach on telescope data and samples of brain images using CPU and FPGA implementations achieving up to a 9x speedup with negligible loss of recovery quality.}, author = {Gurel, Nezihe Merve and Kara, Kaan and Stojanov, Alen and Smith, Tyler and Lemmin, Thomas and Alistarh, Dan-Adrian and Puschel, Markus and Zhang, Ce}, issn = {19410476}, journal = {IEEE Transactions on Signal Processing}, pages = {4268--4282}, publisher = {IEEE}, title = {{Compressive sensing using iterative hard thresholding with low precision data representation: Theory and applications}}, doi = {10.1109/TSP.2020.3010355}, volume = {68}, year = {2020}, } @article{8101, abstract = {By rigorously accounting for mesoscale spatial correlations in donor/acceptor surface properties, we develop a scale-spanning model for same-material tribocharging. We find that mesoscale correlations affect not only the magnitude of charge transfer but also the fluctuations—suppressing otherwise overwhelming charge-transfer variability that is not observed experimentally. We furthermore propose a generic theoretical mechanism by which the mesoscale features might emerge, which is qualitatively consistent with other proposals in the literature.}, author = {Grosjean, Galien M and Wald, Sebastian and Sobarzo Ponce, Juan Carlos A and Waitukaitis, Scott R}, issn = {2475-9953}, journal = {Physical Review Materials}, keywords = {electric charge, tribocharging, soft matter, granular materials, polymers}, number = {8}, publisher = {American Physical Society}, title = {{Quantitatively consistent scale-spanning model for same-material tribocharging}}, doi = {10.1103/PhysRevMaterials.4.082602}, volume = {4}, year = {2020}, } @article{8325, abstract = {Let 𝐹:ℤ2→ℤ be the pointwise minimum of several linear functions. The theory of smoothing allows us to prove that under certain conditions there exists the pointwise minimal function among all integer-valued superharmonic functions coinciding with F “at infinity”. We develop such a theory to prove existence of so-called solitons (or strings) in a sandpile model, studied by S. Caracciolo, G. Paoletti, and A. Sportiello. Thus we made a step towards understanding the phenomena of the identity in the sandpile group for planar domains where solitons appear according to experiments. We prove that sandpile states, defined using our smoothing procedure, move changeless when we apply the wave operator (that is why we call them solitons), and can interact, forming triads and nodes. }, author = {Kalinin, Nikita and Shkolnikov, Mikhail}, issn = {14320916}, journal = {Communications in Mathematical Physics}, number = {9}, pages = {1649--1675}, publisher = {Springer Nature}, title = {{Sandpile solitons via smoothing of superharmonic functions}}, doi = {10.1007/s00220-020-03828-8}, volume = {378}, year = {2020}, } @article{8318, abstract = {Complex I is the first and the largest enzyme of respiratory chains in bacteria and mitochondria. The mechanism which couples spatially separated transfer of electrons to proton translocation in complex I is not known. Here we report five crystal structures of T. thermophilus enzyme in complex with NADH or quinone-like compounds. We also determined cryo-EM structures of major and minor native states of the complex, differing in the position of the peripheral arm. Crystal structures show that binding of quinone-like compounds (but not of NADH) leads to a related global conformational change, accompanied by local re-arrangements propagating from the quinone site to the nearest proton channel. Normal mode and molecular dynamics analyses indicate that these are likely to represent the first steps in the proton translocation mechanism. Our results suggest that quinone binding and chemistry play a key role in the coupling mechanism of complex I.}, author = {Gutierrez-Fernandez, Javier and Kaszuba, Karol and Minhas, Gurdeep S. and Baradaran, Rozbeh and Tambalo, Margherita and Gallagher, David T. and Sazanov, Leonid A}, issn = {20411723}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, title = {{Key role of quinone in the mechanism of respiratory complex I}}, doi = {10.1038/s41467-020-17957-0}, volume = {11}, year = {2020}, } @article{8323, author = {Pach, János}, issn = {14320444}, journal = {Discrete and Computational Geometry}, pages = {571--574}, publisher = {Springer Nature}, title = {{A farewell to Ricky Pollack}}, doi = {10.1007/s00454-020-00237-5}, volume = {64}, year = {2020}, } @article{8336, abstract = {Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs), which via a two-component phosphorelay cascade activate transcriptional responses in the nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER) membrane as a principal cytokinin perception site, while study of cytokinin transport pointed to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring of subcellular localizations of the fluorescently labelled natural cytokinin probe and the receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells. Brefeldin A (BFA) experiments revealed vesicular recycling of the receptor and its accumulation in BFA compartments. We provide a revised view on cytokinin signalling and the possibility of multiple sites of perception at PM and ER.}, author = {Kubiasova, Karolina and Montesinos López, Juan C and Šamajová, Olga and Nisler, Jaroslav and Mik, Václav and Semeradova, Hana and Plíhalová, Lucie and Novák, Ondřej and Marhavý, Peter and Cavallari, Nicola and Zalabák, David and Berka, Karel and Doležal, Karel and Galuszka, Petr and Šamaj, Jozef and Strnad, Miroslav and Benková, Eva and Plíhal, Ondřej and Spíchal, Lukáš}, issn = {20411723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Cytokinin fluoroprobe reveals multiple sites of cytokinin perception at plasma membrane and endoplasmic reticulum}}, doi = {10.1038/s41467-020-17949-0}, volume = {11}, year = {2020}, } @article{8337, abstract = {Cytokinins are mobile multifunctional plant hormones with roles in development and stress resilience. Although their Histidine Kinase receptors are substantially localised to the endoplasmic reticulum, cellular sites of cytokinin perception and importance of spatially heterogeneous cytokinin distribution continue to be debated. Here we show that cytokinin perception by plasma membrane receptors is an effective additional path for cytokinin response. Readout from a Two Component Signalling cytokinin-specific reporter (TCSn::GFP) closely matches intracellular cytokinin content in roots, yet we also find cytokinins in extracellular fluid, potentially enabling action at the cell surface. Cytokinins covalently linked to beads that could not pass the plasma membrane increased expression of both TCSn::GFP and Cytokinin Response Factors. Super-resolution microscopy of GFP-labelled receptors and diminished TCSn::GFP response to immobilised cytokinins in cytokinin receptor mutants, further indicate that receptors can function at the cell surface. We argue that dual intracellular and surface locations may augment flexibility of cytokinin responses.}, author = {Antoniadi, Ioanna and Novák, Ondřej and Gelová, Zuzana and Johnson, Alexander J and Plíhal, Ondřej and Simerský, Radim and Mik, Václav and Vain, Thomas and Mateo-Bonmatí, Eduardo and Karady, Michal and Pernisová, Markéta and Plačková, Lenka and Opassathian, Korawit and Hejátko, Jan and Robert, Stéphanie and Friml, Jiří and Doležal, Karel and Ljung, Karin and Turnbull, Colin}, issn = {20411723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Cell-surface receptors enable perception of extracellular cytokinins}}, doi = {10.1038/s41467-020-17700-9}, volume = {11}, year = {2020}, } @misc{8067, abstract = {With the lithium-ion technology approaching its intrinsic limit with graphite-based anodes, lithium metal is recently receiving renewed interest from the battery community as potential high capacity anode for next-generation rechargeable batteries. In this focus paper, we review the main advances in this field since the first attempts in the mid-1970s. Strategies for enabling reversible cycling and avoiding dendrite growth are thoroughly discussed, including specific applications in all-solid-state (polymeric and inorganic), Lithium-sulphur and Li-O2 (air) batteries. A particular attention is paid to review recent developments in regard of prototype manufacturing and current state-ofthe-art of these battery technologies with respect to the 2030 targets of the EU Integrated Strategic Energy Technology Plan (SET-Plan) Action 7.}, author = {Varzi, Alberto and Thanner, Katharina and Scipioni, Roberto and Di Lecce, Daniele and Hassoun, Jusef and Dörfler, Susanne and Altheus, Holger and Kaskel, Stefan and Prehal, Christian and Freunberger, Stefan Alexander}, issn = {2664-1690}, keywords = {Battery, Lithium metal, Lithium-sulphur, Lithium-air, All-solid-state}, pages = {63}, publisher = {IST Austria}, title = {{Current status and future perspectives of Lithium metal batteries}}, doi = {10.15479/AT:ISTA:8067}, year = {2020}, } @article{8361, abstract = {With the lithium-ion technology approaching its intrinsic limit with graphite-based anodes, Li metal is recently receiving renewed interest from the battery community as potential high capacity anode for next-generation rechargeable batteries. In this focus paper, we review the main advances in this field since the first attempts in the mid-1970s. Strategies for enabling reversible cycling and avoiding dendrite growth are thoroughly discussed, including specific applications in all-solid-state (inorganic and polymeric), Lithium–Sulfur (Li–S) and Lithium-O2 (air) batteries. A particular attention is paid to recent developments of these battery technologies and their current state with respect to the 2030 targets of the EU Integrated Strategic Energy Technology Plan (SET-Plan) Action 7.}, author = {Varzi, Alberto and Thanner, Katharina and Scipioni, Roberto and Di Lecce, Daniele and Hassoun, Jusef and Dörfler, Susanne and Altheus, Holger and Kaskel, Stefan and Prehal, Christian and Freunberger, Stefan Alexander}, issn = {0378-7753}, journal = {Journal of Power Sources}, number = {12}, publisher = {Elsevier}, title = {{Current status and future perspectives of lithium metal batteries}}, doi = {10.1016/j.jpowsour.2020.228803}, volume = {480}, year = {2020}, } @article{8529, abstract = {Practical quantum networks require low-loss and noise-resilient optical interconnects as well as non-Gaussian resources for entanglement distillation and distributed quantum computation. The latter could be provided by superconducting circuits but existing solutions to interface the microwave and optical domains lack either scalability or efficiency, and in most cases the conversion noise is not known. In this work we utilize the unique opportunities of silicon photonics, cavity optomechanics and superconducting circuits to demonstrate a fully integrated, coherent transducer interfacing the microwave X and the telecom S bands with a total (internal) bidirectional transduction efficiency of 1.2% (135%) at millikelvin temperatures. The coupling relies solely on the radiation pressure interaction mediated by the femtometer-scale motion of two silicon nanobeams reaching a Vπ as low as 16 μV for sub-nanowatt pump powers. Without the associated optomechanical gain, we achieve a total (internal) pure conversion efficiency of up to 0.019% (1.6%), relevant for future noise-free operation on this qubit-compatible platform.}, author = {Arnold, Georg M and Wulf, Matthias and Barzanjeh, Shabir and Redchenko, Elena and Rueda Sanchez, Alfredo R and Hease, William J and Hassani, Farid and Fink, Johannes M}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Converting microwave and telecom photons with a silicon photonic nanomechanical interface}}, doi = {10.1038/s41467-020-18269-z}, volume = {11}, year = {2020}, } @article{8535, abstract = {We propose a method to enhance the visual detail of a water surface simulation. Our method works as a post-processing step which takes a simulation as input and increases its apparent resolution by simulating many detailed Lagrangian water waves on top of it. We extend linear water wave theory to work in non-planar domains which deform over time, and we discretize the theory using Lagrangian wave packets attached to spline curves. The method is numerically stable and trivially parallelizable, and it produces high frequency ripples with dispersive wave-like behaviors customized to the underlying fluid simulation.}, author = {Skrivan, Tomas and Soderstrom, Andreas and Johansson, John and Sprenger, Christoph and Museth, Ken and Wojtan, Christopher J}, issn = {15577368}, journal = {ACM Transactions on Graphics}, number = {4}, publisher = {Association for Computing Machinery}, title = {{Wave curves: Simulating Lagrangian water waves on dynamically deforming surfaces}}, doi = {10.1145/3386569.3392466}, volume = {39}, year = {2020}, } @article{8539, abstract = {Cohomological and K-theoretic stable bases originated from the study of quantum cohomology and quantum K-theory. Restriction formula for cohomological stable bases played an important role in computing the quantum connection of cotangent bundle of partial flag varieties. In this paper we study the K-theoretic stable bases of cotangent bundles of flag varieties. We describe these bases in terms of the action of the affine Hecke algebra and the twisted group algebra of KostantKumar. Using this algebraic description and the method of root polynomials, we give a restriction formula of the stable bases. We apply it to obtain the restriction formula for partial flag varieties. We also build a relation between the stable basis and the Casselman basis in the principal series representations of the Langlands dual group. As an application, we give a closed formula for the transition matrix between Casselman basis and the characteristic functions.}, author = {Su, C. and Zhao, Gufang and Zhong, C.}, issn = {0012-9593}, journal = {Annales Scientifiques de l'Ecole Normale Superieure}, number = {3}, pages = {663--671}, publisher = {Société Mathématique de France}, title = {{On the K-theory stable bases of the springer resolution}}, doi = {10.24033/asens.2431}, volume = {53}, year = {2020}, } @misc{13056, abstract = {This datasets comprises all data shown in plots of the submitted article "Converting microwave and telecom photons with a silicon photonic nanomechanical interface". Additional raw data are available from the corresponding author on reasonable request.}, author = {Arnold, Georg M and Wulf, Matthias and Barzanjeh, Shabir and Redchenko, Elena and Rueda Sanchez, Alfredo R and Hease, William J and Hassani, Farid and Fink, Johannes M}, publisher = {Zenodo}, title = {{Converting microwave and telecom photons with a silicon photonic nanomechanical interface}}, doi = {10.5281/ZENODO.3961561}, year = {2020}, } @article{8579, abstract = {Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.}, author = {Andrei, Andreea and Öztürk, Yavuz and Khalfaoui-Hassani, Bahia and Rauch, Juna and Marckmann, Dorian and Trasnea, Petru Iulian and Daldal, Fevzi and Koch, Hans-Georg}, issn = {20770375}, journal = {Membranes}, number = {9}, publisher = {MDPI}, title = {{Cu homeostasis in bacteria: The ins and outs}}, doi = {10.3390/membranes10090242}, volume = {10}, year = {2020}, } @article{8592, abstract = {Glioblastoma is the most malignant cancer in the brain and currently incurable. It is urgent to identify effective targets for this lethal disease. Inhibition of such targets should suppress the growth of cancer cells and, ideally also precancerous cells for early prevention, but minimally affect their normal counterparts. Using genetic mouse models with neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) as the cells‐of‐origin/mutation, it is shown that the susceptibility of cells within the development hierarchy of glioma to the knockout of insulin‐like growth factor I receptor (IGF1R) is determined not only by their oncogenic states, but also by their cell identities/states. Knockout of IGF1R selectively disrupts the growth of mutant and transformed, but not normal OPCs, or NSCs. The desirable outcome of IGF1R knockout on cell growth requires the mutant cells to commit to the OPC identity regardless of its development hierarchical status. At the molecular level, oncogenic mutations reprogram the cellular network of OPCs and force them to depend more on IGF1R for their growth. A new‐generation brain‐penetrable, orally available IGF1R inhibitor harnessing tumor OPCs in the brain is also developed. The findings reveal the cellular window of IGF1R targeting and establish IGF1R as an effective target for the prevention and treatment of glioblastoma.}, author = {Tian, Anhao and Kang, Bo and Li, Baizhou and Qiu, Biying and Jiang, Wenhong and Shao, Fangjie and Gao, Qingqing and Liu, Rui and Cai, Chengwei and Jing, Rui and Wang, Wei and Chen, Pengxiang and Liang, Qinghui and Bao, Lili and Man, Jianghong and Wang, Yan and Shi, Yu and Li, Jin and Yang, Minmin and Wang, Lisha and Zhang, Jianmin and Hippenmeyer, Simon and Zhu, Junming and Bian, Xiuwu and Wang, Ying‐Jie and Liu, Chong}, issn = {2198-3844}, journal = {Advanced Science}, keywords = {General Engineering, General Physics and Astronomy, General Materials Science, Medicine (miscellaneous), General Chemical Engineering, Biochemistry, Genetics and Molecular Biology (miscellaneous)}, number = {21}, publisher = {Wiley}, title = {{Oncogenic state and cell identity combinatorially dictate the susceptibility of cells within glioma development hierarchy to IGF1R targeting}}, doi = {10.1002/advs.202001724}, volume = {7}, year = {2020}, } @article{8568, abstract = {Aqueous iodine based electrochemical energy storage is considered a potential candidate to improve sustainability and performance of current battery and supercapacitor technology. It harnesses the redox activity of iodide, iodine, and polyiodide species in the confined geometry of nanoporous carbon electrodes. However, current descriptions of the electrochemical reaction mechanism to interconvert these species are elusive. Here we show that electrochemical oxidation of iodide in nanoporous carbons forms persistent solid iodine deposits. Confinement slows down dissolution into triiodide and pentaiodide, responsible for otherwise significant self-discharge via shuttling. The main tools for these insights are in situ Raman spectroscopy and in situ small and wide-angle X-ray scattering (in situ SAXS/WAXS). In situ Raman confirms the reversible formation of triiodide and pentaiodide. In situ SAXS/WAXS indicates remarkable amounts of solid iodine deposited in the carbon nanopores. Combined with stochastic modeling, in situ SAXS allows quantifying the solid iodine volume fraction and visualizing the iodine structure on 3D lattice models at the sub-nanometer scale. Based on the derived mechanism, we demonstrate strategies for improved iodine pore filling capacity and prevention of self-discharge, applicable to hybrid supercapacitors and batteries.}, author = {Prehal, Christian and Fitzek, Harald and Kothleitner, Gerald and Presser, Volker and Gollas, Bernhard and Freunberger, Stefan Alexander and Abbas, Qamar}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry}, publisher = {Springer Nature}, title = {{Persistent and reversible solid iodine electrodeposition in nanoporous carbons}}, doi = {10.1038/s41467-020-18610-6}, volume = {11}, year = {2020}, }