@article{13257, abstract = {The magnetotropic susceptibility is the thermodynamic coefficient associated with the rotational anisotropy of the free energy in an external magnetic field and is closely related to the magnetic susceptibility. It emerges naturally in frequency-shift measurements of oscillating mechanical cantilevers, which are becoming an increasingly important tool in the quantitative study of the thermodynamics of modern condensed-matter systems. Here we discuss the basic properties of the magnetotropic susceptibility as they relate to the experimental aspects of frequency-shift measurements, as well as to the interpretation of those experiments in terms of the intrinsic properties of the system under study.}, author = {Shekhter, A. and Mcdonald, R. D. and Ramshaw, B. J. and Modic, Kimberly A}, issn = {2469-9969}, journal = {Physical Review B}, number = {3}, publisher = {American Physical Society}, title = {{Magnetotropic susceptibility}}, doi = {10.1103/PhysRevB.108.035111}, volume = {108}, year = {2023}, } @article{13972, abstract = {This Special Collection is dedicated to the field of photocatalytic synthesis and contains a diverse selection of original research contributions. It includes studies on catalyst development, mechanistic investigations, method development and the use of enabling technologies, illustrating the many facets of state-of-the-art research in photocatalytic synthesis. Further, emerging topics are surveyed and discussed in three reviews and a concept article.}, author = {Næsborg, Line and Pieber, Bartholomäus and Wenger, Oliver S.}, issn = {1867-3899}, journal = {ChemCatChem}, publisher = {Wiley}, title = {{Special Collection: Photocatalytic synthesis}}, doi = {10.1002/cctc.202300683}, year = {2023}, } @article{13968, abstract = {The use of multimodal readout mechanisms next to label-free real-time monitoring of biomolecular interactions can provide valuable insight into surface-based reaction mechanisms. To this end, the combination of an electrolyte-gated field-effect transistor (EG-FET) with a fiber optic-coupled surface plasmon resonance (FO-SPR) probe serving as gate electrode has been investigated to deconvolute surface mass and charge density variations associated to surface reactions. However, applying an electrochemical potential on such gold-coated FO-SPR gate electrodes can induce gradual morphological changes of the thin gold film, leading to an irreversible blue-shift of the SPR wavelength and a substantial signal drift. We show that mild annealing leads to optical and electronic signal stabilization (20-fold lower signal drift than as-sputtered fiber optic gates) and improved overall analytical performance characteristics. The thermal treatment prevents morphological changes of the thin gold-film occurring during operation, hence providing reliable and stable data immediately upon gate voltage application. Thus, the readout output of both transducing principles, the optical FO-SPR and electronic EG-FET, stays constant throughout the whole sensing time-window and the long-term effect of thermal treatment is also improved, providing stable signals even after 1 year of storage. Annealing should therefore be considered a necessary modification for applying fiber optic gate electrodes in real-time multimodal investigations of surface reactions at the solid-liquid interface.}, author = {Hasler, Roger and Steger-Polt, Marie Helene and Reiner-Rozman, Ciril and Fossati, Stefan and Lee, Seungho and Aspermair, Patrik and Kleber, Christoph and Ibáñez, Maria and Dostalek, Jakub and Knoll, Wolfgang}, issn = {2296-424X}, journal = {Frontiers in Physics}, publisher = {Frontiers}, title = {{Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing}}, doi = {10.3389/fphy.2023.1202132}, volume = {11}, year = {2023}, } @article{14042, abstract = {Long-time and large-data existence of weak solutions for initial- and boundary-value problems concerning three-dimensional flows of incompressible fluids is nowadays available not only for Navier–Stokes fluids but also for various fluid models where the relation between the Cauchy stress tensor and the symmetric part of the velocity gradient is nonlinear. The majority of such studies however concerns models where such a dependence is explicit (the stress is a function of the velocity gradient), which makes the class of studied models unduly restrictive. The same concerns boundary conditions, or more precisely the slipping mechanisms on the boundary, where the no-slip is still the most preferred condition considered in the literature. Our main objective is to develop a robust mathematical theory for unsteady internal flows of implicitly constituted incompressible fluids with implicit relations between the tangential projections of the velocity and the normal traction on the boundary. The theory covers numerous rheological models used in chemistry, biorheology, polymer and food industry as well as in geomechanics. It also includes, as special cases, nonlinear slip as well as stick–slip boundary conditions. Unlike earlier studies, the conditions characterizing admissible classes of constitutive equations are expressed by means of tools of elementary calculus. In addition, a fully constructive proof (approximation scheme) is incorporated. Finally, we focus on the question of uniqueness of such weak solutions.}, author = {Bulíček, Miroslav and Málek, Josef and Maringová, Erika}, issn = {1422-6952}, journal = {Journal of Mathematical Fluid Mechanics}, number = {3}, publisher = {Springer Nature}, title = {{On unsteady internal flows of incompressible fluids characterized by implicit constitutive equations in the bulk and on the boundary}}, doi = {10.1007/s00021-023-00803-w}, volume = {25}, year = {2023}, } @article{14041, abstract = {Tissue morphogenesis and patterning during development involve the segregation of cell types. Segregation is driven by differential tissue surface tensions generated by cell types through controlling cell-cell contact formation by regulating adhesion and actomyosin contractility-based cellular cortical tensions. We use vertebrate tissue cell types and zebrafish germ layer progenitors as in vitro models of 3-dimensional heterotypic segregation and developed a quantitative analysis of their dynamics based on 3D time-lapse microscopy. We show that general inhibition of actomyosin contractility by the Rho kinase inhibitor Y27632 delays segregation. Cell type-specific inhibition of non-muscle myosin2 activity by overexpression of myosin assembly inhibitor S100A4 reduces tissue surface tension, manifested in decreased compaction during aggregation and inverted geometry observed during segregation. The same is observed when we express a constitutively active Rho kinase isoform to ubiquitously keep actomyosin contractility high at cell-cell and cell-medium interfaces and thus overriding the interface-specific regulation of cortical tensions. Tissue surface tension regulation can become an effective tool in tissue engineering.}, author = {Méhes, Elod and Mones, Enys and Varga, Máté and Zsigmond, Áron and Biri-Kovács, Beáta and Nyitray, László and Barone, Vanessa and Krens, Gabriel and Heisenberg, Carl-Philipp J and Vicsek, Tamás}, issn = {2399-3642}, journal = {Communications Biology}, publisher = {Springer Nature}, title = {{3D cell segregation geometry and dynamics are governed by tissue surface tension regulation}}, doi = {10.1038/s42003-023-05181-7}, volume = {6}, year = {2023}, }