@inproceedings{3125,
abstract = {We propose a new learning method to infer a mid-level feature representation that combines the advantage of semantic attribute representations with the higher expressive power of non-semantic features. The idea lies in augmenting an existing attribute-based representation with additional dimensions for which an autoencoder model is coupled with a large-margin principle. This construction allows a smooth transition between the zero-shot regime with no training example, the unsupervised regime with training examples but without class labels, and the supervised regime with training examples and with class labels. The resulting optimization problem can be solved efficiently, because several of the necessity steps have closed-form solutions. Through extensive experiments we show that the augmented representation achieves better results in terms of object categorization accuracy than the semantic representation alone.},
author = {Sharmanska, Viktoriia and Quadrianto, Novi and Lampert, Christoph},
location = {Florence, Italy},
number = {PART 5},
pages = {242 -- 255},
publisher = {Springer},
title = {{Augmented attribute representations}},
doi = {10.1007/978-3-642-33715-4_18},
volume = {7576},
year = {2012},
}
@inproceedings{3127,
abstract = {When searching for characteristic subpatterns in potentially noisy graph data, it appears self-evident that having multiple observations would be better than having just one. However, it turns out that the inconsistencies introduced when different graph instances have different edge sets pose a serious challenge. In this work we address this challenge for the problem of finding maximum weighted cliques.
We introduce the concept of most persistent soft-clique. This is subset of vertices, that 1) is almost fully or at least densely connected, 2) occurs in all or almost all graph instances, and 3) has the maximum weight. We present a measure of clique-ness, that essentially counts the number of edge missing to make a subset of vertices into a clique. With this measure, we show that the problem of finding the most persistent soft-clique problem can be cast either as: a) a max-min two person game optimization problem, or b) a min-min soft margin optimization problem. Both formulations lead to the same solution when using a partial Lagrangian method to solve the optimization problems. By experiments on synthetic data and on real social network data, we show that the proposed method is able to reliably find soft cliques in graph data, even if that is distorted by random noise or unreliable observations.},
author = {Quadrianto, Novi and Lampert, Christoph and Chen, Chao},
booktitle = {Proceedings of the 29th International Conference on Machine Learning},
location = {Edinburgh, United Kingdom},
pages = {211--218},
publisher = {Omnipress},
title = {{The most persistent soft-clique in a set of sampled graphs}},
year = {2012},
}
@article{3128,
abstract = {We consider two-player zero-sum stochastic games on graphs with ω-regular winning conditions specified as parity objectives. These games have applications in the design and control of reactive systems. We survey the complexity results for the problem of deciding the winner in such games, and in classes of interest obtained as special cases, based on the information and the power of randomization available to the players, on the class of objectives and on the winning mode. On the basis of information, these games can be classified as follows: (a) partial-observation (both players have partial view of the game); (b) one-sided partial-observation (one player has partial-observation and the other player has complete-observation); and (c) complete-observation (both players have complete view of the game). The one-sided partial-observation games have two important subclasses: the one-player games, known as partial-observation Markov decision processes (POMDPs), and the blind one-player games, known as probabilistic automata. On the basis of randomization, (a) the players may not be allowed to use randomization (pure strategies), or (b) they may choose a probability distribution over actions but the actual random choice is external and not visible to the player (actions invisible), or (c) they may use full randomization. Finally, various classes of games are obtained by restricting the parity objective to a reachability, safety, Büchi, or coBüchi condition. We also consider several winning modes, such as sure-winning (i.e., all outcomes of a strategy have to satisfy the winning condition), almost-sure winning (i.e., winning with probability 1), limit-sure winning (i.e., winning with probability arbitrarily close to 1), and value-threshold winning (i.e., winning with probability at least ν, where ν is a given rational). },
author = {Chatterjee, Krishnendu and Doyen, Laurent and Henzinger, Thomas A},
journal = {Formal Methods in System Design},
number = {2},
pages = {268 -- 284},
publisher = {Springer},
title = {{A survey of partial-observation stochastic parity games}},
doi = {10.1007/s10703-012-0164-2},
volume = {43},
year = {2012},
}
@inproceedings{3129,
abstract = {Let K be a simplicial complex and g the rank of its p-th homology group Hp(K) defined with ℤ2 coefficients. We show that we can compute a basis H of Hp(K) and annotate each p-simplex of K with a binary vector of length g with the following property: the annotations, summed over all p-simplices in any p-cycle z, provide the coordinate vector of the homology class [z] in the basis H. The basis and the annotations for all simplices can be computed in O(n ω ) time, where n is the size of K and ω < 2.376 is a quantity so that two n×n matrices can be multiplied in O(n ω ) time. The precomputed annotations permit answering queries about the independence or the triviality of p-cycles efficiently.
Using annotations of edges in 2-complexes, we derive better algorithms for computing optimal basis and optimal homologous cycles in 1 - dimensional homology. Specifically, for computing an optimal basis of H1(K) , we improve the previously known time complexity from O(n 4) to O(n ω + n 2 g ω − 1). Here n denotes the size of the 2-skeleton of K and g the rank of H1(K) . Computing an optimal cycle homologous to a given 1-cycle is NP-hard even for surfaces and an algorithm taking 2 O(g) nlogn time is known for surfaces. We extend this algorithm to work with arbitrary 2-complexes in O(n ω ) + 2 O(g) n 2logn time using annotations.
},
author = {Busaryev, Oleksiy and Cabello, Sergio and Chen, Chao and Dey, Tamal and Wang, Yusu},
location = {Helsinki, Finland},
pages = {189 -- 200},
publisher = {Springer},
title = {{Annotating simplices with a homology basis and its applications}},
doi = {10.1007/978-3-642-31155-0_17},
volume = {7357},
year = {2012},
}
@article{3130,
abstract = {Essential genes code for fundamental cellular functions required for the viability of an organism. For this reason, essential genes are often highly conserved across organisms. However, this is not always the case: orthologues of genes that are essential in one organism are sometimes not essential in other organisms or are absent from their genomes. This suggests that, in the course of evolution, essential genes can be rendered nonessential. How can a gene become non-essential? Here we used genetic manipulation to deplete the products of 26 different essential genes in Escherichia coli. This depletion results in a lethal phenotype, which could often be rescued by the overexpression of a non-homologous, non-essential gene, most likely through replacement of the essential function. We also show that, in a smaller number of cases, the essential genes can be fully deleted from the genome, suggesting that complete functional replacement is possible. Finally, we show that essential genes whose function can be replaced in the laboratory are more likely to be non-essential or not present in other taxa. These results are consistent with the notion that patterns of evolutionary conservation of essential genes are influenced by their compensability-that is, by how easily they can be functionally replaced, for example through increased expression of other genes.},
author = {Bergmiller, Tobias and Ackermann, Martin and Silander, Olin},
journal = {PLoS Genetics},
number = {6},
publisher = {Public Library of Science},
title = {{Patterns of evolutionary conservation of essential genes correlate with their compensability}},
doi = {10.1371/journal.pgen.1002803},
volume = {8},
year = {2012},
}